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Abstract

We study scaling behavior of the disorder parameter, defined as the expec-
tation value of a symmetry transformation applied to a finite region, at the
deconfined quantum critical point in (2+1)d in the J-Q3 model via large-scale
quantum Monte Carlo simulations. We show that the disorder parameter for
U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic cor-
rection associated with sharp corners of the region, as generally expected for
a conformally-invariant critical point. However, for large rotation angle the
universal coefficient of the logarithmic corner correction becomes negative,
which is not allowed in any unitary conformal field theory. We also extract
the current central charge from the small rotation angle scaling, whose value
is much smaller than that of the free theory.
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1 Introduction

Deconfined quantum criticality (DQC) [1–3], a continuous quantum phase transition be-
tween two seemingly unrelated symmetry-breaking states, is arguably the complex be-
havior of novel quantum critical point beyond the paradigm of Landau-Ginzburg-Wilson.
Such a transition, if exists, is believed to host a number of unusual phenomena, such
as an emergent symmetry unifying order parameters of completely different microscopic
origins and the presence of fractionalized spinons, among others [3–5]. Theoretically the
proposed low-energy theory is a gauge theory in the strong coupling regime, posing signif-
icant challenges to analytical treatment [2, 6]. Numerical investigations of lattice models
realizing such transitions have been indispensable in pushing forward our understanding
of DQC from many different angles: the two-length-scale scaling as an attempt to rec-
oncile the anomalous finite-size scaling behavior of the J-Q model [7], conserved current
exploited to exhibit the emergent continuous symmetry [8], fractionalization revealed from
dynamic spin spectra [3], to name a few. There has also been exiciting progress in pos-
sible experimental realization of the DQC from the pressure-driven phase transition in
the Shastry-Sutherland quantum magnet SrCu2(BO3)2 [9–11] and its theoretical implica-
tions [12–14]. The communities of quantum phase transitions, quantum magnetism and
even high-energy physics, have benefited a lot from these pursuits over the years. However,
the very nature of the transition itself, and basic questions such as whether the transition
is continuous or not, whether the transition follows conformal invariance and accquires
a proper conformal field theory (CFT) description [6, 15–25], etc, are actually still open
despite the active investigations mentioned above.

In recent years, the importance of using extended operators, such as symmetry domain
walls or field lines of emergent gauge field, to probe and characterize phases and phase tran-
sitions has become increasingly clear [26–30]. In particular, many exotic gapped phases
can be understood in terms of the condensation of certain extended objects, spontaneously
breaking the so-called higher-form symmetry. These new insights bring intriguing connec-
tions between the Landau-Ginzburg-Wilson paradigm of spontaneous symmetry breaking
and more exotic phenomena of topological order [31]. Inspired by such progress, recent
works have started to explore more quantitative aspects of disorder operators, which are
defined as a symmetry transformation restricted to a finite region of the system, especially
at quantum criticality. Ref. [32] computed the Ising disorder operator, which serves as
the order parameter of a Z2 1-form symmetry, by quantum Monte Carlo (QMC) sim-
ulation at the (2+1)d Ising transition. The U(1) disorder operator at the (2+1)d XY
transition is measured in QMC simulation as well [33]. New universal scaling behavior
for such disorder operators at these conformally-invariant quantum critical points (QCP)
are identified [32–36]. Building upon the methodology for the computation and analysis
of disorder operator established by studying conventional symmetry-breaking transitions,
in this work we take this new set of tools to study the deconfined quantum criticality.

An important difference between the DQC and other QCPs studied so far in this
context is that one side of the DQC exhibits valence bond solid (VBS) order, spontaneously
breaking the lattice symmetry. To understand how the behavior of the disorder operator is
affected by lattice symmetry breaking, we first study two different microscopic realizations
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of the (2+1) O(3) QCP, the bilayer and J1-J2 Heisenberg antiferromagnets on the square
lattice, using ubiased Stochastic series expansion (SSE) [37] QMC simulations. We find
the disorder operators for U(1)Sz symmetry obey the expected perimeter law scaling with
a multiplicative logarithmic correction at the QCPs, in agreement with the prediction of
the O(3) CFT. However for the J1-J2 model with explicit translation symmetry breaking,
it is crucial to construct disorder operators only on regions whose boundary avoids the
“strong” singlet bonds, in order to obtain converged results in the finite-size analysis.

With this knowledge, we proceed with the similar measurement of the U(1)Sz dis-
order operator in the J-Q3 model of DQC, at the critical point between the Néel and
VBS phases [4]. To mitigate finite-size error due to the VBS fluctuations, in our QMC
measurement of the disorder operator we adjust the region according to the profile of the
instantaneous VBS order. Our data reveal that although the disorder operator still obeys
the scaling behavior expected for a general CFT, the universal coefficient in the logarith-
mic correction term becomes negative for U(1) rotation angle close to π, which we argue
is incompatible with any unitary CFT and in fact suggests a large violation of unitarity.
We also extract the current central charge from the small angle scaling, whose value is
significantly smaller than conventional O(n) CFT.
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 J1J2 /
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Figure 1: The three lattice models: (a) the bilayer square lattice antiferromagnetic Heisen-
berg model, (b) the square lattice J1-J2 antiferromagnetic Heisenberg model and (c) the
J-Q3 model. (a), (b) exhibits (2 + 1)d O(3) QCP as J2/J1 is tuned [38–40] and (c) gives
rise to DQC [4].
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2 Three lattice models

We simulate the following three lattice models hosting the target QCPs. The first is the
bilayer square lattice antiferromagnet with Hamiltonian

Hbilayer = J1

∑
〈ij〉

(S1,i · S1,j + S2,i · S2,j) + J2

∑
i

S1,i · S2,i, (1)

where Sα,i is a spin-1/2 at site i of layer α(= 1, 2), 〈ij〉 denotes the neareast-neighbor anti-
ferromagnetic coupling on the square lattice. J2 is the interlayer antiferromagnetic interac-
tion. The model is illustrated in Fig. 1(a). The critical point (J2/J1)c = 2.5220(1) [38,39]
separating the Néel state and the symmetric product state of inter-layer singlets, belongs
to the (2 + 1)d O(3) universality class.

The next model is the square lattice J1-J2 Heisenberg, shown in Fig. 1(b). The Hamil-
tonian reads

HJ1−J2 = J1

∑
〈ij〉

Si · Sj + J2

∑
〈ij〉′

Si · Sj , (2)

where 〈ij〉 denotes the thin J1 bond and 〈ij〉′ denotes the thick J2 bond, and the QCP
(J2/J1)c = 1.90951(1) [40] is also known to fall within the (2 + 1)d O(3) universality class.
The reason that we study both Eqs. (1) and (2) is that although the QCPs are in the
same universality class, the presence of strong J2 and weak J1 bonds in Eq. (2) breaks
the lattice translation symmetry while Eq. (1) is fully translation-invariant. As we show
below, because of the translation symmetry breaking, the domain M must be chosen so
that its boundary avoids strong singlet bonds to correctly extract the scaling behavior of
the disorder operator.

The last model is the J-Q3 model as illustrated in Fig. 1(c) with the following Hamil-
tonian,

HJ−Q3 = −J
∑
〈ij〉

Pij −Q
∑

〈ijklmn〉

PijPklPmn. (3)

Here Pij = 1
4 − Si · Sj is the two-spin singlet projector. The quantum critical point

separating the Néel and VBS states is at [Q/(J +Q)]c = 0.59864(5) [4,41] (see Appendix
B for details [42]). While the VBS order vanishes at the QCP after extrapolating to the
thermodynamic limit, in a finite system there is always a small but non-zero VBS order.
Therefore the computation of the disorder parameter may suffer from similar kinds of
lattice effect that occurs in the J1-J2 model. To eliminate such effect as much as possible,
in our QMC measurement of the disorder operator we adjust the region according to the
profile of the instantaneous VBS order to achieve robustly converged results from finite-size
analysis (see Appendix B for details).

3 Disorder operator

All three lattice models have SU(2) spin rotational symmetry. For any U(1) subgroup
we will define a disorder operator that depends on the U(1) rotation angle. Without
loss of generality, we will consider spin rotations around the z and the U(1) symmetry

transformations are implemented by U(θ) =
∏
i e
iθ(Sz

i −
1
2

), where Szi is the U(1) charge on

site i. For a region M , we define the disorder operator XM (θ) =
∏
i∈M eiθ(S

z
i −

1
2

). The
ground state expectation value 〈XM (θ)〉 will be referred to as the disorder parameter. The
scaling behavior of 〈XM (θ)〉 in various phases, especially the dependence on the geometry
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of M , has been studied thoroughly in [33]. In a U(1)-symmetric phase, such as the singlet
ground state in Hbilayer and HJ1−J2 models, 〈XM (θ)〉 is expected to obey a perimeter law
|〈XM (θ)〉| ∼ e−a1(θ)l, where l is the perimeter of the region M . In the ordered (U(1)
symmetry breaking) phases, such as the Néel phase of the three models, it was found that
|〈XM (θ)〉| ∼ e−b(θ)l ln l [33, 43]. Our focus in this work, however, is the disorder operator
at QCPs in Fig. 1, in particular that of the DQC. Previous studies of the (2 + 1)d Ising
and O(2) transitions, as well as other gapless critical theories [32–34, 36] suggest that for
large l, ln |〈XM (θ)〉| takes the following general form for a rectangle region:

ln |〈XM (θ)〉| = −a1l + s ln l + a0. (4)

Here all the coefficients are functions of θ. We note that as an expansion in large l, Eq. (4)
contains all terms compatible with scale invariance (dropping those that decay with l). The
universal logarithmic correction, which translates into a power law ls in |〈XM 〉|, originates
from sharp corners of the region. In general s is a universal function of both θ and the
opening angle(s) of the corners (all π/2 in this case) [33,35]. Similar corner contributions
were known to arise for Rényi entropy in a CFT [44, 45], which can be understood as
the disorder operator of the replica symmetry. In Ref. [33], analytical arguments were
presented to support the universal corner correction for the disorder operator and the
universal coefficient s is found to be given by s(θ) ≈ CJ

(4π)2
θ2 as θ → 0 (see also [36]). Here

CJ is the current central charge of the CFT, which is proportional to the universal DC
conductivity σ = π

16CJ [46]. This is the consequence of conformal symmetry and current
conservation. Our previous QMC at O(2) QCP reveals s/θ2 = 0.011(1), consistent with
the exact value CJ

(4π)2
= 0.01145 [47–50]. Another feature common to all known examples

of disorder operators is that s is always positive. The positivity of s is proven for the Rényi
entropy, i.e. disorder parameter of the replica symmetry in unitary CFTs [51, 52]. In the
present case, we generalize the argument in [51] to show that s(π) must be positive in a
unitary CFT (see Appendix D for details [42]). As we will see below, s(θ) for DQC follows
the same scaling behavior at small θ, but the large θ behavior is dramatically different.
Moreover, we note that the system sizes accesssed here with the disorder operator is much
larger than those of the entanglement entropy, simply because the |〈XM 〉| is a equal-time
measurement without invoking the replicas.

4 Numerical results

We choose the region M to be a R × R square region in the lattice, with perimeter
l = 4R− 4. Firstly, we compute the disorder parameter XM (θ) as a function of perimeter
l at the 3D O(3) QCP ((J2/J1)c = 2.5220) [38, 39] of the Hbilayer model with system size
L = 32, 64, 96, 128. Plots of |〈XM (θ)〉| v.s. l for representative values of θ’s are shown
in Fig. 2(a). Fitting the data with Eq. (4), we obtain the coefficient s(θ) of the corner
correction term, as shown in Fig. 2 (b) 1. The behavior of s is qualitatively similar to that
of the O(2) transition studied in [33]. We will mainly use the results from Hbilayer as a
reference for the O(3) CFT.

Next, we perform the same QMC simulations for the HJ1−J2 model at its QCP
(J2/J1)c = 1.90951(1) [40]. Although the critical theory is the same 3D O(3) CFT,
because of the doubling of the unit cell due to alternating J1 and J2 bonds, the disorder
parameter 〈XM (θ)〉 exhibits even-odd oscillation as a function of R, see Appendix C for

1we note that although a simple exponential function might also be able to fit the data, but we find in
generial for the θ we have investigated, the goodness of the fit, χ2, is usually two magnitude larger than
those obtained from the fitting form in Eq. (4). We show more details in Appendix A
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Figure 2: Disorder parameter |〈XM (θ)〉| as a function of the perimeter l = 4R − 4 with
system size L = 96 at the QCPs for Hbilayer model (a), HJ1−J2 model (c) and the HJ−Q3

model (e). (b), (d) and (f) show the obtained s(θ) with system size L = 32, 64, 96, 128
for the three models in (a), (c) and (e), respectively. The convergence of the data with
increasing L is clear from the figures.

details [42]. This is because the boundary of the region M cuts different types of bonds
for even and odd R: for odd R, one of the boundary segments along y always cuts strong
J2 bonds, while for even R depending on the exact position of M the boundary may or
may not cut strong bonds. Such singlet cutting increases the leading perimeter contribu-
tion in the disorder parameter, introducing significant finite-size error when extracting the
subleading corner term s. For the J1-J2 model, we find that the correct results for s(θ)
(compared to s(θ) extracted from the bilayer Heisenberg model, free of such complications)
can only be obtained from the scaling analysis when disorder operators are constructed
on regions whose boundary does not cut any strong bonds. We note the quantification
of the error bar in s(θ) is certainly a nontrivial issue. Here we use the errorbar of the
fitting protocol which yields the correct values of s(θ) in the J1-J2 case (the other two
fail to give the correct values there), but at the same time we should again note that the
comparison of errorbar between different schemes is not straightforward. More details of
the analysis can be found in Appendix C. We believe this is a general phenomenon and to
mitigate finite-size error similar selection of regions must be applied whenever there exists
bond order breaking the translation symmetry either explicitly or spontaneously. This is
the most important lesson learnt from the study of the J1-J2 model.

Now we turn to the J-Q3 model. Because of the VBS order, we would like to design
the boundary of M in such a way that it cuts least strong singlet bonds. However, since
the VBS order in the J-Q3 model forms spontaneously, the pattern of stronger singlet
bonds is not known a priori. To overcome this issue, we follow the following procedure:
for each measurement, first we calculate the value of the VBS order parameter (Dx, Dy)
for the spin configuration and then adjust the region M according to the profile of the
instantaneous VBS order to avoid cutting the stronger bonds, as illustrated in Fig. 8.
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Figure 3: The coefficient of the corner correction s(θ) for small values of θ with system
size L = 32, 64, 96, 128 at the QCPs for Hbilayer model (a), HJ1−J2 model (c) and HJ−Q3

model (e). The lines are the data fitting with s(θ) = CJ
(4π)2

θ2. (b), (d) and (f) show

the extrapolation of the obtained CJ/(4π)2 as the system size L increases. In case of
(b) and (d), the extrapolated CJ/(4π)2 approach the theoretical value 0.011 for the O(3)
CFT denoted by the green dots and dashe lines. In (f), CJ/(4π)2 for DQC apparently
extrapolates to a much smaller number (red square and dashed line) compared with the
O(3) value (the green dot and dashed line).
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More details can be found in Appendix C [42]. All results below are obtained with this
method.

Let us start from small θ. In Fig. 3, we show the fit of the corner correction s(θ) for
small θ(≤ 0.25) with s(θ) = CJ

(4π)2
θ2. For the Hbilayer and HJ1−J2 Heisenberg models, we

obtain CJ/(4π)2 = 0.0120(2) and CJ/(4π)2 = 0.0116(2), respectively. These values are
consistent with CJ/(4π)2 = 0.01147 of the O(3) CFT from numerical bootstrap [53] within
errorbars. However, as shown in Fig. 3 (e) and (f), the same analysis for the DQC yields a
smaller value CJ/(4π)2 = 0.0088(2) A small CJ , or equivalently a small DC conductivity
σ, suggests that the theory is more strongly coupled (so the value deviates significantly
from that of a free boson).

Most interestingly, we find that the s(θ) for DQC becomes negative for large θ as
shown in Fig. 2 (f). We also note that s(θ) become negative for large θ as the system size
increases up to L = 128. Such negative values of s(θ) in DQC are drastically different
from the behavior of s observed in all other QCPs investigated so far, including Ising [32],
O(2) [33] and also the two different realizations of the O(3) CFT in Fig. 2 (b) and (d).
This list can be expanded to include Rényi entanglement entropy as a disorder parameter
of the replica symmetry, and it is known that the corner correction s for Rényi entropies
must be positive for all unitary CFTs [51, 52]. In fact, we can generalize the argument
in [51] to show that s(θ = π) > 0 (essentially for any Z2 symmetry disorder parameter,
see Appendix D for details). Therefore a negative s implies strong deviation of the model
from unitary CFTs. This is intriguing as measurements of local observables at DQC in the
HJ−Q3 model appear to exhibit conformal invariance, at least for system sizes accessible
to current numerical simulations. Thus our observation of a negative s(π) provides direct
and unambiguous evidence for the breakdown of a unitary CFT description.

5 Discussions

Through large-scale QMC simulations and finite-size analyses, we determine the scaling
behavior of the disorder operator for U(1)Sz symmetry at the DQCP in the J-Q3 model.
Most noticeably, the universal corner correction s of the DQC becomes negative, in sharp
contradiction to the positivity of s(π) in any unitary relativistic conformal field theory. We
also observe that the obtained current central charge of DQC is smaller than the typical
value of O(n) CFTs.

Our findings, in particularly the negative s, raise a number of significant questions
about the theory of DQC. One possible explanation for the negative s is that the observed
regime of the DQC is actually controlled by a non-unitary CFT, with a (complex) fixed
point very close to the physical parameter space. So within a large length scale conformal
invariance can still manifest. This possibility has been proposed theoretically in several
recent works [6, 15–18, 20], to explain unusual finite-size scaling behavior from previous
numerical simulations [6, 7, 15] and the tension between the numerically observed critical
exponents with conformal bootstrap bounds [16]. Our result points to a distinct aspect of
this putative non-unitary fixed point, that the universal correction s must be negative.

However, the scenario of complex fixed point implies that the fixed point should be
located close to the physical parameter space, in order to explain the large conformal
window observed numerically. As a result, it is reasonable to expect that the violation
of unitarity in various universal quantities should appear as small complex corrections,
which manifest in scaling violation. This is indeed the case in known solvable examples of
weakly first-order transition controlled by a complex CFT, such as the Q = 5 Potts model
in (1+1)d where critical exponents and central charge [54,55] acquire complex corrections
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at the actual fixed point. The critical point is the self-dual point of the lattice model,
so the disorder operator for the ZQ symmetry is related to the ZQ Potts spin operators
via Kramers-Wannier-type duality. Thus the expectation value of the disorder operator
decays as a power law with the length of the interval on which the disorder operator
is defined, analogous to the logarithmic corner correction in (2+1)d. For Q = 5, the
scaling dimension of the spin operator becomes complex: ∆σ ≈ 0.067± 0.01i [55]. If one
measures the disorder operator in the Q = 5 model, we expect that within the conformal
window, the decay is still mainly controlled by the real part of ∆σ, but with small drifts
of exponents . Therefore, within the conformal window the result is well-approximated
by a power law with positive exponent. Generalizing to (2+1)d, one would expect that s
measured from numerical simulations inside the conformal window should still be positive
at a weakly first-order transition controlled by a nearby complex CFT, which is not what
we have seen.

In light of the situation, it is important to gain more systematic understanding of how
the complex fixed point affects the disorder operator and the corner correction s, especially
their scaling behavior. It is also worthwhile to consider alternative scenarios other than
that of a complex fixed point. One proposal is that a dangerously irrelevant operator
changes the scaling behavior [7,15]. How the behavior of the disorder operator is affected
remains to be studied. More recently, there emerges new evidence that shows the DQC is
a multicritical point [19]. More thorough investigations of scaling in such modified models
are needed to verify the theoretical [23] and numerical predictions [19] and to find better
scenarios for the strongly violaition of unitarity we have observed. It will be interesting
for future studies to explore other non-local observables, such as Rényi entropies, and
consider other microscopic realizations of DQC where dangerously irrelevant operators
are absent [24,56]. From here, more comprehensive studies of DQC are called for.
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Figure 4: (a) Disorder parameter |〈XM (θ)〉| as a function of the perimeter l = 4R − 4
with system size L = 96 at the QCPs for Hbilayer model at θ = π. The difference in the
quality of the fit in terms of the reduced chis-quare χ2/DOF and (b) the fitting deviations
∆1(2)(l) reveal that Eq. (6) is the better choice.

Appendix A Fitting analysis

In this appendix, we perform a fitting analysis and compare a purely exponential fit:

f1(l) = b0 exp (−a1l), (5)

and a fit with a power-law ls correction:

f2(l) = b0 exp (−a1l)l
s, (6)

As shown in Fig. 4(a), we fit the data (from lmin = 12) with two different functions: the
first one is a purely exponential fit, i.e., Eq. (5), which gives b0 = 0.815(2), a1 = 0.0834(2),
with the reduced chi-square χ2/DOF ∼ 96 for θ = π; the second one is Eq. (6), which
gives b0 = 0.9597(5), a1 = 0.01191(5), s = 0.0073(3), with χ2/DOF ∼ 1.4 for θ = π.
Although both functions can go through the data points, the different fitting quality
indicated by almost two order of magnitudes difference in the χ2/DOF clearly shows, that
our choice of the form in Eq. (6) is the right fitting form. In order to show more visibly
the difference in fitting quality, we also present in Fig. 4(b) the fitting deviations defined
by ∆1(2)(l) = (Xm(l)− f1(2)(l))/δXM (l) with δXM (l) being the error bar of the XM (l).

Appendix B Determination of the deconfined quantum crit-
ical point

In this appendix we determine the location of the DQC of the J-Q3 model using finite-size
scaling. From the scaling hypothesis we know that any dimensionless quantity O measured
in a finite-size system fulfills

O(q, L) = g[(q − qc)L1/ν , L−ω] (7)

with qc = [Q/(J+Q)]c the phase transition point in the thermodynamic limit, ν the critical
exponent of correlation length and ω the correction exponent which generally defers in
different microscopic models. It is obvious that if ω = 0 the dimensionless quantity O

10
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obtained from systems of different sizes are the same at qc, therefore all curves of O(q, L)
as functions of q for different sizes cross at one point, which is the critical point. However,
the correction term is not always absent and in general the curves do not actually cross
at one point. Thus, we can make use of all the crossings obtained from different curves
and find qc at thermodynamic limit with the following relation,

q∗(L) = qc(∞) + aL−ω−1/ν (8)

where q∗(L) stands for the crossing point of two curves from size L and L′. In our study of
the J-Q3 model q = Q/(Q+ J) and we measure spin stiffness ρs and Binder ratios of the
order parameters for Néel (Rs) and VBS (Rd) orders. The spin stiffness ρs is calculated
from the winding number,

ρs =
1

2β
(W 2

x +W 2
y ) (9)

which has the following scaling form:

ρs = L−zf(qL1/ν). (10)

In J-Q3 model the dynamical exponent z = 1 and ρsL is therefore dimensionless. As for
the Binder ratio,

Rs =
〈m4

sz〉
〈m2

sz〉2
, Rd =

〈D4〉
〈D2〉2

(11)

where msz = 1
L2

∑
x,y(−1)x+ySzx,y is the staggered magnetization ms along the z (quanti-

zation) axis, and D2 = D2
x+D2

y, is the VBS order parameter with Dx = 1
L2

∑
x,y(−1)xSx,y ·

Sx+1,y and Dy defined analogously [57]. Both of those two ratios are dimensionless. We
perform QMC simulations on the J-Q3 model and determine the q dependence of the
dimensionless quantities ρsL, Rs and Rd as shown in Fig. 5(a), (b) and (c). After that,
we calculate all the q∗(L) as the crossing point of (L, 2L) from three different quantities
using system sizes from L = 8 to L = 128. All the crossings are depicted in Fig. 5(d),
fitted by Eq. (8). From the fitting results in these three different observables we can get
the qc(∞) = 0.59864(5) which is the value used in the main text.

Appendix C The choice of region M

In this appendix, we discuss how to choose the region M to obtain the correct scaling
behavior of 〈XM 〉. As shown in the main text, for Hbilayer, since there is no translation
symmetry breaking (explicit or spontaneous), the choice of the region is immaterial. How-
ever, the J1 − J2 case is different because the alternating strenghs of Heisenberg couplings
doubles the unit cell, as shown in Fig. 6. If the region M is a R×R square (green shaded
region in Fig. 6), M with even or odd R cut very different types of bonds on the boundary.

More concretely, when R is odd (e.g. R = 3 in Fig. 6 (a)), the boundary of M
inevitably cuts one column of J2 bonds. When R is even, as shown in Fig. 6 (b) and (c),
depending on the exact location of M , the boundary can cut two columns of J2 bonds
(as in (b)) or avoid cutting J2 bonds at all (as in (c)). Numerically, we find that the
three choices of M yield distinct values and scaling behavior of the disorder parameter
〈XM 〉. Only for those regions cutting no J2 bonds, finite-size scaling analysis converges
to the expected result for the (2+1)d O(3) CFT. The issue can be clearly seen from the
representative data in Fig. 7. Fig. 7 (a) shows the |〈XM (θ)〉| at θ = π/2 for L = 96 at
the QCP of HJ1−J2 . Disorder parameters corresponding to three different boundaries as
illustrated in Fig. 6 (a), (b) and (c), denoted as odd, even-A and even-B in the figure
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Figure 5: The q = [Q/(J + Q)] dependence of JQ3 model for ρsL (a), Rs (b) and Rd (c)
with L = 8,16,32,64,128 and 256. All the crossings of two sizes L and 2L for ρsL, Rs and
Rd are presented in (d). The curves are fitting function in Eq. (8) with qc = 0.59862(5)
for ρsL, qc = 0.59863(5) for Rs, and qc = 0.59865(5) for Rd.
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Figure 6: Three types of region M : (a) region M with odd R(= 3), whose boundary
cuts one column of strong singlet bonds; (b) region M with even R(= 4) and cutting two
columns of strong singlet bonds; (c) region M with even R(= 4) and cutting no strong
singlet bonds.
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Figure 7: |〈XM (θ)〉| for the HJ1−J2 model, all obtained with L = 96: (a) the disorder
parameter and (b) its subleading term |〈XM (θ)〉|sub as functions of l at θ = π/2, for the
three types of the region M . (c) s(θ) for the three types of the region M , respectively.
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all show different perimeter dependence. Even-A type boundaries show the largest linear
coefficient in the perimeter contribution, which makes sense as this type of boundary cuts
the most J2 bonds. While the perimeter law is non-universal, the dependence on the details
of the boundary also manifests in the corner correction, at least in our finite-size analysis.
In order to show obviously the subleading term from corner correction, we also extract
the subleading term of the disorder parameter |XM |sub = |XM |/[b0 exp (−a1l)] = ls, as
shown in Fig. 7 (b). The problem is clearly illustrated in Fig. 7 (c), where s(θ) extracted
from the disorder parameters computed using the three types of boundaries are shown for
system size L = 96. Here one sees that s for even-A boundary becomes negative, which
violates the positivity constraint at θ = π and is obviously unphysical. We believe that
the relatively large perimeter contribution for even-A boundary data strongly affects the
precision of the fitting, since the corner contribution is subleading to the perimeter term.
For the other two types of boundaries (odd and even-B), now both give positive s(θ), but
the θ dependence is still quite different. We find it is the even-B type regions that give the
correct value of the current central charge of the O(3) CFT, from fitting s(θ) ≈ CJ

(4π)2
θ2.

This analysis suggests that to mitigate the finite-size error in the data fitting, one should
construct disorder operators on regions which minimize the perimeter contribution. In
particular, when there is lattice symmetry breaking induced by bond or plaquette order,
the strong bonds should be avoided.

MM

MM

Dy

Dx

Dy

Dx

(a) (b)

III

III IV

Figure 8: The choice of region M with “ even-B̃ ” type bounary: (a) The four special
patterns of VBS order in the plane of order parameter (Dx, Dy). (b) Porper region M
with even R(= 4) in each quadrant, whose boundary cuts least column of singlet bonds.

In case of the DQC, although HJ−Q3 is translation-invariant, it is already well-known
that finite-size analysis of correlations can be tricky due to the domains of VBS formed
spontanenously when Q ≥ Qc. For the disorder operator, boundary dependence similar
to those observed in the J1 − J2 model also shows up in the naive measurements of 〈XM 〉
at DQC. To minimize the effect of cutting strong bonds due to residual VBS order, we
take a choice of region M with “ even-B̃ ” type bounary: firstly, we calculate the two
components of the VBS order (Dx, Dy) with Dx = 1

L2

∑
x,y(−1)xSx,y · Sx+1,y and Dy

defined analogously for each given spin configuration (one microstate or one sample in
the SSE QMC) at the Sz basis, and then adjust the region M according to the profile
of the instantaneous VBS order, as illustrated in Fig. 8. For example, if Dx > 0, and
Dy > 0, i.e., the first quadrant, we will choose the region M as shown in Fig. 8(b)-I. The
similar choice works for the case of the other three quadrants. With such a setup, we then
measure the 〈XM 〉 with “ even-B̃ ” type boundary. A comparison of measurements with
three different boundaries is given in Fig. 9. We find that this method achieves the most
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robust convergence of 〈XM 〉 at DQC, as shown in the main text.
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Figure 9: |〈XM (θ)〉| for the HJ−Q3 model at DQC, all with L = 96: (a) (b) the disorder
parameter and (c) its subleading term |〈XM (θ)〉|sub as functions of l for θ = π/2 for the
three types of the region M , respectively. (d) s(θ) for the three types of the region M ,
respectively. It is interesting to note here that all three different types of M lead to
negative s(θ) when θ is close to π.

In order to show how our results are sensitive to the parameter q = Q/(Q+J), we also
calculate the disorder operator for different q in the vicinity of DQC and get the coefficient
of the logarithmic corner correction, as shown in Fig. 10. We can find different scaling
behavior in both symmetry-breaking phases and at the DQC manifest, and therefore, our
results at qc = 0.59864 indeed reflect the critical properties of the system.

Appendix D Positivity constraint on Z2 disorder parameter

In [51] it was shown that in a general unitary quantum field theory (QFT), Rényi entropies
satisfy the following inequality:

det

({
e−(n−1)Sn(Mi∪M̄j)

}
i,j=1,...,m

)
≥ 0. (12)

Here Mi, i = 1, . . . ,m is a collection of (codimension-1) regions in the half space of positive
Euclidean time, and M̄j is the Euclidean time-reflected regions corresponding to Mj .

We now prove a similar inequality for Z2 disorder operator. Suppose that Ug is a Z2

symmetry in the QFT (i.e. U2
g = 1 and therefore Ug is hermitian), which is represented
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Figure 10: (a) The s(θ) as functions of θ with system size L = 96 and (b) the obtained
CJ/(4π)2 as a function of 1/L for different q in the vicinity of DQC. The different scaling
behaviors in the two symmetry-breaking phases and at the DQC manifest. (c) The s(π)
as functions of 1/L for qc = 0.59864.

by a topological surface operator in the Euclidean spacetime. The disorder parameter for
a region M is then given by the (suitably normalized) path integral with an insertion of
an open surface operator XM , which is just Ug restricted on M . Following [51], we split
the path integral for positive and negative Euclidean time. Consider a family of Mi in
the positive Euclidean time half-space, and write φ± for fields restricted to positive and
negative Euclidean time. We have∑
i,j

λiλ
∗
j 〈XMi∪M̄j

〉 = N−1
∑
i,j

λiλ
∗
j

∫ Mi∪M̄j

Dφ e−S[φ]

= N−1

∫
Dφ0(x)

(∑
i

λi

∫ Mi

φ+(0,x)=φ0(x)
Dφ+ e−S[φ+]

)∑
j

λ∗j

∫ M̄j

φ−(0,x)=φ0(x)
Dφ− e−S[φ−]

 .

(13)

Here the subscript M indicates insertions of the corresponding open surface operators in
the path integral. Equivalently, one may view the insertion as changing the boundary
condition of the fields along the surface M . The normalization factor N =

∫
Dφ e−S[φ]

is just the path integral without any open surface inserted. φ0 is the common value of
φ+ and φ− at Euclidean time τ = 0. If the action has the time-reflection symmetry
S[φ(τ,x)] = S[φ(−τ,x)]∗, together with the hermiticity of the inserted operator, a change
of variables φ(τ,x) → φ(−τ,x) in the path integral proves that the two terms in the
brackets are complex conjugate of each other, and the result is positive. Since λi’s are
arbitrary complex numbers, the condition is equivalent to

det

({
〈XMi∪M̄j

〉
}
i,j=1,...,m

)
≥ 0. (14)

In the following we will write 〈XM 〉 = e−S(M) (S not to be confused with the entropy or
the action S in the path integral). In a CFT in (2+1)d, S(M) should take the following
form:

S(M) = a1|∂M | − s ln
lM
δ

+ a0 +O
( δ

lM

)
. (15)

Here ∂M denotes the boundary of M , and |∂M | is the perimeter of the region. lM is the
linear size of M and δ is a short-distance cut-off. s is the sum of universal constants for
each sharp corner of the region.

When m = 2, denote the two regions by A and B, the inequality reduces to

2S(A ∪ B̄) ≥ S(A ∪ Ā) + S(B ∪ B̄). (16)

15



SciPost Physics Submission

τ τ τ0 0 0

AĀ
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Figure 11: (a) Regions A and Ā. Ā is the Euclidean time-reflected image of A with respect
to τ = 0. The two regions touch each other at the τ = 0 plane, and we take the limit of
no separation. Together A ∪ Ā has two sharp corners. (b) Regions B and B̄. (c) Regions
A and B̄. A ∪ B̄ has no corners.

Now we choose the two regions A and B as shown in Fig. 11. The region A ∪ Ā has two
sharp corners with the same opening angles α, while B ∪ B̄ has two corners with opening
angles 2π − α. It can be easily checked that

|∂(A ∪ Ā|+ |∂(B ∪ B̄)| = 2|∂(A ∪ B̄)|, (17)

where |∂(V )| is the perimeter of the region V . Thus the perimeter terms in S all cancel
out. We then note that A ∪ B̄ has a smooth boundary with no corners. Notice that A
and B can be considered to have the same linear size l. So in order for the inequality to
hold for arbitrary linear size of the region, generally we must have

−2s(α) ln
l

δ
− 2s(2π − α) ln

l

δ′
+ const. ≤ 0. (18)

It is not difficult to show that s(α) = s(2π − α), therefore in order to satisfy Eq. (18) for
arbitrarily large l, s(α) must be positive.

A slight generalization of the argument, with B having opening angle β instead of
2π − α, gives

s(α) + s(β) ≥ 2s

(
α+ β

2

)
. (19)

Together with s(α = π) = 0 we can see that s(α) is a non-negative, decreasing and convex
function of α for 0 ≤ α ≤ π. Similar conclusions for Rényi entropies were obtained in [52].
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