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Abstract

We combine matrix-product-state (MPS) and mean-field (MF) methods to model the real-
time evolution of a three-dimensional (3D) extended Hubbard system formed from one-
dimensional (1D) chains arrayed in parallel with weak coupling in-between them. This
approach allows us to treat much larger 3D systems of correlated fermions out-of-equilib-
rium over a much more extended real-time domain than previous numerical approaches.
We deploy this technique to study the evolution of the system as its parameters are tuned
from a charge-density wave phase into the superconducting regime, which allows us to
investigate the formation of transient non-equilibrium superconductivity. In our ansatz,
we use MPS solutions for chains as input for a self-consistent time-dependent MF scheme.
In this way, the 3D problem is mapped onto an effective 1D Hamiltonian that allows us to
use the MPS efficiently to perform the time evolution, and to measure the BCS order pa-
rameter as a function of time. Our results confirm previous findings for purely 1D systems
that for such a scenario a transient superconducting state can occur.
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1 Introduction

Superconductivity (SC) has remained a phenomenon of great interest to researchers ever
since its discovery in 1911 by H. K. Onnes. Explaining SC in metals at low-temperature
equilibrium was already a challenge, taking more than 40 years until the Bardeen-Cooper-
Schrieffer (BCS) framework could explain it via a suitable mean-field (MF) theory. In
the 1980s, SC at high critical temperatures Tc [1–4] was discovered, which seemed not to
be described by BCS theory. In fact, it’s theoretical description presents a still-ongoing
challenge. It is believed that strongly correlated electron motion is the underlying reason
for this type of SC state. Many-body models such as the Hubbard- [5–10] or the t-J-model
[4, 10–13] have been investigated to study this question. In more recent developments,
experiments claimed to have detected metastable, light-induced SC states after pushing
materials out-of-equilibrium in pump-probe setups. Such a transient non-equilibrium SC
regime is possibly even detected above the equilibrium critical temperature Tc [14–17]. On
the theoretical side, this scenario has been studied in various approaches, e.g., numerically
[18–20], but many basic questions about the mechanisms that could lead to dynamically
induced superconductivity remain open.

While many experiments rely on the time-dependent optical conductivity as a probe
for nonequilibrium SC, Paeckel et al. [19] recently showed that this measure lacks speci-
ficity for SC order, at least in the setup studied there. Alternative experimental measures
are then proposed, which would be better suited to detecting the onset of the SC state in
the dynamically evolving system. The setup studied in that article consists of a quantum
quench on a purely one-dimensional (1D) extended Hubbard system using a matrix-prod-
uct-state (MPS) description.

However, while this MPS approach is unbiased and highly accurate, it is so far largely
restricted to 1D systems, especially when treating out-of-equilibrium dynamics. The ques-
tion is thus if the findings of Paeckel et al. are specific to 1D, with its strong quantum and
thermal fluctuations, or whether their results also apply to the realm of higher dimensional
systems. This sets an immediate challenge: which theoretical method could address the
dynamics of interacting fermions out-of-equilibrium in three-dimensional (3D)?

On their own, even in 1D, MPS methods may require exponentially increasing resources
as simulation time grows in order to maintain a set accuracy. This is due to the strong
growth in bipartite entanglement in these systems with time: for MPS approaches to be
efficient, this entanglement should not be too large. Furthermore, already for equilibrium
calculations long-range interactions, which are needed to represent two-dimensional (2D)
and 3D systems in 1D, increase the entanglement dramatically. Hence, the time evolution
of generic 2D and 3D systems are entirely out of reach for any brute-force MPS-based
approach.

For such higher-dimensional systems, real-time non-equilibrium dynamical mean-field
theory (DMFT) could be a powerful alternative approach [21, 22]. In these approaches,
one or a few lattice sites - the impurity or, respectively, the cluster - are retained explicitly,
including all interactions of the original, infinitely-large lattice. In DMFT, the effect of
this remainder-lattice on the cluster is mimicked via a free-electron bath that is coupling
to it. The parameters of this bath are fixed via self-consistency conditions. Solving these
cluster-bath systems within this self-consistency constraint is typically achieved by apply-
ing quantum Monte Carlo (QMC) techniques in the real time domain. These techniques
suffer from a strong sign-problem, i.e., their numerical error grows exponentially as the
cluster-size and the real-time domain, over which the simulation runs, are increased. In
practice, a few sites and time scales on the order of the electron tunneling are accessi-
ble. Alternatively, MPS solvers can be used within such real-time non-equlibrium DMFT;
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however, due to the long-range tunneling in these systems between bath and cluster sites,
and the strong growth of entanglement with time, these will also be limited to a few sites
and short times.

This leads us to the scope of the present paper: with current methods it seems prac-
tically impossible to perform meaningful simulations of dynamically-induced SC in a 3D
system. For MPS methods, the growth of entanglement with system size and simulation
time is prohibitive, for non-equilibrium real-time DMFT, the large clusters and long times
required to resolve the onset of a potentially weak SC order appear out of reach.

However, as we demonstrate in the following, it is possible to make such a specific
category of systems amenable to MPS techniques via a static MF ansatz, by exploiting
certain gaps in the excitation spectrum of these cases. In this way, it is possible to capture
strong correlations by the MPS, and treat the full 3D system more accurately than by
applying a pure MF treatment.

Indeed, related approaches have been studied before at equilibrium [23], where at
least qualitative behavior was reproduced correctly compared to appropriate QMC simu-
lations [24,25]. In these approaches, weakly coupled chains or ladders are stacked up into
3D cubic systems, which thus have anisotropic tunneling — much stronger inside the 1D
systems than in-between them in the two orthogonal directions. For the case of fermions,
the MF approximation can be introduced if each of the constituent 1D systems has a
gapped energy sector, such as a spin gap, and thus single-fermion tunneling in-between
1D systems is suppressed in this weak-coupling regime [24]. Just as for the equilibrium
case [24], it is this crucial ingredient that allows us to perform real-time evolution for a
much higher number of correlated sites than non-equilibrium real-time DMFT, as well
as extending the real-time domain enough to perform a meaningful simulation of the
dynamically-induced SC in a 3D system. Within this well-behaved domain, we apply our
real-time MPS+MF technique to study the time-evolution of the BCS order parameter
after fast ramping the system from an insulating starting state into a parameter regime
where the system would be SC in equilibrium. As a consequence, we observe the onset of
a non-equilibrium SC state.

The paper is structured as follows: In Sec. 2, we recapitulate the MF ansatz for weakly
coupled Hubbard chains used in equilibrium, developed originally in [24]. In Sec. 3, we
introduce the extension to a self-consistent time-dependent MPS+MF scheme to study the
time evolution of a 3D extended Hubbard system, which consists of weakly coupled chains.
In Sec. 4, we present our results for the BCS order parameter and a detailed discussion
of the convergence behavior of the method when treating 3D arrays formed from chains,
each up to L = 30 lattice sites long. The time evolution of the SC order parameter shows
indeed that in both finite systems as well as the thermodynamic limit a transient SC state
can be entered. We further analyze the dependence of our results on the parameters of the
simulations. In Sec. 5 we conclude and give an outlook to possible further developments
and applications of our method. The appendices discuss further details on the method at
equilibrium, as well as further details of the simulations out-of-equilibrium.

2 Mapping of the 3D system onto a 1D self-consistent chain

As we aim to describe a 3D model system with a method that is mainly suitable for
1D, namely MPS, we first need to identify a class of 3D models amenable to mapping
onto an effective 1D description. Following the work of Bollmark et al. [24, 25], we focus
on 3D systems constructed out of gapped 1D fermions. We arrange these 1D systems,
which extend in the x̂-direction, in parallel into a square array in the ŷ− ẑ-plane, forming

3



SciPost Physics Submission

x̂
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... ···
... ···

Figure 1: Two-dimensional cross-section of the three dimensional model. For the sake
of clarity, the 3D extension of the system out of the plane is not shown here. Each box
denotes a lattice site. The sites are coupled to chains in x̂-direction, which is illustrated
by the thick lines between the boxes. Furthermore, all chains are weakly coupled by the
transverse hopping t⊥. This way, we obtain an extension in ŷ and ẑ-direction.

effectively a cubic lattice. We choose fermion tunneling to be anisotropic in this lattice,
denoted by t⊥ in the ŷ- and ẑ-directions. Adapting from Bollmark et al. [24], we choose
an extended Hubbard chain as the 1D building block. The Hamiltonian constructed in
this manner is illustrated in Fig. 1 and is given by

Ĥ = Ĥ0 + t⊥Ĥ⊥ , (1)

with

Ĥ0 =− t
L−1∑
n=1

∑
σ∈{↑,↓}

∑
{Ri}

(
ĉ†n+1,Ri,σ

ĉn,Ri,σ
+ h.c.

)
− µ

L∑
n=1

∑
σ∈{↑,↓}

∑
{Ri}

n̂n,Ri,σ (2)

+ U

L∑
n=1

∑
{Ri}

n̂n,Ri,↑n̂n,Ri,↓ + V

L−1∑
n=1

∑
σ,σ′∈{↑,↓}

∑
{Ri}

n̂n+1,Ri,σn̂n,Ri,σ′ , (3)

and

Ĥ⊥ = −
L∑
n=1

∑
σ∈{↑,↓}

∑
{Ri}

∑
â∈{ŷ,ẑ}

(
ĉ†n,Ri+â,σ ĉn,Ri,σ

+ h.c.
)
. (4)

Here, ĉ†n,Ri,σ
and ĉn,Ri,σ

denote the fermionic creation and annihilation operators on site
n and for spin σ on a chain that is labeled by the index Ri. They obey the anticommu-
tation relations {ĉi , ĉ

†
j} ≡ ĉi ĉ

†
j + ĉ†j ĉi = δij and {ĉi , ĉj} = {ĉ†i , ĉ

†
j} = 0. The indices i and

j stand for different combinations of n,Ri, and σ. The operator n̂n,Ri,σ = ĉ†n,Ri,σ
ĉn,Ri,σ

is the particle number operator for the corresponding site, chain, and spin. We use open
boundary conditions and include a term for the chemical potential µ. The latter allows
us to control the number of particles in the system.

The only non-1D term is the transverse hopping Ĥ⊥. We are able to eliminate the
beyond-1D nature of this term through a combination of perturbation theory on the trans-
verse hopping and a MF decoupling of adjacent 1D systems. In the following we briefly
recap the key steps, a detailed derivation of this approach can be found in the publications
of Bollmark et al. [24].
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Since we are interested in a model system for SC, we specify U < 0 in the chain-
Hamiltonian Eq. (3). This negative-U term gives rise to pairing of opposite-spin fermions
already in isolated systems at t⊥ = 0. This is expressed by the finite spin gap ∆Es and a
finite pairing energy ∆Ep of these isolated chains, defined as follows:

∆Es(N) ≡ E0(1, N)− E0(0, N), (5)

∆Ep(N) ≡ 2E0

(
1

2
, N + 1

)
− E0(0, N)− E0(0, N + 2) . (6)

Here, E0(Sz, N) denotes the ground-state energy of Hamiltonian Ĥ0 for a single chain-
index at total spin Sz and total number of fermions N . Thus, ∆Es and ∆Ep represent
the minimal energy required for flipping a spin inside a chain and for breaking up a pair
on a chain by moving one constituent to another chain in the full 3D system, respectively.
From the definitions, it is easy to see that ∆Es ≤ ∆Ep, and for our specific choice of 1D
systems ∆Es = ∆Ep. As outlined in the following, ∆Ep becomes important in the actual
numerical routine, directly entering the effective Hamiltonian Eq. (13). In practice, we
can determine ∆Ep from a single chain via an extrapolation in the system size L→∞.

To carry out the second-order perturbation theory in Ĥ⊥ – specifically in t⊥/∆Ep – we
follow [26]. We sort the eigenenergies Ei,α of Ĥ0, i.e., Ĥ0 |i, α〉 = Ei,α |i, α〉, into a lowest-
energy manifold Ei,α=0, where i indexes the states within this manifold. In this manifold,
there are no broken pairs. The high-energy manifold Ei,α=1 is at least ∆Ep above the
low-energy manifold, corresponding to excited states with at least one broken pair, i.e.,
where the pair-constituents have moved onto separate chains. In the perturbative regime,
we thus assume

|Ei,α − Ej,α| � |Ei,α − Ej,β|; α 6= β (7)

to hold.
We therefore target a small transverse hopping strength t⊥ with respect to ∆Es and

∆Ep. Introducing the projector onto the lowest-energy manifold P̂0 =
∑

i |Ei,0〉〈Ei,0|, the
second-order perturbation theory for Hamiltonian Eq. (1) yields:

Ĥ0
eff = P̂0Ĥ0P̂0 −

t2⊥
∆Ep

P̂0Ĥ
2
⊥P̂0 . (8)

Written explicitly, Ĥ2
⊥ is

Ĥ2
⊥ =

L∑
n,m=1

∑
σ∈{↑,↓}

∑
{Ri}

∑
â∈{ŷ,ẑ}

(
ĉ†n,Ri+â,σ ĉn,Ri,σ

ĉ†m,Ri+â,−σ ĉm,Ri,−σ + h.c.
)

+

L∑
n,m=1

∑
σ∈{↑,↓}

∑
{Ri}

∑
â∈{ŷ,ẑ}

(
ĉ†n,Ri+â,σ ĉn,Ri,σ

ĉ†m,Ri,σ
ĉm,Ri+â,σ + h.c.

)
(9)

=Ĥpair + Ĥexc . (10)

Within Eq. (10), we identify two contributions, namely a pairing term Ĥpair, which denotes
the hopping of electron-electron pairs of opposite spin between neighboring chains and
an exchange term Ĥexc, denoting the exchange of particles of the same spin between
neighboring chains.

In the following we use MF theory to eliminate the non-1D nature of Ĥ2
⊥. Here, we

make use of the relation

c
(†)
i c

(†)
j =

(
c

(†)
i c

(†)
j − 〈c

(†)
i c

(†)
j 〉
)

+ 〈c(†)
i c

(†)
j 〉 , (11)
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and assume
(
c

(†)
i c

(†)
j − 〈c

(†)
i c

(†)
j 〉
)

to be small. We, moreover, assume

〈ĉn,↑ĉm,↓〉 = 〈ĉn,Ri,↑ĉm,Ri,↓〉 = 〈ĉn,Ri+â,↑ĉm,Ri+â,↓〉 , (12)

which means that all the chains are exact copies of each other. We end up with an
effectively 1D expression for a Hamiltonian describing a higher-dimensional model, namely

ĤMF
eff =Ĥ0 −

L∑
n,m=1

(
α∗n,mĉn,↑ĉm,↓ + αn,mĉ

†
m,↓ĉ

†
n,↑

)

+
L∑
n=1

∑
σ∈{↑,↓}

L−n∑
r=1

(
β∗n,r,σ ĉ

†
n+r,σ ĉn,σ + βn,r,σ ĉ

†
n,σ ĉn+r,σ

)
(13)

with

αn,m =
2zct

2
⊥

∆Ep
〈ĉn,↑ĉm,↓〉 and (14)

βn,r,σ =
2zct

2
⊥

∆Ep
v 〈ĉ†n+r,σ ĉn,σ〉 , (15)

and thus identify αn,m with the MF-approximated pairing part of Eq. (10) and βn,r,σ with
its exchange part. Here, we introduced the coordination number zc, which denotes the
number of neighboring chains. In our case zc = 4, as the chains are assembled into a
2D square grid in the ŷ − ẑ-plane. The parameters αn,m and βn,r,σ are the so-called MF
parameters, meaning they need to be calculated self-consistently for all times. The work
in [24] explains this for the ground state and for the finite-temperature equilibrium of the
3D system. There, the authors demonstrate that the MPS+MF approach for equilibrium
systems produces the correct physics compared against QMC, in regimes in which the
latter approach is quasi-exact, in a negative-U Hubbard model on a 2D square lattice
with anisotropic tunneling. That work also shows that the error in Tc for the SC state
due to the MF approximation within the MPS+MF framework is a quasi-constant one in
t⊥ over a significant range. Moreover, at zero temperature, the overestimation of the SC
order parameter becomes systematically better as t⊥ decreases.

Based on the good performance of the MPS+MF scheme in equilibrium, the present
work is concerned with the performance of the self-consistent evaluation of the MF pa-
rameters Eq. (14) and Eq. (15) for a time-evolving system.

Since the present work aims to test and benchmark the method itself, in the following
we are working with the simplest possible version of the Hamiltonian Eq. (13). We ne-
glect the exchange term βn,r,σ and allow only for site-independent onsite pairing, meaning
αn,m ≡ αn,n ≡ α. This leads to

ĤMF
eff = Ĥ0 −

∑
n

(
α∗ĉn,↑ĉn,↓ + αĉ†n,↓ĉ

†
n,↑

)
(16)

with

α =
1

L

2zct
2
⊥

∆Ep

L∑
n=1

〈ĉn,↑ĉn,↓〉 . (17)

In this last expression we are adapting the evaluation of the order parameter α to the
open boundary conditions. Obtaining α from an average across the entire system removes
the spatial variation that is solely due to these open boundaries.

6



SciPost Physics Submission

State |ψ(t1)〉 with α(t1)

Guess αguess(t2 = t1 + ∆t) = α(t1)

Do 1 time step,
evolve |ψ(t1)〉 with αrun = (α(t1) + αguess(t2))/2

State |ψ(t2)〉

Measure αnew(t2)

Check: |αnew(t2)− αguess(t2)|
?
< ε

Update:
t2 → t1,

|ψ(t2)〉 → |ψ(t1)〉,
αnew(t2)→ α(t1)

Discard |ψ(t2)〉,
set αguess(t2) = αnew(t2)

YES NO

Figure 2: Self consistency loop for one time step. As the MF-parameter α depends on
the state itself, a continuous adjustment of it is required.

3 MPS+MF-Algorithm for self-consistent time-evolution

The expectation values needed to compute the MF parameter α in Eq. (17) are computed
using a self-consistent scheme for both the time-evolution and for the ground-state search
of our model system. In this section a schematic description of the time-evolution routine
is presented, which is one of our main results. The algorithm is based on the work of H.
Strand et al. published in [27], where a non-equilibrium version of real-time DMFT for
bosons is introduced. Our work incorporates this real-time scheme into a MPS framework
and adapts it to 3D lattices of correlated fermions built from weakly coupled 1D systems.
All results obtained in the following were generated with Ian McCulloch’s matrix product
toolkit [28]. The initial ground states from which the time evolution proceeds were gen-
erated from a self-consistent scheme introduced by Bollmark et al. in [25], which is also
briefly described in App. A.

At the beginning of each time step, we start with a state |ψ(t1)〉 at time t1, which we
already have obtained before (either as a previous step or as initial state). From this state,
we measure the value of the MF parameter α(t1). Now, we guess which value α might take
after one discrete time step dt. In this work, at the start of the self-consistency iterations

7



SciPost Physics Submission

for each time step, we just assume that the α value does not change at all. In any case,
the guess for α at t2 = t1 + dt, is labeled αguess(t2). Then, we evolve the system from t1
to t2 using the mean of α(t1) and αguess. From the resulting tentative |ψ(t2)〉 we can once
again measure the MF parameter αnew(t2). Next we calculate the distance between the
measured and the guessed value and compare it to a chosen precision ε,

|αnew(t2)− αguess(t2)| < ε with ε� 1 . (18)

If Eq. (18) is fulfilled, we keep the state |ψ(t2)〉 and proceed with the next time step.
Otherwise, we discard |ψ(t2)〉 and repeat the time step using the mean of α(t1) and
αnew(t2). The loop is repeated until Eq. (18) is fulfilled. A schematic of the algorithm is
depicted in Fig. 2.

4 Transient SC after a fast ramp of the nearest-neighbor
interaction

In this section, we present our results using the self-consistent MPS+MF scheme and find
that in the extended Hubbard model Eq. (1) the BCS order parameter for SC grows in time
and begins to oscillate around a finite value on the treated time scales. This indicates the
formation of transient SC, which is the second main result of this paper. In the following,
all parameters are measured in units of the hopping parameter t ≡ 1.

More specifically, we follow Paeckel et al. [19] and tune the system’s parameters from
a charge-density wave (CDW) phase into a SC phase. However, we find that the sudden
quench performed in [19] is numerically less stable within the self-consistent scheme (see
App. B), so we instead perform a fast ramp.

In order to check the equilibrium phases of the 3D model we use the self-consistent
MPS+MF approach to compute the ground states using the routine introduced by Boll-
mark et al. [25] for different parameters and measure the expectation value of the MF
parameter α. We find that for t⊥ = 0.2, U = −4 and V = 0.25 the system possesses the
main properties of a CDW phase relevant for us, i.e., we find alternating occupation of
the lattice sites by the electrons and a vanishing value of α. For U = −4 and V = −0.25
instead, the system is SC, as here α ∼ 10−1 becomes finite and density oscillations less
pronounced. These are the same parameters treated by Paeckel et al. in [19] for the purely
1D system. Hence, we perform a fast ramp by tuning the values of the nearest-neighbor
interaction from V = 0.25 to V = −0.25 as further detailed below.

Since the effective Hamiltonian Eq. (16) depends on the MF parameter α(t) the ques-
tion of how to choose αini := α(t = 0) arises. For the CDW system α = 0 and it is
hence difficult for it to grow with the method outlined in Fig. 2. Because of this, unless
otherwise noted, our default value for this work is αini = 10−4/dt, where dt is the size of
the discretized time step of the simulation. Such a small yet finite value is justified by the
fact that any system will either have a microscopic fraction of pairs in the center-of-mass
zero-momentum state to begin with, or such a fraction is generated during the ramp or
quench. Scaling αini inversely in dt ensures that simulations with different dt agree over
long times, see Fig. 3.

The MF term of the Hamiltonian causes the effective model to be no longer parti-
cle-number conserving, hence, we need to adjust the value of the chemical potential µ
corresponding to the system size and to the onsite repulsion U in order to fix the average
density of the total system. From the ground-state calculations we find the values of µ that
are listed in table 1. We keep the values of µ, determined in this manner, fixed throughout
the whole time evolution in order to keep our algorithm simple and stable. However, we
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Table 1: List of values for the chemical potential µ to obtain half filling for U = −4.0 and
V = ±0.25 for various system sizes L.

L 12 20 30

µ(V = −0.25) -2.44 -2.47 -2.48
µ(V = 0.25) -1.66 -1.63 -1.62

still need to keep track of the overall density of our system during the time evolution to
check if this assumption of a time-independent chemical potential is justified. Indeed, for
our simulations, the value of the density is preserved to a good accuracy over the time
scales treated by us (see Figs. 3 and 4). In general, however, it might be necessary to also
include a variation of µ into the self-consistency scheme.

4.1 Time evolution of the BCS order parameter and of the total energy

In the following, we investigate the time evolution of the BCS order parameter α(t) (see
Eq. (17)) and of the total energy E(t) of the system. The latter cannot be expected to
remain constant as the MF term changes the Hamiltonian Eq. (16) during evolution. In
addition, we monitor the total density of the system, which should stay at a value of ρ = 1
(half filling) during the whole time evolution.

Since we find fast ramps to have lower errors over the simulated time windows than
instantaneous quenches, we linearly decrease the value of the nearest-neighbor interaction
V from V = 0.25 to V = −0.25 within a time window of ∆tramp = 3.0. A more detailed
discussion of the effect of the size of the time window ∆tramp can be found in App. B. In
Fig. 3 we see the results for a 30-site system for an evolution up to time tend = 50. Since
α(t) is complex-valued we show the evolution of the magnitude |α(t)| and of the phase
ϕ(t) of the order parameter in Figs. 3 to 5. We find that |α(t)| grows up to time t ∼ 45
to a value of approximately |α| ≈ 0.06, which is clearly non vanishing and hence indicates
the formation of a non-equilibrium SC state. In contrast, if we consider a time evolution
without a quench or ramp, i.e., V = 0.25 during the whole evolution, the value of α stays
unchanged at an order of magnitude of 10−5 throughout the whole time evolution as can
be seen by the dotted blue lines in Fig. 3. The phase ϕ(t) decreases as long as V is
decreasing, then oscillates around a value of approximately ϕ(α)/π ≈ −0.8 and seems to
increase again slightly when |α| has reached its maximum. We interpret this behavior as an
expression of a Josephson effect in-between 1D chains to the extent it can be captured by
a single 1D system with time-evolving MF amplitudes. As a kernel of SC order manifests
itself in the different chains of the 2D array the macroscopic phases of SC states, within
each chain, will be initially uncorrelated, then start aligning via the Josephson effect.
With density fluctuating within each individual chain the Josephson effect will keep the
phase fluctuating while the system finds a new equilibrium after the rapid ramp, as Fig. 3b
shows.

In Fig. 3d we show the evolution of the total energy per site E(t)/L and in Fig. 3e
the deviation of the total density ρ(t) from the desired value ρtarget = 1. We find that
this deviation is of the order of 3 · 10−5 or smaller for all the times treated, indicating
that keeping the chemical potential µ fixed leads only to small errors. The total energy
per site E/L behaves as expected during the ramp and decreases almost linearly for the
duration of the ramp. Afterwards, we first observe a nearly constant behavior, then a
strong decrease until a minimum at time t ≈ 45, shown in the inset of Fig. 3a. We read
the behavior of E(t)/L, especially at long times, as the system starting to further lower its
energy through condensing Cooper pairs, as the drop in E(t)/L coincides markedly with
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Figure 3: Evolution of the considered parameters in time during and after a ramp on a
30-site system. The plots at the bottom ((c) and (f)) show the nearest-neighbor interac-
tion, which decreases from V = 0.25 to V = −0.25 during a time window of ∆tramp = 3.0.
Evolution of the MF parameter α split up into magnitude (a) and phase (b). Evolution
of the total energy per site of the system (d) and the total density (e). The inset in (d)
shows the evolution of the energy per site after V was decreased. The legend is valid
for all plots. All the data shown here were obtained with a bond dimension of χ = 250,
an initial guess of the MF parameter of αini = 10−4/dt, and the chemical potential was
taken from table 1. We compare the ramp scenario (solid violet and dashed green) with
an evolution during which we keep the nearest neighbor interaction at V = 0.25 constant
(dotted blue). For the latter calculation we chose a time step of dt = 0.01.

the onset of a finite value of α(t). We also study the effect of system size, to make certain
the dynamical onset of superconductivity would survive in the thermodynamic limit. In
Fig. 4 we compare the results for different chain lengths L. From these, we extract the
instant tSC, at which |α(t)| reaches its first maximum. The data of the 12-site system
shows the onset of oscillation for |α(t)| around a finite value, indicating a dynamically
induced SC phase (longer-time simulations for L = 12 further confirm this, as shown in
Figs. 5 to 7 for times up to tmax = 100). The inset of Fig. 5a displays an extrapolation
in inverse chain length 1/L of tSC. In order to see whether tSC diverges we performed a
quadratic and a linear fit, both indicating a finite value in the limit L→∞. Since for the
larger system sizes |α(t)| starts to oscillate at around the maximal time reached by us, it
is difficult to obtain a finite-size extrapolation of the value of the SC order parameter. In
order to do so, one needs to extend the simulations for the larger systems to substantially
longer times, which is beyond the scope of this paper.

4.2 Accuracy of results and sensitivity to simulation parameters

The results so far were all obtained using the same parameters for the self-consistency
cycle. In the following we study how sensitive the results are on parameters like the initial
guess of the MF parameter αini (see Sec. 3), the bond dimension of the MPS calculations,
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shown in (a) and (b), respectively. The inset in (a) shows the time at which the first local
maximum in |α| occurs plotted against the inverse of the system size 1/L. Both, the linear
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Figure 5: Evolution of the MF parameter α split up into its magnitude (a) and its phase
(b) for different initial guesses αini in a 12-site system. We see that the reduction of αini

induces merely a shift in the data, at least up to time tSC at which the first maximum
of |α| occurs. The inset in (a) shows tSC vs. αini and a linear fit on a semilogarithmic
scale. This shows that tSC grows merely logarithmically with αini. The data shown was
obtained with χ = 500 and dt = 0.01, a ramp time window ∆tramp = 3, and µ was taken
from table 1.

or the discrete time step dt. To study these effects, we focus on the 12-site system in order
to reach the longest time scales.

Figure 5 shows the evolution of the magnitude and phase of α(t) for different initial
values αini. Decreasing the value of αini induces a shift of tSC to later times. In order
to further analyze this, we plot the value of tSC against the value of αini in the inset of

11



SciPost Physics Submission

0

0.02

0.04

0.06

0.08
|α
|

χ = 500
χ = 1000 −0.24

−0.23
−0.23
−0.22

E
/L

0 20 40 60 80 100

10−15

10−10

10−5

time t

δ |
α
|,5

0
0
,1
0
0
0

0 20 40 60 80 100
10−12

10−9

10−6

time t
δ E

/
L
,5
0
0
,1
0
0
0

(a)

(b)

(c)

(d)

Figure 6: Evolution of (a) the magnitude of the MF parameter |α| and (c) the total
energy E for two different bond dimensions χ1 = 500 and χ2 = 1000 in a 12-site system.
(b) and (d) show the difference δO,χ1,χ2 between the observables we measure for these two
different bond dimensions. All calculations were done with αini = 10−4/dt, a ramp time
window ∆tramp = 3, and dt = 0.01.

Fig. 5a. Speaking to the soundness of our MF approximation, we find that tSC increases
only very weakly with αini, i.e., logarithmically. While this indicates a diverging time for
the onset of SC order in the limit αini → 0, this is merely consistent with αini = 0 being
an unstable fix point of the dynamic MF algorithm in the regime we ramp into. But
any finite value, even a microscopic one, will yield dynamically induced SC order in finite
time when ramping into the SC parameter regime. As argued at the outset of Sec. 4: on
general physical grounds there will always be some electron pairs whose center-of-mass
momentum is zero.

In Fig. 3 we compare two different discretized time steps, dt = 0.005 and dt = 0.01,
respectively. The results are nearly identical, only a small deviation of the total density,
which agrees up to ∼ 10−5, can be seen in Fig. 3e.

Regarding the discarded weight of our simulations, we find that even for the smallest
bond dimension these values stay below 10−6 within the time domains we consider. Nev-
ertheless, we examine the dependence of our results on the MPS bond dimension χ. For
this purpose we compute the deviation of the value of an observable O for two different
values of χ,

δO,χ1,χ2 = |O(χ1)−O(χ2)| . (19)

At any fixed value of αini and dt we find this to be the most reliable estimator for the
accuracy of our combined MPS+MF approach (assuming the latter parameter is chosen
to be sufficiently small) and focus in the following on this quantity.

In Figs. 6 and 7 we present results for the observables |α(t)| and E(t) obtained with two
different bond dimensions χ1 = 500 and χ2 = 1000 for the 12-site system, and for χ = 250
and χ = 500 for the 30-site system, respectively, and also the difference of the respective
results. For the larger system it was necessary to substantially reduce the values of χ, since
otherwise the numerical expenses would exceed the available resources. We find that the
deviation of the results is ∼ 10−6 for the values of |α(t)| and ∼ 10−4 for the total energy
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Figure 7: Analog to Fig. 6 but for a 30-site system and for bond dimensions χ1 = 250
and χ2 = 500.

E(t), in the case of the 12-site system. For both observables, this is small compared to
the order of magnitude of the observables themselves, so that we conclude these values
of χ suffice to provide quantitatively accurately results, within the dynamical MPS+MF
framework.

For the 30-site system, however, the deviation is ∼ 10−3 for |α(t)| and ∼ 10−2 for E(t).
This is rather large in comparison to the order of magnitude of the observables themselves.
The data obtained from these calculations is hence only trustworthy in regards to the
qualitative physics, but for the larger chain lengths one needs a larger bond dimension to
obtain a better quantitative convergence of the results.

5 Conclusion

This work presents a self-consistent real-time MPS+MF approach for investigating the
time evolution of a 3D extended Hubbard model after a fast ramp. By combining per-
turbation theory with a MF ansatz, we construct an effective 1D Hamiltonian Eq. (13)
capable of capturing the dynamical build-up of SC correlations for this 3D model system,
when quenching or rapidly ramping into a Hamiltonian parameter regime corresponding
to SC order in equilibrium. This approach is generic to any 3D system composed out of
gapped 1D systems of fermions, as long as coupling between 1D systems is sufficiently
weak for single-fermion tunneling in-between 1D systems to be suppressed. For concrete
demonstration of the performance of this approach, we chose systems of 1D extended Hub-
bard chains, arranged in parallel in a 2D square array, forming a 3D system with weak
interchain tunneling t⊥, negative onsite repulsion U , and nearest-neighbor interaction V
along each chain.

We benchmark the self-consistent algorithm introduced on the simplest possible version
Eq. (16) of the resulting effective MF Hamiltonian, only taking onsite pairing into account
and neglecting the particle-hole terms Eq. (15). We test our approach on systems where
each chain is up to L = 30 sites long. Using this algorithm we compute the time evolution
of the BCS order parameter for SC order α(t), as a direct indicator of dynamically induced
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superconductivity. The results show that SC order sets in after a fast ramp from V = 0.25
to V = −0.25, where the initial V -value realizes an insulating CDW state, and the final
value would correspond to SC order at equilibrium. These results are broadly comparable
to previous 1D results [19] and represent a best-case scenario, in which double occupancies
already present in the CDW help to form the non-equilibrium SC state after the ramp.

Performing infinite-size extrapolations and studying the effect of the microscopic initial
kernel of SC order αini shows that dynamically induced superconductivity is not merely a
trivial size effect, but actually present in the thermodynamic limit, and even the smallest
yet finite magnitude for αini will result in establishing order within a finite window of
time. At the same time, we find that resource requirements increase substantially with
chain length L, but several tens of sites and time frames between one and two orders of
magnitude in units of inverse fermion tunneling t−1 are accessible already with the modest
resources employed for the present proof-of-principle work.

The present work presents multiple avenues for interesting and potentially valuable
follow-up work. One of these would be to move towards a regime that is physically more
realistic as far as solid state systems are concerned, in which the pair-binding energies ∆Ep
would be significantly smaller than in the present work. This would entail either lowering
U , or working directly with a 1D model offering repulsively mediated pairing, such as
a doped two-leg Hubbard ladder [29, 30]. This would require retaining more particle-
particle terms Eq. (14) than we have done for the present proof-of-principle, as well as
incorporating the particle-hole terms Eq. (15) into the self-consistent time-evolution step,
see Fig. 2. This would be straightforward, as a generic ansatz for the first iteration of
these terms is practically imposed by the physics of these 1D systems. As detailed in,
e.g., [31], both classes of terms decay with an exponential envelope function characterized
by the spin-correlation length, which in turn is easy to obtain from static correlators
via density-matrix renormalization group (DMRG) [32, 33] calculations for the isolated
systems.

With this extension, the present work could stimulate a more direct and fruitful col-
laboration between theory and experiment on dynamically induced SC order in solid state
systems. Such work would start from either identifying existing materials comprised of
many 1D systems of paired electrons in parallel, with coupling weaker than that pairing, or
synthesizing such materials. The theory presented in the present work would then allow to
closely model any experiments on driving dynamically induced superconductivity in these
systems, and thus be much better positioned to ascertain whether some experimental mea-
surement truly is a hallmark of a transient superconducting state, and in turn to propose
measurements that would prove the existence of such a state. Regarding such a model-
ing of realistic solid state systems, we point out that MPS-based techniques are capable
of modeling the equilibrium and dynamical out-of-equilibrium evolution of much more
complex 1D systems than the one studied in the present work. This includes coupling to
phonon baths [34–36] and multi-orbital systems [37], and for spin systems MPS+MF tech-
niques have already been used to model experiments of 3D systems comprised of weakly
coupled spin ladders [38,39].

At the same time, we point out that existing experiments on ultracold atomic gases
confined in optical lattices offer an invaluable platform to validate the MPS+MF theory
for dynamically induced SC states, in both the high-U and the low-U regime. Systems
with all the essential elements of the set-up of this work — anisotropic 3D cubic lat-
tices with t⊥/t� 1, U < 0 — can readily be realized in the laboratory. These set-ups
would thus allow for a direct one-to-one comparison of theory and experiment. Such work
would advance the field of out-of-equilibrium many-body dynamics simultaneously on both
fronts, as well as establish ultracold atoms as clean, highly controlled model systems of
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effective Hamiltonian, furthermore, is no longer particle number conserving we also need
to update the chemical potential µ continuously.

dynamically induced SC order.

Acknowledgements We acknowledge helpful discussions with Hugo Strand, Sebastian
Paeckel, and Oscar Gr̊anäs. We acknowledges financial support by the ERC Starting
Grant from the European Union’s Horizon 2020 research and innovation program un-
der grant agreement No. 758935. SRM and SM acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - 217133147/SFB 1073,
project B03 and TU Clausthal. We also acknowledge access to computational resources
provided by the GWDG. This work also used the Cirrus UK National Tier-2 HPC Service
at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC
(EP/P020267/1).

A Self Consistent Ground State Search

As mentioned in Sec. 4 of this paper, we are making use of the self-consistent ground-state
search developed by Bollmark et al. [24, 25]. Here a brief description of this algorithm
shall be given.
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Basically, a ground-state search in MPS language is an optimization problem solved
via DMRG. However, in our case we are dealing with the special case that not only
the state |ψ〉 has to be optimized but that we also do not know all parameters of the
Hamiltonian as one of the parameters, namely α, depends on the ground state itself. This
is why we need to adjust this parameter iteratively during the ground-state search until
self consistency is reached, as in any other MF-based approach. By introduction of the
α-term in our MF-Hamiltonian, the model loses the particle-number conservation of the
original 3D Hamiltonian. Thus, not only α but also the chemical potential µ has to be
adjusted during the ground-state search.

At the inception of the iterative procedure α and µ must be guessed, however crudely.
Then, we perform a DMRG-based ground-state search for this set of parameters, yielding
a candidate for a ground state. Now, we need to check if the density is at the desired value
and if α is consistent. First, we measure the density ρcurrent of the state we just calculated
and compare it with the density ρtarget we are targeting. If the condition

|ρcurrent − ρtarget|
|ρtarget|

< ερ with ερ � 1 (20)

is fulfilled, we keep the chemical potential µ we plugged in, if not, a routine that involves
interpolation and extrapolation is used to determine a new chemical potential which is
applied from this point on. Second, we measure the value of the MF parameter α from
the candidate state and check if it is converged via the condition

|αini − αnew| / |αini| < εα or |αnew| < εα . (21)

If this condition is fulfilled, we keep α, if not, we once again use a routine that involves
extrapolation in order to find a new and better value for α. Finally, we are either done if
both conditions Eqs. (20) and (21) are fulfilled or we repeat the whole routine using now
the new values we obtained for α and µ as a starting point.

A schematic of the self-consistent ground-state search is depicted in Fig. 8.

B Effect of the Time Window for the Ramp

In Sec. 4 it was mentioned that a ramp appeared to be numerically more stable than an
instantaneous quench. For a more detailed explanation of this statement, we compare the
accuracy of the data we measure for the MF parameter |α| for a quench and a ramp in
Fig. 9.

Changing V either through an instantaneous quench or through a fast continuous
ramp, the latter of which we have used throughout the main text, we evolve our system
up to times of tend = 15. In both cases we compare the variance between the α data for
two different bond dimensions χ, as it was done in Sec. 4.2 as a check of accuracy. We
find that difference is two orders of magnitude smaller for the ramp compared to the case
of the instantaneous quench. This is why we chose to use ramps for all our calculations
presented in this paper.
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