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Abstract

A new method to characterize the strength of magnetic frustration is proposed by calcu-
lating the minimum dimensionality of the absolute ground states of the classical nearest-
neighbor antiferromagnetic n-vector model with arbitrary n. Platonic solids in three and
four dimensions and Archimedean solids have lowest-energy configurations in a num-
ber of spin dimensions equal to their real-space dimensionality. Fullerene molecules and
geodesic icosahedra can produce ground states in as many as five spin dimensions. Frus-
tration is also characterized by the maximum value of the ground-state energy when the
exchange interactions are allowed to vary.
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1 Introduction

Strongly-correlated electron interactions can very often be described by effective Hamilto-
nians involving only spin degrees of freedom [1, 2]. A Hamiltonian describing interactions
between localized spins is the nearest-neighbor antiferromagnetic Heisenberg model, which
has been considered on various lattices and clusters. A single spin is located at each vertex of
the underlying structure and only nearest-neighbors interact. It is of special interest when the
underlying structure’s topology is frustrated, meaning that due to competing interactions not
all nearest-neighbor spin pairs are simultaneously antiparallel in the ground state when the
spins are classical [3–7].

1.1 Frustration

In the nearest-neighbor antiferromagnetic Ising model the spins interact only along a single
direction in spin space, making it maximally anisotropic [8]. The dimensionality of the inter-
actions can be increased to two and three in a controlled way, by allowing the spins to interact
in the added spin dimensions with increasing strength. The corresponding models are the
XY in two dimensions and the anisotropic Heisenberg, or XXZ, in three. When the interaction
components become equal in all two or three three spin directions one gets respectively the XX
model and the isotropic XXX Heisenberg model. Frustration manifests itself in all these cases
but is more pronounced in the XXX limit, where magnetic anisotropy plays no role. Then any
deviation from antiparallel nearest-neighbor classical spins in the zero-magnetic-field ground
state and any magnetization or susceptibility discontinuities in an external field are solely due
to the frustrated connectivity of the structure that hosts the spins.

In the case of bipartite structures, which lack frustration, nearest-neighbors point at an-
tiparallel directions in spin space in the ground state. The ground-state energy is minimal and
the spin configuration is collinear already at the Ising limit. Perhaps the simplest structures
associated with frustration are polygons with an odd number of vertices with edges that cor-
respond to exchange interactions of the same strength. The smallest member of this family
is the triangle, for which in the classical Ising ground state not all three spin pairs can be
simultaneously antiparallel, demonstrating the effect of frustration. Going to the XY model
frustration is relaxed by allowing the spins to interact in a plane, and the lowest-energy con-
figuration becomes coplanar and its energy is continuously lowered with increasing coupling
in the second spin direction. This holds up to the XX limit, where the ground-state energy
assumes its minimum value and does not decrease any further if interaction in the third spin
direction is introduced. The energy per bond is then equal for any of the three bonds. Analo-
gous results hold for any member of the family of the polygons with an odd number of vertices,
even though frustration gets weaker with size [9]. The minimum dimensionality of the ground
states (MDGS [10]) in spin space is equal to the real-space dimensionality of the polygon.

A basic question for molecules including at least one type of odd-membered polygon is if
the assembly of more than one frustrated unit further strengthens frustration, by increasing
the ground-state energy per bond and making the MDGS noncoplanar. For the icosidodeca-
hedron, an Archimedean solid with vertex-sharing triangles [11–15], this is not true, as the
ground-state energy is simply the sum of the energies of the individual triangles and the corre-
sponding MDGS is coplanar [16]. The same is true for the ground-state energies of two other
Archimedean solids [17], the truncated tetrahedron and the truncated icosahedron [18–23],
however the corresponding MDGSs are noncoplanar [24,25]. Their frustrated units are trian-
gles and pentagons respectively, which are isolated from one another. On the other hand for
the icosahedron, a Platonic solid with edge-sharing triangles [26–28], not only is the MDGS
three-dimensional, but also the corresponding energy per bond is higher than the one of an iso-
lated triangle [9,29,30]. A similar result holds for another Platonic solid, the dodecahedron,
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which is formed from edge-sharing pentagons [31].

1.2 Classical n-vector Model

In this paper magnetic frustration is characterized by calculating the minimum spin-space di-
mensionality of the absolute ground state of the nearest-neighbor classical n-vector model,
when it describes interactions between spins with n components residing on vertices of frus-
trated molecules. For n = 1 one gets the Ising model, for n = 2 the XY model, and for n = 3
the Heisenberg model, but n is allowed to be greater than three until the ground-state energy
does not decrease any more. In this way the spins are given more space for nearest neighbors
to attempt to direct themselves in an antiparallel fashion, not being restricted by the three
dimensions of the Heisenberg model but only by the frustrated topology of the underlying
structure. The ground-state energy is monitored from the Ising limit up to the minimum di-
mension where it assumes its absolute minimum. This is done in a continuous way, allowing
the detection of dimensionality windows where the lowest energy remains constant before it
starts to decrease again. The point-group symmetry of the molecule determines the number
of independent exchange interactions, with edges connected by symmetry operations taken
to correspond to the same interaction strength. A second way with which the strength of
magnetic frustration is characterized is by calculating the maximum possible ground-state en-
ergy, when there is more than one independent exchange interaction and these are allowed to
vary in the minimum number of spin dimensions of the absolute ground state. In this paper
molecules having up to four unique exchange interactions are considered.

The task to investigate the properties of the n-vector model when n > 3 has been mostly
undertaken in the continuum case [32–42]. Here Platonic solids in three and four spatial
dimensions are considered, as well as Archimedean solids, fullerene molecules [43, 44], and
geodesic icosahedra [45, 46]. These molecules include at least one type of odd-membered
polygon.

It is found that for the icosahedral Platonic solids and their fourth-dimensional real space
analogues (Table 1) the MDGS is equal to the real-space dimensionality of the molecule, show-
ing a direct correlation between spin space and real space. Frustration is stronger than the
one of the isolated polygon these molecules are made from, since the ground-state energy per
bond for them is higher. On the other hand the truncated dodecahedron and the rhombicosi-
dodecahedron, which are Archimedean solids (Table 2), have three-dimensional MDGSs and
frustration is not stronger than the one at the level of the isolated polygons they are made
of. However in the case of the snub dodecahedron the assemblage of the individual polygons
increases the maximum possible frustration.

For the fullerene molecules (Table 2) the MDGS is typically three or four-dimensional,
with the ones with icosahedral symmetry belonging to the former case. Frustration is mini-
mal for them, as the maximum ground-state energy does not exceed the ground-state energy
of an isolated pentagon. This demonstrates a direct correlation between magnetic behavior
and symmetry and shows that frustration does not necessarily decrease with the size of the
fullerenes, but rather there is a specific symmetry that minimizes it. Molecules with noniso-
lated pentagons and Td symmetry have MDGSs in n= 5. Td fullerenes share patterns of com-
mon magnetic behavior not only in the minimum dimensionality of the absolute ground state,
but also in the correlations of the maximally frustrated ground state. Fullerenes more gener-
ally show that the maximum ground-state energy per bond does not necessarily decrease with
the number of vertices, showing that symmetry is also important in determining the strength
of frustration, as was also pointed out earlier for the icosahedral members of the family.

The minimum dimensionality in which the smallest geodesic icosahedron, the pentakis
dodecahedron, develops its absolute ground state is n = 4 (Table 2). Its maximum ground-
state energy per bond equals the ground-state energy per bond of the icosahedron, even though
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it develops in four dimensions. The ground state of the next bigger member of the family, the
pentakis icosidodecahedron, develops in n = 5, and its maximum possible energy per bond
value is higher than the one of the icosahedron. The pentakis snub dodecahedron, which lacks
a center of inversion, has a three-dimensional MDGS. Its maximum energy value is achieved
when two of the exchange interactions are zero and is also equal to the ground-state energy per
bond of the icosahedron. The next bigger member of the family, the hexapentakis truncated
icosahedron, has a five-dimensional MDGS. Its maximum energy value is again achieved when
two of the exchange interactions are zero and is again equal to the ground-state energy per
bond of the icosahedron, also existing in three dimensions. The maximum ground-state per
bond of the geodesic icosahedra also shows that frustration does not necessarily decrease with
the number of vertices, with the pentakis icosidodecahedron having the highest one. Since
these molecules, except for the pentakis snub dodecahedron, have Ih spatial symmetry, what
makes the difference is their connectivity.

A common characteristic of the lowest-energy configuration in a spin-space dimension n
less than the one of the MDGS ng , is that it typically does not change before the interactions
that start to develop in the next higher dimension assume a minimum strength. Unlike odd-
membered polygons which are simple frustrated structures, the ground-state energy does not
continuously decrease as the interaction in the new dimension is getting stronger. The mini-
mum interaction strength required to lower the ground-state energy typically increases with
dimensionality, showing that the lowest-energy configuration is becoming more stable with n.
Similarly, less strongly frustrated ground states for a specific ng require a stronger minimum
interaction strength in the new dimension in order to lower their energy.

The plan of this paper is as follows: in Sec. 2 the n-vector model is introduced, and in Secs
3 to 8 its MDGS for different families of molecules is calculated. Finally Sec. 9 presents the
conclusions.

2 Model

N classical spins ~si , i = 1, . . . , N of unit magnitude are considered, defined in an n-dimensional
spin space. A spin is mounted on each of the N vertices of the different molecules under consid-
eration. The spins interact according to the Hamiltonian Hn of the nearest-neighbor n-vector
model, with two interacting spins connected by an edge of the molecule. The exchange inter-
actions are taken to obey the molecular symmetry, with two edges connected by a symmetry
operation of the molecular point group corresponding to the same interaction strength. An in-
teraction between nearest neighbors i and j is taken equal to Ji j in n−1 of the spin directions,
and is scaled with αn in the remaining one:

Hn =
∑

<i j>

Ji j

�n−1
∑

σ=1

sσi sσj +αnsn
i sn

j

�

(1)

The brackets indicate that interactions are limited to nearest neighbors. Ji j is nonnegative
and 0 < αn ≤ 1, as the dimensionality of spin interactions d = n − 1 + αn goes from n − 1
to n in spin space. For bipartite structures nearest neighbors point in antiparallel directions
in the ground state, while for frustrated ones the topology of the molecule determines their
relative orientation. Here the lowest-energy configuration of Hamiltonian (1) as n is varied
is of interest. The lowest possible dimensionality is the Ising limit n = 1, and n is allowed to
increase until the ground state does not change any further. When n = 2 and 0 < α2 < 1 the
Hamiltonian is the one of the XY model, and at n = 2 and α2 = 1 of the XX model. For n = 3
and 0< α3 < 1 one gets the XXZ model, and for n= 3 and α3 = 1 the XXX model.
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The number of independent exchange interactions grows with molecular size and decreas-
ing symmetry. A thorough investigation of interaction space has been made for molecules with
up to four unique interactions. These are parametrized so that the sum of the squares of their
magnitudes equals one. If their number is two they are parametrized by a polar angle ω, and
their values are equal to the corresponding x and y components. If it is three a polar θ and an
azimuthal angle φ do the parametrization, with the three different interactions equal to the
corresponding x , y , and z components.

The calculations were done numerically [25, 47, 48]. Each spin ~si being a classical unit
vector in n dimensions is defined by n− 2 polar angles varying from 0 to π and an azimuthal
angle varying from 0 to 2π. A random initial configuration of the spins is selected and each
angle is moved opposite its gradient direction, until the lowest energy configuration is reached.
Repetition of this procedure for different initial configurations generates the energy minimum
within the numerical accuracy of the calculation [49–51].

3 Polygons with an Odd Number of Vertices

The lowest-energy configuration of model (1) on bipartite structures, which lack any frustra-
tion, is of the Néel type, with nearest-neighbor spins pointing in antiparallel directions. It is
already the ground state at the Ising limit of Hamiltonian (1).

A simple family of frustrated structures are polygons with an odd number of vertices. In
the simplest case all polygon edges are equivalent and Ji j ≡ J in Hamiltonian (1), with each
spin having two nearest neighbors. In the Ising-limit ground state neighboring spins are an-
tiparallel, except from a single parallel pair due to the odd total number of spins. Frustration
is getting weaker with N as the number of antiparallel nearest-neighbor pairs increases. As
interaction in the second direction is introduced by allowing α2 to be nonzero, spin-space
anisotropy and consequently frustration are getting weaker. This results in a two-dimensional
MDGS in contrast to the unfrustrated case, and a continuously decreasing energy per bond
and net magnetization with increasing d (Fig. 1). At the XX limit the angle between nearest-
neighbors equals N−1

N π [9], while the net magnetization becomes zero. Further increasing d
in the Hamiltonian does not decrease the ground-state energy, and the dimensionality of the
MDGS in spin space equals the real-space dimensionality of the polygons.

4 Platonic Solids

4.1 Icosahedron

The icosahedron belongs to the class of Platonic solids [26], which are convex regular poly-
hedra with equivalent vertices that consist of only one type of polygon. Their edges are also
equivalent and each Ji j ≡ J in Hamiltonian (1). The icosahedron consists of 20 triangles, has
12 vertices, and belongs to the Ih symmetry group, the point group with the largest number of
symmetry operations [52]. At the XXX limit the ground state has been found to be noncopla-
nar [9,29,30]. The triangles share edges resulting in stronger frustration in comparison with
an isolated triangle, as the ground-state nearest-neighbor correlation increases from −1

2 in the

latter case to −
p

5
5 = −0.44721. Fig. 2(a) shows the evolution of the ground-state energy

per bond as d varies from 1 to 3. At the Ising limit it equals −1
3 , as in the case of an isolated

triangle. Unlike the triangle and the other odd-membered polygons though (Fig. 1(a)), the
lowest-energy Ising configuration does not immediately change when α2 becomes nonzero,
remaining the same up to α2 =

p
5

5 . This can also be seen in the plot of the nearest-neighbor

5



SciPost Physics Submission

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

E
g
 /

 N

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

d

0

0.1

0.2

0.3

M
g
 /

 N

(a)

(b)

Figure 1: (a) Ground-state energy per bond
Eg
N for Hamiltonian (1) for a triangle

((black) solid line), a pentagon ((red) dashed line), a heptagon ((green) long-dashed
line), and a nonagon ((blue) dot-dashed line) as a function of the dimensionality d
of the interactions in spin space. (b) Corresponding magnetization per spin

Mg
N .

correlations as a function of d (Fig. 3(a)). The lowest-energy configuration becomes then
noncollinear with several unique nearest-neighbor correlation values, until the XX limit where
nearest-neighbors are antiparallel or at angles π3 and 2π

3 with each other, and the ground-state
energy per bond equals −2

5 . The XX limit ground state is also protected against α3 as it does
not change up to α3 = 0.47178, where it becomes noncoplanar. Finally at the XXX limit the
nearest-neighbor correlations become the same for every pair. The ground-state energy does
not change as d is further increased, and d = 3 is the minimum spin-space dimensionality for
which all nearest-neighbor correlations become equal and obey the symmetry of the icosahe-
dron. The total spin equals zero for any value of d.

4.2 Dodecahedron

The dodecahedron, also a Platonic solid with Ih symmetry, consists of 20 edge-sharing pen-
tagons and has 20 vertices [53–55]. Like the icosahedron, the ground state of model (1) at the
XXX limit is three-dimensional, with each bond having an energy equal to −

p
5

3 = −0.74536
[31]. This is higher than the energy per bond in the coplanar ground state of the isolated pen-
tagon −

p
5+1
4 = −0.80902 (Fig. 1(a)) [9]. Fig. 2(b) shows how the ground-state energy per

bond changes as d goes from from 1 to 3. The Ising energy per bond is −3
5 , equal to the one of

an isolated pentagon, but unlike the latter (Fig. 1(a)) and similarly to the icosahedron, it takes
a finite α2 = 0.48733 for the Ising ground state to give way to a lower-energy configuration
which is noncollinear and has several unique nearest-neighbor correlations values (Fig. 3(b)).
A value of α3 = 0.86857 is required for the ground state to change to a noncoplanar con-
figuration with a discontinuous derivative of the ground-state energy with respect to d. This
eventually becomes the configuration with all nearest-neighbor correlations equal at the XXX
limit and the energy does not change if d is further increased. Similarly to the icosahedron,
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Figure 2: Ground-state energy Eg per bond for Hamiltonian (1) as a function of the
dimensionality d of the interactions in spin space for (a) the icosahedron, and (b)
the dodecahedron.

-1

-0.5

0

0.5

1

( 
 

→  s
i
⋅

→  s
j) g

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

d

-1

-0.5

0

0.5

1

( 
 

→  s
i
⋅

→  s
j) g

(a)

(b)

Figure 3: Ground-state nearest-neighbor correlations (~si · ~s j)g for Hamiltonian (1)
as a function of the dimensionality d of the interactions in spin space for (a) the
icosahedron, and (b) the dodecahedron.
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Table 1: Different families of molecules with one symmetrically independent ex-
change interaction for which the ground state of Hamiltonian (1) was calculated.
The real-space dimensionality of the molecules is listed, along with the number of
vertices N , the point-group symmetry, the minimum ground-state dimensionality in
spin space ng , and the ground-state energy per bond

Eg

bond .

molecule real-space N point-group ng
Eg

bond
dimensions symmetry

Polygons with an Odd Number of Vertices
triangle 2 3 D3 2 −1

2

pentagon 2 5 D5 2 −
p

5+1
4

Platonic Solids

icosahedron 3 12 Ih 3 −
p

5
5

dodecahedron 3 20 Ih 3 −
p

5
3

Four-Dimensional Platonic Solids

600-cell 4 120 H4, [3,3,5] 4 −
p

5−1
4

120-cell 4 600 H4, [3,3,5] 4 −3
p

5−1
8

the equality of all the lowest-energy configuration’s nearest-neighbor correlations agrees with
the geometrical equivalence of all of the dodecahedron’s edges. Other similarities are that
the minimum α3 value required to lower the ground-state energy is bigger than the corre-
sponding α2, and that the total spin is zero for any d. The icosahedron and dodecahedron’s
MDGS of Hamiltonian (1) is found in a number of spin dimensions equal to their real-space
dimensionality (Table 1).

5 Platonic Solids in Four Spatial Dimensions

The icosahedron and the dodecahedron analogues in four spatial dimensions are the 600-
cell and the 120-cell respectively [56]. The 600-cell has 120 vertices, 720 edges, and 1200
triangular faces. Fig. 4 shows the evolution of the ground-state energy of Hamiltonian (1)
as a function of d, as well as the value of the ground-state magnetization per spin when it is
nonzero. Introducing the interaction in the second spin direction away from the Ising limit
results in an immediate lowering of the energy unlike the three-dimensional Platonic solids,
and a2 = 0+. The d = 2 and 3 ground states again do not change with the introduction of
interactions in the third and fourth dimension respectively before αn gets sufficiently strong,
and a3 = 0.68505. When d = 3 the average energy per bond equals −0.29098, and at d = 4
it is equal to −

p
5−1
4 = −0.30902 for every bond, significantly higher than the value of the

icosahedron. This shows that frustration is getting quite stronger when going from three to
four-dimensional spatial dimensions, and that the dimensionality of the MDGS follows the
spatial dimensionality of the molecule (Table 1), with nearest-neighbor correlations becoming
equal exactly at d = 4. The value of a4 is 0.62348, less than a3, again unlike the three-
dimensional Platonic solids. The ground-state magnetization per spin has discontinuities in its
value and also in its derivative as a function of d.

The four-dimensional analogue of the dodecahedron, the 120-cell, has 600 vertices, 1200
edges, and 720 pentagonal faces. Its ground-state energy per bond evolution from d = 3 to 4
is shown in Fig. 5. The average ground-state nearest-neighbor correlation when d = 3 equals
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Figure 4: (a), (b), and (c): ground-state energy Eg per bond and (d), (e), and (f):
ground-state magnetization per spin M

N for Hamiltonian (1) as a function of the di-
mensionality d of the interactions in spin space for the 600-cell.

−0.69752. The absolute minimum of the ground-state energy is again firstly achieved when
d = 4, equal to −3

p
5−1
8 = −0.71353 for every bond (Table 1), higher than the corresponding

value for the dodecahedron. Again only at the absolute minimum of the ground-state energy
do all nearest-neighbor correlations become equal. The value of a3 is 0.88920. At this value
the reduced magnetization drops from 3.2314× 10−4 to zero.

6 Archimedean Solids

The Archimedean solids are convex uniform polyhedra that have identical vertices like the
Platonic solids, but are formed by more than one polygon. The icosidodecahedron is made
of triangles and pentagons, with like polygons sharing vertices and unlike polygons sharing
edges, and has Ih symmetry and identical edges. The ground-state energy per bond of Hamil-
tonian (1) equals the one of an isolated triangle, with the lowest-energy configuration similarly
being coplanar, showing that it is determined by the more strongly frustrated triangles [16].

The truncated tetrahedron and the truncated icosahedron, which have Td and Ih symmetry
respectively, have been shown to have ground states three-dimensional in spin space for any
ratio of their two symmetrically independent exchange constants [24, 25]. They achieve the
lowest-possible energy allowed by the connectivity of the frustrated polygon they include, the
triangle and the pentagon respectively, which is the sum of energies of isolated frustrated
polygons and antiparallel interpolygon bonds.

The MDGSs of the truncated dodecahedron and the rhombicosidodecahedron, which also
have Ih symmetry and two symmetrically independent exchange constants, are also three-
dimensional and achieve the lowest-possible ground-state energy allowed by their odd-membered
polygons for any relative value of the exchange constants. In the former case the energy is the
sum of energies of isolated triangles and antiparallel intertriangle bonds, while in the latter
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Figure 5: Ground-state energy Eg per bond for Hamiltonian (1) as a function of the
dimensionality d of the interactions in spin space for the 120-cell.

of isolated triangles and pentagons. Consequently they achieve the maximum possible energy
when only the triangle bonds are nonzero, with the corresponding MDGS two-dimensional in
spin space (Table 2).

The snub dodecahedron has chiral icosahedral symmetry I , lacking a center of inversion.
Unlike the aforementioned Archimedean solids it has edge-sharing frustrated units of the same
type, which are triangles. It has three symmetrically independent edges, which divide it into
pentagons, triangles, and dimers, since not all triangle bonds are symmetrically equivalent.
Figure 6 shows the reduced ground-state energy per bond

Eg
∑

<i j> Ji j
when the relative strengths

of the corresponding three unique exchange interactions are parametrized by a polar angle θ
and an azimuthal angle φ. The z-component corresponds to the exchange interaction of the
pentagon edges, the x to one of the triangles, and the y to the one of the dimers. The MDGS is
again three-dimensional in spin space, with the nearest-neighbor correlations assuming three
independent values, corresponding to the unique exchange interactions. The total spin of the
ground state is zero. For θ = 0 only the pentagon bonds are nonzero and the ground-state
energy is the sum of energies of isolated pentagons. For θ = π

2 only the triangle and dimer
bonds are nonzero. As φ increases from 0 to π

2 the energy goes from the sum of energies
of isolated triangles to the sum of energies of isolated dimers. For 0 < θ < π

2 the ground-
state energy is determined by the competition of the three different exchange constants. The
competition between the triangular and pentagonal bonds increases the energy for smaller φ
when θ 6= π

2 , while for higher φ the dimer bonds, which link different pentagons, are getting
stronger and lower the ground-state energy.

Frustration has a peak when the lowest energy becomes maximum. This occurs when
θ = 0.379280π and φ = π

4 , where the triangle and dimer interactions are both equal to
0.65686 while the pentagonal is equal to 0.37023. The nearest-neighbor correlations are
equal to -0.4863181 for every bond (Table 2), higher than the corresponding value for an
isolated triangle but lower than the value for the icosahedron. For θ not very close to π

2 and
φ ≈ 0.481π, where the dimer bonds are strong and the triangle bonds weak, minimization of
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Table 2: Different families of three-dimensional molecules with more than one sym-
metrically independent exchange interaction for which the MDGS of Hamiltonian
(1) was calculated for the whole range of their exchange interactions parameter
space. The number of vertices of the molecules N is listed, along with the point-
group symmetry, the number of symmetrically independent exchange interactions,
the minimum ground-state dimensionality in spin space ng , and the maximum pos-

sible reduced ground-state energy per bond (
Eg
∑

<i j> Ji j
)max along with the minimum

corresponding dimensionality in spin space nmax .

molecule N point unique ng (
Eg
∑

<i j> Ji j
)max nmax

group inter.
Archimedean Solids

truncated 60 Ih 2 3 −1
2 2

dodecahedron
rhombicosidodecahedron 60 Ih 2 3 −1

2 2
snub dodecahedron 60 I 3 3 -0.4863181 3

Fullerenes

chamfered 80 Ih 2 3 −
p

5+1
4 2

dodecahedron

hexpropello 140 I 4 3 −
p

5+1
4 2

dodecahedron

truncated pentakis 180 Ih 4 3 −
p

5+1
4 2

dodecahedron
- 24 D6d 3 3 -0.7606899 2
- 28 Td 3 4 -0.7843647 4
- 30 D5h 4 3 -0.7707600 3

- 36 D6h 4 2 −
p

5+1
4 2

- 40 Td 4 5 -0.7843647 3
Geodesic Icosahedra
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5
5 4
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pentakis snub 72 I 4 3 −
p

5
5 3
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Figure 6: Reduced ground-state energy per bond
Eg
∑

<i j> Ji j
for Hamiltonian (1) in d = 3

for different values of θ as a function of φ for the snub dodecahedron. θ and φ con-
trol the relative strength of the three symmetrically independent exchange constants,
with the z-component the exchange interaction of the pentagon edges, the x the one
of the triangles, and the y the one of the dimers.

the pentagonal energy is favored and the reduced energy per bond is equal to the one of an
isolated pentagon. The equality occurs for slightly different values of φ as θ is varied.

Archimedean solids have MDGSs which are at most three-dimensional (Table 2), and frus-
tration is not stronger than the one at the level of an isolated odd-membered polygon. The
exception is the snub dodecahedron, which achieves a maximally frustrated ground state with
an energy per bond higher than the one of an isolated triangle. Simultaneously, and even
though there are three geometrically distinct edges in the molecule, the maximally frustrated
ground state achieves the same energy for any bond in the molecule.

7 Fullerene Molecules

Fullerene molecules are allotropes of carbon that consist of 12 pentagons and N
2 −10 hexagons

[43, 44]. The polygons share edges and their vertices are three-fold coordinated. Members
of the family are the dodecahedron (Sec. 4.2) and the truncated icosahedron (Sec. 6). The
pentagons are the source of frustration, and the molecules are further characterized by having
neighboring (nonisolated) pentagons or not. A three-dimensional ground state has been found
to be a typical feature of fullerene molecules when spins mounted on their vertices interact
according to the XXX model and all exchange interactions are equal [25,47,57–59]. Frustra-
tion even results in a finite ground-state magnetization for many of the molecules. On average
frustration decreases with the number of vertices as the number of hexagons increases, but a
more precise characterization of frustration, especially for molecules with the same number of
vertices, can be done if n in Hamiltonian (1) is allowed to be greater than 3 and the exchange

12
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interactions can take arbitrary values. The interaction parameter space has been investigated
for fullerene molecules that have up to four symmetrically independent exchange interactions.

Ih-symmetry molecules bigger than the dodecahedron have pentagons not neighboring one
another. For the molecules with 80 (chamfered dodecahedron) and 180 (truncated pentakis
dodecahedron) vertices and the I -symmetry molecule with 140 (hexpropello dodecahedron)
the MDGS is three-dimensional. The corresponding average energy per bond varies between
the one of an isolated pentagon and that of antiparallel spins, meaning that the maximum pos-
sible energy occurs when only the pentagons bonds are nonzero and the corresponding MDGS
is two-dimensional (Table 2). This shows that for icosahedral symmetry frustration is never
stronger than the one of an isolated pentagon, as has already been found for the truncated
icosahedron [25], and demonstrates a strong correlation between symmetry and magnetic be-
havior. It has also been found that the icosahedral fullerene molecules have the same classical
magnetization response and are also the ones that support magnetization discontinuities for
quantum spins [47,57,60].

More specifically, for N = 80 there are two symmetrically unique types of edges, the first
between same-pentagon spins and the second between a pentagon and a nonpentagon spin.
The reduced ground-state energy per bond is shown in Fig. 7 as a function of ω, with tanω
the relative strength of the two exchange interactions and for d ranging from 1 to 3. Also
shown is the lower bound for the energy, which is the sum of the ground-state energies of the
corresponding number of isolated pentagons and hexagons. Unlike the truncated icosahedron
[25], the chamfered dodecahedron does not attain this lower bound, which explains why the
intrapentagon and pentagon-nonpentagon nearest-neighbor correlations vary with ω and are
not constant and equal to −

p
5+1
4 and -1 respectively. However the maximum frustration does

not exceed the one of an isolated pentagon, with the reduced ground-state energy per bond
never higher than−

p
5+1
4 . This is also true for the icosahedral molecules with N = 140 and 180,

which have four symmetrically unique types of edges, showing that the icosahedral clusters
achieve minimal frustration. Frustration does not have to do with the size of the molecule and
the fact that the number of unfrustrated hexagons increases with N , but rather with molecular
symmetry.

For 24 vertices and D6d symmetry [43, 61] the MDGS of Hamiltonian (1) is in general
three-dimensional (Fig. 8) and has zero magnetization. The maximum energy per bond
equals -0.7606899 when the exchange interactions in the top and bottom hexagon equal
J1 = 0.369747, the ones between spins in the top or bottom hexagon and spins in the middle
ring equal J2 = 2J1, and the ones between spins in the middle ring equal J3 = 0.562526, with
the ground state developing then minimally in two spin dimensions. The J1 and J2 bonds have
an energy equal to − J3

2J1
, which equals the ground-state energy per bond, while in the middle

ring the energy alternates in value between -1 and 1− J3
J1

, so that the average also equals − J3
2J1

.
For 28 vertices and Td symmetry [43, 61] the MDGS is four-dimensional (Fig. 9). Maxi-

mum frustration occurs when same-hexagon exchange interactions are equal to J = 0.362873,
interhexagon interactions to 2J , and the rest of the pentagon-only interactions to 1.61070J .
All nearest-neighbor correlations are equal to -0.7843647, and the magnetization per spin
equals 0.0599442. The exchange interaction values for the maximum energy per bond are not
very different from the ones of the 24-vertices cluster, and similarities can also be detected
between the θ and φ dependence in Figs 8 and 9, with the number of hexagons much less
than the one of pentagons for the two clusters.

For 30 vertices and D5h symmetry [43, 61] the MDGS is three-dimensional. Its energy
is maximized when the exchange interactions that connect the lower with the upper part of
the molecule are zero, dividing it in two parts with respect to its mirror plane. The inter-
action within the top and bottom pentagons equals 0.73198, between these pentagons and
the hexagons 0.59805, and hexagon spins within the upper or the lower side of the molecule
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Figure 7: Reduced ground-state energy per bond
Eg
∑

<i j> Ji j
for Hamiltonian (1) as a

function of ω for the chamfered dodecahedron (N = 80), with cosω the intrapen-
tagon and sinω the pentagon-nonpentagon interaction. The dimensionality of spin
space d ranges from 1 to 3. ”No frustration” shows the sum of reduced ground-
state energies of isolated pentagons and hexagons. The intrapentagon and pentagon-
nonpentagon nearest-neighbor correlation functions are also plotted.

interact with bond strengths equal to 0.32641. Again these values are similar to the two
fullerene molecules examined before. All nearest-neighbor correlations equal -0.7707600, a
value higher that the one of the Td molecule with the lower number of 28 vertices. This demon-
strates that even though the number of vertices increases frustration does not get weaker,
according to the maximum possible ground-state energy criterion. The corresponding magne-
tization per spin for each half of the molecule equals 0.122080.

For 36 vertices and D6h symmetry [43,59] the MDGS is two-dimensional. The maximally
frustrated ground state occurs again when the exchange interactions that connect the lower
with the upper part of the molecule are zero, resulting in two independent parts with respect
to the molecule’s mirror plane. The exchange interactions in the top and bottom hexagon have
half the strength of the ones that connect them to the inner hexagons, and they have equal
strength with the inner-hexagon interactions. Each bond has an energy equal to the energy
per bond of an isolated pentagon, demonstrating that this molecule is minimally frustrated.
The magnetization per spin for each half of the molecule equals 1

6 .
For 40 vertices and Td symmetry [43] the MDGS is five-dimensional. The maximally frus-

trated ground state is minimally three-dimensional, and occurs when interactions that only be-
long to hexagons are zero, splitting the molecule in four parts with ten spins each. Interactions
that belong to both a pentagon and a hexagon are equal to J = 0.52746, and pentagon-only
interactions have a strength equal to 1.61070J , similarly to the N = 28 molecule with the same
symmetry. Furthermore, all nearest-neighbor correlations are equal to the value of the ones
in the maximally frustrated configuration of that molecule, demonstrating the link between
symmetry and magnetic properties. The magnetization per spin for each of the four sepa-
rate parts of the molecule equals 0.0479013. Again and according to the maximum possible
ground-state energy criterion, this molecule is more strongly frustrated than the D6h fullerene
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Figure 8: Reduced ground-state energy per bond
Eg
∑

<i j> Ji j
for Hamiltonian (1) in d = 3

for different values of θ as a function of φ for the 24-site fullerene molecule. θ
and φ control the relative strength of the three symmetrically independent exchange
constants, with the z-component the interactions in the top and bottom hexagon, the
x the interaction between spins in the middle ring, and the y the interaction between
spins in the top or bottom hexagon and spins in the middle ring.
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Figure 9: Reduced ground-state energy per bond
Eg
∑

<i j> Ji j
for Hamiltonian (1) in d = 4

for different values of θ as a function of φ for the 28-site Td fullerene molecule
isomer. θ and φ control the relative strength of the three symmetrically indepen-
dent exchange constants, with the z-component the same-hexagon interactions, the
x pentagon-only interactions, and the y interhexagon interactions.
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Table 3: Ground-state energy of Hamiltonian (1) for different n at the isotropic limit
αn = 1 and minimum αn,min required to lower the ground-state energy in n dimen-
sions for the Td -symmetry nonisolated-pentagon fullerenes with N = 40 and 100. All
the exchange interactions are equal. The corresponding magnetizations are zero.

N=40 N=100

n
Eg

bond (αn = 1) αn,min
Eg

bond (αn = 1) αn,min

1 −11
15 0+ −21

25 0+
2 -0.8265611766 0.48794 -0.9163284896 0.47175
3 -0.8297045764 0.98118 -0.9205908313 0.95423
4 -0.8298861510 0.99880 -0.9206099986 0.99971
5 -0.8298861626 0.9999998 -0.9206100870 0.999995

with the smaller number of 36 vertices, showing the importance of symmetry for frustration.
When the number of symmetrically independent exchange interactions is greater than four,

the MDGS of Hamiltonian (1) has been calculated for all N ≤ 36 molecules and for higher sym-
metry molecules with N ≤ 100 when all exchange interactions are equal, and it is typically
three or four-dimensional in spin space. Along with the N = 40 molecule with Td symmetry,
the other exception is the N = 100 molecule with the same symmetry and also nonisolated
pentagons, which has a five-dimensional MDGS. Table 3 lists the ground-state energy of Hamil-
tonian (1) for both molecules with increasing n. The absolute minimum is achieved for ng = 5,
while the minimum αn required to lower the ground-state energy when adding a new dimen-
sion increases with n, as was mostly the case for the Platonic solids.

Fullerene molecules demonstrate that even though pentagons are less frustrated than tri-
angles, their assemblage with hexagons leads to the formation of MDGSs up to five spin dimen-
sions (Table 2), higher even than the four of the four real-space dimensional Platonic solids.
What distinguishes fullerenes from Platonic and Archimedean solids is that their sites are not
equivalent, and as N increases so does the number of symmetrically unique vertices. On the
other hand the icosahedral fullerenes are minimally frustrated, pointing to the importance
of high symmetry for the magnetic properties, especially since they have also been found to
behave nontrivially in a magnetic field both for classical and quantum spins [47, 57, 60, 62].
This is also in agreement with the icosahedral and the four-dimensional Platonic solids forming
MDGSs in a number of spin dimensions equal to their dimensionality in real space, which is also
true for the icosahedral Archimedean solids. These results show that frustration in fullerene
molecules does not necessarily decrease with N and the number of hexagons, but symmetry
plays an important role as well, as is the case with the minimally frustrated D6h fullerene with
N = 36. It was also found that in order to achieve maximum energy the exchange interaction
values of different molecules are similar in value.

8 Geodesic Icosahedra

The geodesic icosahedra are polyhedra derived from the icosahedron [45, 46]. They have
icosahedral symmetry and are duals of fullerene molecules. Twelve of their vertices have five
and the rest six nearest-neighbors and they only include triangles. The pentakis dodecahedron
is the dual of the truncated icosahedron. It is derived from the dodecahedron by adding a
vertex at the center of each one of its 12 pentagons, and has N = 32. There are two unique
types of edges, one corresponding to the dodecahedron edges and the other to the edges linking
a pentagon vertex with the vertex at the pentagon’s center. The two corresponding exchange
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Figure 10: Reduced ground-state energy per bond
Eg
∑

<i j> Ji j
for Hamiltonian (1) as a

function of ω for the pentakis dodecahedron. The dodecahedron-edge interaction
equals cosω and the pentagon vertex with the pentagon’s center interaction equals
sinω. The dimensionality of spin space d ranges from 1 to 4. The vertical lines show
the ω values where the dimensionality of the MDGS changes from 3 to 4 and then
to 1.

constants are parametrized as cosω and sinω. The zero-field ground state has been calculated
for d = 3, along with the magnetization response both at the classical and quantum level [63].
Figure 10 shows the reduced ground-state energy per bond of Hamiltonian (1) as a function of
ω for d = 1 to 4. For ω = 0 the ground state of the dodecahedron is three-dimensional [31].
Introducing the second exchange interaction further enhances frustration and the reduced
energy per bond increases, and eventually the MDGS develops a four-dimensional structure in
spin space atω= 0.10414π. The maximum ground-state energy is achieved forω=tan−1

p
5+1
4

and equals −
p

5
5 for any bond (Table 2), as in the ground state of the icosahedron, with the

corresponding magnetization per spin equal to 0.088251. This is also the maximum possible
ground-state energy for spins located at the vertices of an isolated pentagon with an extra spin
located at its center, whose MDGS is is three-dimensional, when the exchange strength with
the spin at the center equals

p
5+1
2 times the intrapentagon interaction. At ω = 0.33926π the

lowest-energy configuration becomes collinear.
Figure 11 shows the ground-state energy of Hamiltonian (1) as a function ofω away from

the collinear regime for values of d which are in general noninteger. Focusing between d = 1
and 2, for the ranges of ω where the ground-state energy and consequently frustration are
maximum, a weak αn is sufficient to further lower the energy from its d = 1 value, while
for ω-ranges of weaker frustration the d = 1 lowest-energy configuration is more robust and
the corresponding αn value bigger. Going from d = 2 to 3 the corresponding αn values are
much stronger, and they get even stronger when going from d = 3 to 4. This shows that the
lowest-energy configurations are becoming more robust with increasing d, a conclusion that
has been typically drawn for the Platonic solids.

The ground-state nearest-neighbor correlations are shown in Fig. 12. They obey the sym-
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Figure 11: Reduced ground-state energy per bond
Eg
∑

<i j> Ji j
for Hamiltonian (1) as a

function of ω for the pentakis dodecahedron. The dodecahedron-edge interaction
equals cosω and the pentagon vertex with the pentagon’s center interaction equals
sinω. The dimensionality of spin space d ranges from 1 to 4 in steps of 1

10 , increas-
ing from top to bottom, with integer-d values corresponding to straight lines, and
noninteger to dashed lines. Noninteger values of d may coincide with integer val-
ues, especially with increasing d. The vertical lines show the ω values where the
dimensionality of the MDGS changes from 3 to 4 and then to 1.

metry of the molecule, with edges connected by symmetry operations corresponding to the
same correlation value. They are constant for lower ω where the MDGS is three-dimensional,
and for higher ω where it is collinear. In between they vary with ω and become equal at the
point of maximum frustration.

The next-bigger geodesic icosahedron is the pentakis icosidodecahedron. It is derived from
the icosidodecahedron by introducing a vertex at the center of each one of its 12 pentagons,
and has N = 42. The number of geometrically distinct edges is again two, one corresponding
to the edges of the icosidodecahedron and the other to the edges linking a pentagon vertex with
the vertex at the pentagon’s center. The exchange constants are again parametrized as cosω
and sinω respectively. Figure 13 shows the reduced ground-state energy per bond of Hamil-
tonian (1) plotted as a function of ω for d = 1 to 5. At ω= 0 the lowest-energy configuration
of the icosidodecahedron is two-dimensional. Then for finite ω the MDGS develops in d = 5
dimensions, with the maximum energy per bond occurring at ω= 0.256725π, being equal to
-0.4403875 for both unique bonds (Table 2). This value is higher than the corresponding one
for the pentakis dodecahedron. At ω = 0.34593π the MDGS becomes four-dimensional, and
at ω= 0.41416π the spins become collinear.

Figure 14 shows the ground-state nearest-neighbor correlations as a function of ω. Again
there is a unique correlation for each unique exchange interaction in Hamiltonian (1), and the
two correlations become equal at the point of maximum frustration. At the discontinuity the
total spin jumps from zero to a finite value. The stronger frustration of the pentakis icosido-
decahedron than the pentakis dodecahedron is also visible at the ω= 0 limit, since it reduces
to the icosidodecahedron and not to the dodecahedron, with the latter less strongly frustrated.

The pentakis snub dodecahedron has 72 vertices and four symmetrically independent
edges and lacks a center of inversion. The MDGS achieves a three-dimensional structure in
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Figure 12: Ground-state nearest-neighbor correlations (~si ·~s j)g for Hamiltonian (1) as
a function ofω for the pentakis dodecahedron. The (black) solid line corresponds to
the dodecahedron-edge correlation and the (red) dashed line to the pentagon vertex
with the pentagon’s center correlation. The corresponding interactions in Hamilto-
nian (1) are equal to cosω and sinω respectively. The vertical lines show theω values
where the dimensionality of the MDGS changes from 3 to 4 and then to 1.

spin space (Table 2). Its maximum value equals −
p

5
5 and occurs when the only nonzero ex-

change interactions are between the 5-fold coordinated spins and their nearest neighbors, and
among these nearest neighbors themselves, with the ratio of the two equal to

p
5+1
2 . This is the

minimally three-dimensional state that has the maximum ground-state energy for an isolated
pentagon with a spin at its center. On the other hand the hexapentakis truncated icosahe-
dron, which has 92 vertices and four symmetrically independent edges, has a five-dimensional
MDGS in spin space. Its maximum ground state corresponds to a minimally three-dimensional
configuration and develops exactly as the one of the pentakis snub dodecahedron.

The geodesic icosahedra have five and six-fold coordinated vertices. Each one of the for-
mer resides at the center of a pentagon, and forms with it a structure that achieves a maximum
ground-state energy per bond of −

p
5

5 , which equals the ground-state energy of the icosahe-
dron [9,29,30]. The pentakis dodecahedron achieves this maximum in four spin dimensions,
while the pentakis icosidodecahedron has a higher maximum possible energy than −

p
5

5 in
five spin dimensions. On the other hand the hexapentakis truncated icosahedron achieves the
maximum when the pentagons with a spin at their center are isolated from the rest of the clus-
ter, which only requires three dimensions in spin space. What distinguishes this molecule from
the two smaller ones is that the pentagons with a spin at their center are isolated from one
another. The pentakis snub dodecahedron, which has I symmetry and also isolated pentagons,
maximizes the energy in exactly the same way, even though it has ng = 3. These results show
that frustration as determined from the maximum ground-state energy criterion does not nec-
essarily weaken with the increase in the number of vertices, which makes the twelve five-fold
coordinated vertices much less in number than the six-fold ones. The specific connectivity of
each cluster is important, with the pentakis icosidodecahedron having the maximum possible
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Figure 13: Reduced ground-state energy per bond
Eg
∑

<i j> Ji j
for Hamiltonian (1) as a

function of ω for the pentakis icosidodecahedron. The icosidodecahedron-edge in-
teraction equals cosω and the pentagon vertex with the pentagon’s center interaction
equals sinω. The dimensionality of spin space d ranges from 1 to 5. The vertical lines
show the ω values where the dimensionality of the MDGS changes from 5 to 4 and
then to 1.

ground-state energy per bond.

9 Conclusions

Magnetic frustration has been characterized by the minimum dimensionality of the absolute
ground state of the n-vector model, by allowing n to take arbitrary values with the spins
mounted on the vertices of different molecules being more than three-dimensional. Molecules
of high symmetry such as Platonic solids in three and four dimensions (Table 1) and Archimedean
solids (Table 2) have been found to form MDGSs in a number of spin-space dimensions equal to
their real-space dimension. When there is more than one unique type of vertex, as in the case
of fullerene molecules and geodesic icosahedra, the ground state can minimally develop in as
many as five spin-space dimensions, in order to optimize nearest-neighbor interactions. Frus-
tration is also characterized by the maximum ground-state energy per bond when there are
more than one symmetrically independent exchange interactions and they are allowed to vary.
Typically the nearest-neighbor correlations are then equal, unless frustration does not exceed
the one at the level of the maximally frustrated polygon of the molecule, as in the case of the
Ih-symmetry fullerenes. This second way of characterizing frustration also demonstrates the
existence of symmetry patterns within the same family of molecules. Furthermore, increasing
the number of sites does not necessarily weaken frustration as is expected, but the molecular
point-group symmetry also plays an important role, as well as the specific connectivity of each
molecule if they are of the same symmetry. It is also found that going from a dimension n to
the next higher one by switching on the interactions in the new dimension, it typically takes a
finite strength of the latter to lower the ground-state energy.
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Figure 14: Ground-state nearest-neighbor correlations (~si · ~s j)g for Hamiltonian (1)
as a function of ω for the pentakis icosidodecahedron. The (black) solid line corre-
sponds to the icosidodecahedron-edge correlation and the (red) dashed line to the
pentagon vertex with the pentagon’s center correlation. The corresponding interac-
tions in Hamiltonian (1) are equal to cosω and sinω respectively. The vertical lines
show the ω values where the dimensionality of the MDGS changes from 5 to 4 and
then to 1.

The study of the n-vector model with arbitrary n allows a more precise characterization of
the frustration introduced by the molecular connectivity. This is because the energy minimiza-
tion is not constrained by the requirement that the spins can only be up to three-dimensional,
allowing them to minimize the nearest-neighbor interactions more efficiently. The method in-
troduced here can reveal more symmetry patterns if the computational resources are available
to study molecules with more than four symmetrically independent exchange interactions.
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