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Abstract: We show that TBA equations defined by the BPS spectrum of 5d N = 1 SU(2)

Yang-Mills on S1×R4 encode the q-Painlevé III3 equation. We find a fine-tuned stratum in the

physical moduli space of the theory where solutions to TBA equations can be obtained exactly,

and verify that they agree with the algebraic solutions to q-Painlevé. Switching from the physical

moduli space to that of stability conditions, we identify two one-parameter deformations of the

fine-tuned stratum, where the general solution of the q-Painlevé equation in terms of dual

instanton partition functions continues to provide explicit TBA solutions. Motivated by these

observations, we propose a further extensions of the range of validity of this correspondence,

under a suitable identification of moduli. As further checks of our proposal, we study the

behavior of exact WKB quantum periods for the quantum curve of local P1 × P1.
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1 Introduction

This paper puts forward a new approach to the exact solution of TBA equations of the type

studied in [58], applied to BPS structures of five-dimensional supersymmetric QFTs. We obtain

exact solutions by mapping the problem of solving the complicated TBA integral equations to an

appropriate q-Painlevé equation [85], whose general solution is known to be written in terms of

five-dimensional Nekrasov functions [22–25, 27, 84, 97]. In doing so, we also propose an explicit

connection to the monodromy theory of difference equations arising from quantum mirror curves

in Topological Strings.

The general picture

Our starting point is the five-dimensional Seiberg-Witten description [101, 106], where the

Seiberg-Witten curve Σ is identified with the mirror curve of the local Calabi-Yau geometry

“geometrically engineering” the 5d theory on R4 × S1[34, 90]. In this geometric description, a

stable BPS state is a calibrated cycle γ ∈ H1(Σ), and its central charge is computed by the period

of the Seiberg-Witten differential λSW along the cycle γ. The low energy description has further

instantonic corrections once the theory is compactified on a second circle. These corrections

are encoded by a system of TBA equations derived in physics [6–8, 58], and reformulated

mathematically by Bridgeland in terms of a Riemann-Hilbert Problem (RHP) associated to

BPS structures [29, 32]:

log Yγ(ε) =
Zγ
ε
− ε

πi

∑
γ′>0

Ω(γ′, u)〈γ, γ′〉
∫
`γ′

dε′

(ε′)2 − (ε)2
log(1− σ(γ′)Yγ′(ε

′)) . (1.1)

Equation (1.1) can be iteratively solved, yielding an asymptotic series in ε. Viewing this as a

quantum deformation of the periods of λSW , we refer to log Yγ loosely as “quantum periods”. In

the case of four-dimensional theories, the connection between TBAs and WKB quantum periods

is very well studied, and it leads to the statement that Yγ indeed coincide with monodromy

coordinates of differential equations on Riemann Surfaces (opers) [57]. This correspondence has

motivated many recent studies of Yγ by means of exact WKB methods [83, 91]. The differential

equations are obtained by quantizing the corresponding Seiberg-Witten curve, and are often

called quantum curves.

In the five-dimensional case relevant to this paper, the Seiberg-Witten/mirror curve is

defined over C∗ × C∗, and as a result the quantum mirror curve is a difference, rather than

a differential, equation. Indeed, the curve and differential arise as the leading order WKB

approximation of a difference equation, whose solution is the open (refined) topological string

partition function in the Nekrasov-Shatashvili limit [1, 78]. This leads us across the second road

on our journey, namely WKB approximation of difference equations. As in four dimensions, the

general expectation is that the ε-expansion of (1.1) and the WKB expansion of the quantum

periods coincides, after an appropriate matching of parameters.

TBA and WKB are by now relatively traditional approaches to the study of quantum

periods, dating back to the seminal works of Gaiotto Moore and Neitzke [58, 60].1 Unfortunately,

1Also see seminal works on the ODE/IM correspondence for earlier instances of this relation [20, 43].
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each of these frameworks becomes computationally prohibitive when applied to five-dimensional

theories. This is especially true of those theories engineered by Calabi-Yau threefolds with

compact divisors, due to wall-crossing phenomena in the BPS spectrum (see [7, 12, 28, 68] for

previous results on the case without compact divisors).

In this paper we chart a third route, mapping the problem to a q-Painlevé equation that

allows us to obtain explicit solutions even in theories characterized by the richness of 5d wall-

crossing phenomena. The three approaches we just described are a priori different quantizations

of the classical periods describing BPS states of the five-dimensional QFT, and we provide

evidence for their identification with a precise map of the parameters involved. The relation

between them is outlined in Figure (1).

Figure 1: The general picture.

Main results

For illustration purposes, we focus on M-theory in the Calabi-Yau background of local P1 × P1,

which engineers 5d N = 1 Super Yang-Mills theory with gauge group SU(2) [44, 81, 99, 107].

The four-dimensional limit of this theory, 4d N = 2 SU(2) Yang-Mills, has a Seiberg-Witten

description [106] based on the spectral curve of the Toda chain [64, 96]. The 5d theory also

admits a Seiberg-Witten description [101], corresponding to a relativistic deformation of the

Toda chain [105], with curve

F (ex, ey) = τ (ex + e−x) + ey + e−y − κ = 0 . (1.2)

The BPS charge lattice in this case is four-dimensional, and we denote its generators by

γ1, . . . , γ4. In this paper we show that the moduli space of quantum mirror curves of local

P1 × P1 contains a locus, which we call the fine-tuned stratum C(0)
1 , which is characterized by

a Z2 symmetry acting on the classical (and quantum) periods:

C(0)
1 : Zγ1 = Zγ3 , Zγ2 = Zγ4 , argZγ1 > argZγ2 , Zγ1+γ2 ∈ R+ . (1.3)

The locus belongs to a larger BPS chamber, where the spectrum of BPS states is remarkably

simple and characterized by an affine symmetry [36, 42, 94]. On the one hand, BPS states govern
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both discontinuities of TBA solutions Yγ , and the Stokes automorphisms of Borel-resummed

quantum WKB periods Xγ . On the other hand, the BPS spectrum is encoded in the discrete-

time evolution of a cluster integrable system described by the q-Painlevé III3 equation, whose

solutions will be denoted Xi. This implies that, up to the identification of suitable boundary

conditions for q-Painlevé, the TBA solutions / WKB quantum periods must satisfy the q-

Painlevé equations. This perspective is fruitful for the geometry we study, since a solution of

q-Painlevé equations was obtained in [22, 24, 25, 27] in terms of 5d instanton partition functions.

By matching moduli of the 5d gauge theory with those of the quantum mirror curve, we identify

the discrete time evolution of q-Painlevé with a trajectory in the parameter space of the latter,

leading to the identification of boundary conditions for the equation from the degeneration of

the curve into two ‘half-geometries’ (see Figure 6).

After establishing a dictionary between the q-Painlevé III3 equation and the quantum

mirror curve moduli, we translate solutions of the former into quantum periods for the latter.

Remarkably we find that on the fine-tuned stratum (1.3) the quantum periods can be computed

exactly: due to the Z2 symmetry, all ε-corrections in the TBA equations (1.1) cancel out and

the semiclassical answer is exact, yielding

C(0)
1 : Yγ1 = Yγ3 = e

π
Rε τ−

i
Rε , Yγ2 = Yγ4 = τ

i
Rε . (1.4)

Here τ is a modulus of the mirror (Seiberg-Witten) curve (1.2) and R is the radius of the M-

theory circle. We check that the same holds for the solutions to q-Painlevé in a suitable limit of

its moduli, finding exact agreement with its class of algebraic solutions [25, 27]. There is a very

close analogy between the definition of the fine-tuned stratum and that of algebraic solution, so

it is natural to expect that this observation holds for more general cases: we formulate this as

Conjecture 1.

We also study two deformations of the fine-tuned stratum in the space of stability conditions

(see Section 2.2.3), that we denote C(δ)
1 and C(ρ)

1 respectively. While C(0)
1 belongs to the physical

moduli space of the theory (parameterized by the classical curve parameters τ, κ), it isn’t clear

at the moment if this is true also for C(δ)
1 , C(ρ)

1 , or if they belong only to the moduli space of

stability conditions. Nevertheless we argue that, while either deformation breaks the Z2, it does

not induce wall-crossing of the BPS spectrum. This means that C(δ)
1 , C(ρ)

1 belong to the same

BPS chamber as the fine-tuned stratum, that we call the collimation chamber C1, following our

earlier work [42]. Differently from what happened in the fine-tuned case, quantum corrections

in the TBA equations (1.1) no longer cancel out. The solutions are now

Yγ1 = (qt)1/2

(
ZD(u, s, q, qt)

s
1
2ZD(q

1
2u, s, q, qt)

)2

, Yγ2 = t−
1
2

(
s

1
2ZD(q

1
2u, s, q, t)

ZD(u, s, q, t)

)2

,

Yγ3 = (qt)1/2

(
s

1
2ZD(q

1
2u, s, q, qt)

ZD(u, s, q, qt)

)2

, Yγ4 = t−
1
2

(
ZD(u, s, q, t)

s
1
2ZD(q

1
2u, s, q, t)

)2

,

(1.5)

where ZD(u, s, q, t) is the dual instanton partition function of the 5d theory (see Section 5),
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t := Y −1
γ2 Y

−1
γ4 , q := Yγ1Yγ2Yγ3Yγ4 , and u, s take the following values:

C(δ)
1 :

u2 = e
2π2

~ (1+O(~)),

s = e−
πR
~ δ(1+O(~)) × (nonpert. corrections in ε),

(1.6)

C(ρ)
1 :

u2 = e
4π2

~(1+ρ) (1+O(~))

s = eO(~0) × (nonpert. corrections in ~).
(1.7)

When δ = ρ = 0, the factors involving ZD in (1.5) simplify, and one is left with the algebraic

solution (1.4) after appropriate matching of q, t with τ, ~.

The proposed identification of solutions to TBA equations and solutions of q-Painlevé re-

quires some care. For instance, note that Nekrasov functions in (1.5) are single-valued functions

of q = e
4π2

~ while the solutions to TBA equations have jumps with variations of arg ~. This is

explained in Remark 3 by interpreting (1.5) as a particular resummation of the perturbative

expansion in ~.

The paper is organized as follows. Section 2 collects some background on the geometry, and

known results about the BPS spectrum. Here we also include a novel observation concerning the

existence of the fine-tuned stratum (hence of the collimation chamber) in the physical moduli

space. In Section 3 we discuss the computation of quantum periods via exact WKB analysis

for difference equations. In Section 4 we formulate the TBA equations in the conformal limit,

for the BPS spectrum corresponding to the collimation chamber. We give the exact solution

on the fine-tuned stratum, where the equations essentially decouple. In Section 5 we recall the

connection between 5d gauge theory, BPS states and q-Painlevé equations, which leads us to a

new characterization of quantum periods in terms of 5d instanton partition functions. Section

6 collects concluding remarks and open directions. Appendices contain additional material: an

exponential network analysis of the fine-tuned stratum, an analysis of the half-geometry limit,

and computations of WKB quantum periods for first-order ~-difference equations.

2 Classical geometry and classical periods

2.1 Local P1 × P1 and its mirror

Five-dimensional SCFTs of rank one arise via geometric engineering in M-theory on local del

Pezzo and Hirzebruch surfaces [44, 81, 90, 99, 107]. For illustration purposes we will focus on

the E1 model, corresponding to the fixed point of 5d N = 1 SU(2) Yang-Mills. This theory is

engineered by considering M-theory in the background of the local Hirzebruch surface P1 × P1.

The complexified Kähler moduli, corresponding to the areas of the two P1’s, are related to the

Coulomb modulus and the dimensionful gauge coupling of the theory. An additional modulus

arises by formulating the theory on S1 × R4, and corresponds to the radius of the circle.

A five-dimensional QFT on S1 may be viewed as a four-dimensional theory of its Fourier

modes, also known as a Kaluza-Klein (KK) 4d N = 2 theory [36, 38]. The mirror Calabi-Yau

X∨ is the hypersurface

uv = F (ex, ey) (2.1)
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describing a bundle of conics over C∗ ×C∗, with fiber that degenerates over the mirror curve Σ

described by

F (ex, ey) = τ(ex + e−x) + ey + e−y − κ = 0 . (2.2)

The mirror curve is topologically a torus with four punctures, and coincides with the Seiberg-

Witten curve for the E1 theory [101]. As usual in Seiberg-Witten descriptions, certain one-cycles

on Σ correspond to charges of BPS states and the central charge is computed by periods of a

one-form λ

Zγ =

∮
γ
λ (2.3)

with

λ =
1

2πR
y dx . (2.4)

In general, the periods can be complicated functions of the complex moduli of Σ, such as τ, κ

for (2.2). Much of this paper is devoted to studying different ways to define a quantization of

these periods.

Remark 1. A difference with standard 4d N = 2 Seiberg-Witten descriptions is in the relation

between BPS charges and homology classes of cycles on Σ. A careful analysis of BPS cycles

[15] reveals that the logarithmic structure of the Seiberg-Witten differential for 4d KK theories

plays an important role in the computation of central charges, and it imposes certain selection

rules on true BPS charges. Precisely, BPS cycles are paths on Σ that lift to closed cycles on Σ̃,

a covering of Σ induced by the logarithmic map ey → y.

The charge lattice of BPS states for the E1 theory is generated by four cycles on the mirror

curve [17]

Γ =
4⊕
i=1

γiZ . (2.5)

Mirror symmetry relates γi to charges of B-branes on X = OP1×P1(−2,−2)

γ1 : O(0, 0) , γ2 : O(1, 0) , γ3 : O(1, 1) , γ4 : O(2, 1) , (2.6)

see [31, Example 6.5(b)]. In the language of type IIA D-branes wrapping cycles on the toric

Calabi-Yau, these translate into

γ1 : D4 , γ2 : D2fD4 , γ3 : D0D2fD2bD4 , γ4 : D2bD4 , (2.7)

as explained in [17, Section 3]. Readers are referred to [17, 18, 21, 31, 46, 55, 76, 77, 92, 110] and

references therein for background and for more details on the case at hand. The intersection

pairing of the four basis cycles is

〈γi, γj〉 =


0 −2 0 2

2 0 −2 0

0 2 0 −2

−2 0 2 0

 . (2.8)

– 6 –



The two-dimensional sublattice Γf of flavor charges, corresponding to the kernel of this pairing,

is generated by

γD0 = γ1 + γ2 + γ3 + γ4 , γD2fD2b
= γ2 + γ4 . (2.9)

A special feature of flavor cycles is that their periods, which can be computed by direct inte-

gration of (2.3), are simple functions of complex moduli2

ZγD0 =
2π

R
, ZγD2fD2b

=
2i

R
log τ . (2.10)

2.2 BPS spectrum in a collimation chamber

The BPS spectrum of this theory has been studied from several angles and with different tech-

niques, see [17, 21, 26, 36] and references therein. A complete description of the BPS spectrum

appeared in [94]. A connection to the Cremona group of X in our previous work [42] led to

exact computations for other local toric threefolds.

A fundamental role in the derivation of the BPS spectrum is played by a careful choice of

stability condition. While for generic moduli the spectrum is difficult to compute, in certain

regions known as ‘collimation chambers’ [42] the spectrum simplifies dramatically. An example

of a collimation chamber for local P1 × P1, first studied in [36] corresponds to the following

configuration of central charges

C(0)
1 : Zγ1 = Zγ3 , Zγ2 = Zγ4 , argZγ1 > argZγ2 , Zγ1+γ2 ∈ R+ . (2.11)

For reasons that will become clear in a moment, we will denote the class of stability conditions

C(0)
1 as the fine-tuned stratum of the collimation chamber. In fact the conditions (2.11) together

with the known values of flavor central charges (2.10) determine the central charges of basis

cycles entirely

Zγ1 = Zγ3 =
π

R
− i

R
log τ, Zγ2 = Zγ4 =

i

R
log τ . (2.12)

In particular, from (2.7) it follows that

Zγ1+γ2 = Zγ3+γ4 = ZγD2f
=

1

2
ZγD0 =

π

R
∈ R+ , (2.13)

where ZD0 = 2π
R is our choice of normalization for the D0 brane central charge.3 Working with

a fixed radius R, we may parameterize the locus C(0)
1 entirely by the value of Zγ1 ∈ C

Zγ1 = Zγ3 , Zγ2 = Zγ4 =
π

R
− Zγ1 , (2.14)

with 0 ≤ ReZγ1 < π/R and ImZγ1 > 0, so that all Zγi are contained in the half-plane with

phases −π/2 < argZγi ≤ π/2.

2The relevant cycles can be found in [17]. Below we will review a computation for ZD0 = 2π/R in the half-

geometry that is similar to the one for ZγD0 in (2.2). To compute Zγ
D2fD2b

observe that the sum of these cycles,

obtained by lifting saddles p5− p4 in [17, Figure 5], corresponds to small loops near the punctures at ex = ey = 0

and ex = ey = ∞. Near these punctures the differential becomes 2πRλ = y dx ∼ log τ dz/z + d(log z)2, in

coordinate z = ex. This has a simple pole at the puncture z = 0 (similarly near z =∞), with residue −2πi log τ .

Summing up the two contributions gives the claimed result.
3This is consistent with (2.3) and (2.4) as shown by direct computation of the D0 brane period in [15].
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In the context of 4d N = 2 QFT and supergravity, the BPS spectrum is encoded by the

BPS index Ω(γ) ∈ Z (a.k.a. the ‘second helicity supertrace’). The notion of BPS index can be

extended to 5d N = 1 QFT on the circle, viewed as a 4d N = 2 theories of the Kaluza-Klein

modes. The BPS spectrum in C(0)
1 is4

Ω(γ1 + k(γ1 + γ2)) = Ω(γ3 + k(γ3 + γ4)) = 1 ,

Ω(γ1 + γ2 + kγD0) = −2 , k ∈ Z ,
(2.15)

together with CPT conjugates with Ω(−γ) = Ω(γ). There is a second collimation chamber C2,

obtained by setting argZγ1 < argZγ2 in (2.11), where the spectrum takes the form (2.15) after

cyclic permutation (1, 2, 3, 4) of the charge labels [42].

Figure 2: Part of the BPS spectrum (2.15), for stability condition (2.11).

2.2.1 Geometric realization of the fine-tuned stratum

It is natural to ask whether the stability condition (2.11) is actually present in the physical

moduli space of the theory, corresponding to the complex moduli space of the curve (2.2)

parameterized by τ, κ. If this is the case, it follows that the BPS spectrum (2.15) is actually

realized in the physical theory, namely 5d N = 1 SU(2) Yang-Mills. Otherwise the BPS

spectrum would be unphysical, although it could still be used to compute the wall-crossing

invariant of [93] to deduce the physical spectrum for other stability conditions. At the time

when the spectrum was studied by [37, 42, 94] the answer to this question was not known. Here

we settle the question in the affirmative.

We will now show that the fine-tuned stability condition (2.11) is realized by periods of Σ

in the region of moduli space

κ→ 0 with τ finite . (2.16)

4We omit here the D0 branes, whose BPS index would be Ω(γD0) = −4. On the one hand they do not belong

to the strict field theory limit [45, 114]. On the other hand they do not participate in wall-crossing, and therefore

do not affect the structure of BPS chambers.

– 8 –



Appendix A contains a detailed analysis of the mirror curve, its periods, and some of the basic

BPS states from exponential networks.

In the fine-tuned limit (2.16) the curve becomes

τ(ex + e−x) + ey + e−y = 0 . (2.17)

Away from the punctures, the curve is still smooth and the periods are (see Appendix A)5

1

2πR

∮
γ1,γ3

λ =
π

R
− i

R
log τ ,

1

2πR

∮
γ2,γ4

λ =
i

R
log τ , (2.18)

as predicted by (2.12). This confirms that (2.11), with either argZγ1 ≷ argZγ2 (corresponding

to conditions C(0)
1 or C(0)

2 ), is indeed realized by Zγ computed as periods (2.3). Since the moduli

space of Σ coincides with the physical moduli space of the 5d gauge theory [101], it follows that

the BPS spectrum (2.15) is indeed physical.

The fine-tuned stratum is parameterized solely by τ . Noting that

ReZγ1 =
π

R
+

1

R
arg τ , ReZγ2 = − 1

R
arg τ , (2.19)

all basic central charges Zγi will lie in the right-half plane if

0 < arg τ < π . (2.20)

Whenever this condition is violated, at least two of the basic central charges exit the half-plane.

In a similar fashion, since

ImZγ1 = −ImZγ2 = − 1

R
log |τ | (2.21)

it follows that the fine-tuned locus is divided into two regions

|τ | < 1 ⇒ argZγ1 > argZγ2 ,

|τ | > 1 ⇒ argZγ1 < argZγ2 .
(2.22)

These regions correspond to the fine-tuned loci C(0)
1 and C(0)

2 described earlier. The two regions

have different BPS spectra, therefore |τ | = 1 corresponds to a wall of marginal stability.

The region C(0)
1 corresponding to |τ | < 1 includes the distinguished point τ = 0, which

corresponds to a degeneration of the mirror curve into two half-geometries (see Section 2.3).

Likewise the region C2 corresponding to |τ | > 1 includes the distinguished point τ =∞, which

corresponds to a different degeneration into two half-geometries. This is summarized in Figure

3.

2.2.2 An affine symmetry on the fine-tuned stratum

It will be useful to observe that there is a distinguished Z-action on each of the the chambers

C(0)
i . For example in C(0)

1 , this is the rotation by π

T (τ) = eπiτ , (2.23)

5We thank the anonymous referee for suggesting an elegant argument to show the symmetry of the periods.
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Figure 3: The fine tuned stratum. Two BPS chambers C(0)
1 , C2 separated by a wall of marginal

stability |τ | = 1. Each chamber includes a half-geometry point.

acting as follows on the central charges:

T :
Zγ1 → Zγ1+(γ1+γ2) , Zγ2 → Zγ2−(γ1+γ2)

Zγ3 → Zγ3+(γ3+γ4) , Zγ4 → Zγ4−(γ3+γ4).
(2.24)

Combining this with a relabeling of charges

T :
γ1 → γ1 + (γ1 + γ2) , γ2 → γ2 − (γ1 + γ2) ,

γ3 → γ3 + (γ3 + γ4) , γ4 → γ4 − (γ3 + γ4) ,
(2.25)

we find a symmetry of the BPS spectrum (2.15). By this we mean that central charges, BPS

indices, and Dirac pairings of the spectrum obtained by acting with T are identical to those of

the original spectrum

T (Zγ) = ZT (γ) , Ω(T (γ)) = Ω(γ) , 〈γ, γ′〉 = 〈T (γ), T (γ′)〉 . (2.26)

A distinguishing feature of the relabeling (2.25) is that it coincides with the one arising

from a sequence quiver mutation, or equivalently from a ‘tilting’ of the positive half-plane

[26, 42]. Indeed, the Z-action (2.23) shifts the basis central charges by ± π
R , which pushes two

of them outside of the right half-plane, according to (2.20). This induces a change in the quiver

description, precisely by a pair of mutations.

2.2.3 Away from the fine-tuned stratum

As it turns out, stability conditions (2.11) are rather peculiar. For example, we will see in

Section 4, that the associated Riemann-Hilbert problem in the sense of [30, 58] becomes trivial

in the ‘conformal limit’, in spite of the fact that the system is coupled. It may be observed
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however that the fine-tuned stratum (2.11) is only part of a larger chamber in the moduli space

of stability conditions.

Here we will define two one-parameter families of stability conditions that deform the fine-

tuned stratum (2.11). The first one is

C(δ)
1 : Zγ3 = Zγ1 + δ , Zγ4 = Zγ2 − δ , argZγ1 > argZγ2 , Zγ1+γ2 =

π

R
∈ R+ , (2.27)

with

− π

R
< δ <

π

R
. (2.28)

It still satisfies (2.13) and belongs to the same chamber as C(0)
1 , as we now explain.6

On the one hand the limiting rays (k → ±∞) for the spectrum (2.15) still lie on the real axis,

since the relation (2.13) is unchanged. On the other hand, observe from (2.15) that BPS states

with central charges (2.11) are arranged according to two identical and overlapping ‘peacock

patterns’ [61, 70], as shown in Figure 2. The presence of coincident rays in the pattern is allowed

because the corresponding charges are mutually local, namely

〈γ1 + k(γ1 + γ2), γ3 + k(γ3 + γ4)〉 = 0 . (2.29)

Turning on the deformation δ resolves the two patterns as shown in Figure 4. In order to remain

within the same chamber it is crucial that no rays in the complex plane of central charges cross

each other, except for mutually local ones. In particular we should avoid a crossing between

any pair of charges with

〈γ1 + k(γ1 + γ2), γ3 + k′(γ3 + γ4)〉 6= 0 , if k 6= k′ . (2.30)

This is ensured by the condition (2.28), since the spacing between two central charges in the

sequence γ1 + k(γ1 + γ2) is given precisely by Zγ1+γ2 = π/R. The class of stability conditions

(2.27) can be parameterized by the complex number Zγ1 subject to the same constraints as

before, and by the real δ subject to (2.28).

Thanks to the periodic ‘peacock’ pattern characterizing the BPS spectrum, it is possible

to extend the Z-action (2.23) defined on the fine-tuned stratum to the more general class of

stability conditions C(δ)
1 . Taking

T (Zγ1,3) = Zγ1,3 +
π

R
, T (Zγ2,4) = Zγ2,4 −

π

R
, (2.31)

preserves both (2.27) and (2.28). As before, this Z-action pushes two of the basic BPS states

(those with charges γi) to exit the right half-plane. From the viewpoint of a quiver description

based on the right half-plane, this induces a pair of mutations, as will be seen in more detail in

Section 5.

The second deformation is

C(ρ)
1 : Zγ3 = ρZγ1 , Zγ4 = ρZγ2 , argZγ1 > argZγ2 , ρ, Zγ1+γ2 ,∈ R+ . (2.32)

6Depending on δ, a small tilt of the half-plane may be necessary so that it contains all four Zγi at once.
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Figure 4: Part of the BPS spectrum (2.15), for δ-deformed stability condition (2.27).

This is still trivially in the same chamber of C(0)
1 , since we have not changed the phase of any

central charge, as the only bound states away from the real axis occur only between γ1 and

γ2 or γ3 and γ4. The BPS spectrum is then unchanged, but organized in two parallel peacock

patterns instead of one, as shown in Figure 5, and the Z-action (2.23) can be extended in a

similar manner as before.

Figure 5: Part of the BPS spectrum (2.15), for ρ-deformed stability condition (2.32).

2.3 Half-geometry limit

We conclude this section by studying the limit where local P1 × P1 degenerates into its ‘half-

geometry’

OP1×P1(−2,−2) → OP1(−2)⊕OP1(0) . (2.33)
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One motivation for considering this limit is the observation [94] that a class of stability

conditions very close to (2.27) can be realized by considering the limit τ → 0 corresponding

to the degeneration (2.33).7 A second motivation for studying the half-geometry is that taking

τ → 0 corresponds to a weak-coupling limit for 5d N = 1 SU(2) Yang-Mills theory [101]. This

observation will be important in connection to a description of quantum periods in terms of

instanton partition functions, whose computation takes place in the weak-coupling regime of

the gauge theory [102, 103], and will be the focus of section 5.

Taking τ → 0 while staying in the physical slice of the collimation chamber C1, from (2.10)

we expect

Zγ1 ≈ Zγ3 → +i∞ Zγ2 ≈ Zγ4 → −i∞ . (2.34)

Geometrically this reflects the fact that cycles corresponding to the D4 brane and the D2b brane

grow to infinite size. In terms of the stability condition Cδ1 in (2.27), we may reproduce this by

keeping δ fixed while taking argZγ1 = π/2− ε with ε→ 0+. In this limit

Zγ1+γ2 = ZγD2f
=

1

2
ZγD0 =

π

R
, Zγ3+γ4 = ZD0D2f

=
1

2
ZγD0 =

π

R
(2.35)

remain fixed, so that the stability condition always belongs to C(δ)
1 . Therefore the BPS spectrum

cannot change by wall-crossing, but can at most shed part of its states when reaching the

boundaries of the chamber as τ → 0. Indeed it was observed that in this limit all states that

become infinitely massive disappear, while all states that retain finite mass get their BPS index

halved [17]. The states that survive are D2D0 boundstates with charges8

Ω(γ1 + γ2 + kγD0) = −1 , k ∈ Z , (2.36)

together with the CPT conjugates (see [16, Section 4]). Note that this spectrum is a subset of

that in (2.15) corresponding to chamber C1.

We may also check that the expectation (2.35) on the behaviour of periods in the limit

τ → 0 is indeed verified by the mirror geometry. A simple computation, involving a change of

variables described in Appendix B leads to the following mirror curve for the half-geometry

(1 +Q)− ex −Qe−y − ey = 0 , (2.37)

where Q is related to κ by

κ2 =
(1 +Q)2

Q
. (2.38)

In section 3 we will show that the quantum periods of this curve are classically exact and given

by

ZγD2f
= − i

R
logQ , ZγD0 =

2π

R
, (2.39)

where γD2f is the cycle corresponding to the limit of γ1 + γ2 in the full geometry. Since these

periods match exactly the periods in the fine-tuned stratum (2.35) for Q = eπi, we conclude

7In [17, 94] the curve is parameterized by Qb, Qf which are related to our moduli as τ = Qb/Qf and κ = κ.

The limit considered in the references is therefore Qb → 0.
8Again we are neglecting contributions from pure D0 branes, which also get halved.
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that the collimation chamber C1 contains at least one point where local P1 × P1 degenerates to

a half-geometry. Indeed, since taking Q→ eπi sends κ→ 0, this limit may also be regarded as

a special case of (2.16) where we also take τ → 0.

It is worth mentioning that one may also take a limit on the space of stability conditions

along C(ρ)
1 , in which we take again (2.34) but with (2.35) replaced by

Zγ1+γ2 = ZγD2f
=
ZγD0

1 + ρ
=

2π

R(1 + ρ)
, Zγ3+γ4 = ZD0D2f

=
ρ

1 + ρ
ZγD0 =

2πρ

R(1 + ρ)
. (2.40)

Regardless of whether C(ρ)
1 belongs to the physical slice of the collimation chamber, the limiting

configuration of central charges (2.40) belongs to the physical moduli space of the half-geometry,

with the identification

Q = e
2πi
1+ρ . (2.41)

Therefore, the ρ-deformation, unlike the δ-deformation, allows us to explore the whole parameter

space of the half-geometry.

3 Quantum periods from WKB

The definition of quantum periods is based on a ~-difference equation (~DE) associated to the

classical (mirror) curve Σ, by imposing the WKB ansatz

ψ(x; ~) = exp

(∫ x

S(x; ~)dx

)
, S(x; ~) =

2πR

~
λ+O(1) , (3.1)

where S(x; ~) is an asymptotic power series in ~, and λ is the classical differential (2.4). Mon-

odromies of ψ are described by exponentiated contour integrals of S(x; ~)dx, which are also

asymptotic series in ~. Under the assumption that the series are Borel summable, the quantum

periods are defined to be the Borel summation of the WKB periods9

Πγ(~) := B
[∮

γ
S(x; ~)dx

]
=

2πR

~
Zγ +O(1). (3.2)

For later convenience we will denote the exponentiated quantum periods by

Xγ := exp Πγ . (3.3)

3.1 ~-difference equations

The quantization of mirror curves in the context of refined open (refined) topological strings

gives rise to ~-difference equations [2].10 The open string partition function plays the role of a

9The definition of Borel sum can be found in many standard references, see e.g. [41]. We follow closely the

conventions of [13]. For discussions of Borel summability in the context of first-order ~-difference equations, we

refer to the recent papers [12, 62, 68].
10These are also known as q-difference equations in the literature, where the relevant equations are often

expressed in terms of of exponentiated variables. We slightly deviate from standard jargon in order to preserve

q for q-Painlevé equations, whose parameter q is slightly different from the one that would appear in q-difference

equations arising from quantum mirror curves.
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wave-function [88, 100, 109, 111, 112], characterized by the ~-difference equation and by a certain

choice of boundary conditions. In the following we will consider quantum curves that appear

in the study of open refined Topological Strings in the Nekrasov-Shatashvili limit [1, 78, 104].

Given an algebraic curve Σ

F (ex, ey) =
∑
m,n

am,ne
mxen y = 0 (3.4)

in variables (ex, ey) ∈ C∗ × C∗, the corresponding quantum curve is a ~-difference equation

F̂ (ex̂, eŷ)ψ(x) =

(∑
m,n

am,n(~)emx̂en ŷ

)
ψ(x) = 0 (3.5)

with

lim
~→0

am,n(~) = am,n , ex̂ψ(x) = exψ(x) , eŷψ(x) = ψ(x+ ~) . (3.6)

Here ψ(x) is truly a function of ex, meaning ψ(x + 2πi) = ψ(x). This definition of a quantum

curve involves a choice of polarization based on classical coordinates (x, y) whose quantization

is achieved by replacing

y → ŷ = ~∂x . (3.7)

It will later be useful to consider other choices of polarization, which can be obtained by an

Sp(2,Z) transformation on (x, y).

Clearly, there is more than one ~-difference equation that reduces to a given algebraic curve

Σ. This ambiguity may be traced to the ~-dependence of am,n(~), which trivializes in the limit

~→ 0, and has to be fixed by some additional requirements. For example, a popular convention,

known as Weyl’s prescription [69, 87, 95], consists in replacing emx+ny by emx̂+nŷ. With this

prescription the curve (3.4) is promoted to the following ~-difference equation

F̂ (ex̂, eŷ)ψ(x) =

(∑
m,n

am,ne
mx̂+n ŷ

)
ψ(x) = 0 , (3.8)

where am,n are the classical coefficients.

3.2 Quantum periods

We will now show that the quantum periods (3.2) can be written in terms of the eigenvalue R
of the shift operator eŷ,

R(x; ~) :=
ψ(x+ ~)

ψ(x)
. (3.9)

Left-multiplying (3.5) by [ψ(x)]−1 and taking the limit ~→ 0, it is clear that

lim
~→0
R(x; ~) = exp y(x) , (3.10)

where y(x) is a sheet of the classical curve (3.4). It follows that, while R(x; ~) is generally a

multi-valued function of x, its (semi-) classical limit is single valued on Σ. From (3.10) it follows

that the leading order of 1
2πR logR coincides with the classical differential λ (2.4), so that

1

~

∮
γ

logR(x; ~) dx =
2πR

~
Zγ +O(~0) . (3.11)
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In fact, it is possible to write R in terms of S: from (3.1) and (3.9) it follows that

R(x, ~) = exp

{∫ x+~

x
dxS(x; ~)

}
= exp

{
~S(x; ~) +

∞∑
k=1

~k+1

(k + 1)!
∂kxS(x; ~)

}
, (3.12)

which means that 1
~ logR(x)dx and S(x)dx only differ by a total derivative

S(x; ~) dx =
1

~
logR(x; ~)dx+ dξ(x; ~), ξ(x; ~) :=

∞∑
k=1

~k+1

(k + 1)!
∂k−1
x S(x; ~) . (3.13)

Therefore periods of S(x; ~)dx along closed BPS cycles γ actually coincide with the periods of
1
~ logR(x; ~)dx

1

~

∮
γ

logR(x; ~) dx =

∫
γ
S(x; ~), (3.14)

and we can compute the quantum periods (3.2) using the 1-form logR dx instead. This will

turn out to be important, as we will see in the following sections that R is the solution to a ~-

difference version of the Riccati equation, and its ~-expansion can be systematically computed.

In the following, we will refer to 1
~ logR(x; ~)dx as the quantum, or WKB, differential.

Remark 2. Equation (3.14) holds if the function ξ in equation (3.13) is single-valued on the

logarithmic cover Σ̃ of Σ used to define BPS cycles. It follows from the definition (3.1) of S dx

as a differential on Σ̃ that S dx and its derivatives are single-valued on the logarithmic cover.

3.3 Boundary conditions for ψ

The quantum one-form logR(x, ~) defines ψ(x) in terms of transport by finite shifts through

(3.9). Iterating such shifts infinitely many times leads to an explicit solution for ψ(x) in terms

of R(x; ~). We have two distinct cases, depending on the sign of Re ~

ψ(x) = ψ0(x)

−1∏
k=−∞

R(x+ k~; ~) = ψ∞(x)

∞∏
k=0

1

R(x+ k~; ~)
(Re ~ > 0) (3.15)

ψ(x) = ψ∞(x)
−1∏

k=−∞
R(x+ k~; ~) = ψ0(x)

∞∏
k=0

1

R(x+ k~; ~)
(Re ~ < 0) (3.16)

Here the functions ψ0, ψ∞ are ~-periodic functions

ψ0(x+ ~) = ψ0(x) , ψ∞(x+ ~) = ψ∞(x) . (3.17)

Due to linearity of the ~-difference equation (3.5), any solution ψ(x) is ambiguously defined

up to multiplication by such ~-periodic functions. This is the ~-difference uplift of the familiar

statement that solutions to linear ODEs are defined up to an overall constant multiplier.

The functions ψ0(x), ψ∞(x) can be fixed in part by studying the boundary conditions for

the wavefunction. Recall from (3.10) that the semiclassical limit of ψ depends on a choice of

branch y(x) for Σ, and different branches give rise to different boundary conditions at leading

order. Through the consistency imposed by (3.5) this dependence determines the boundary
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condition to higher orders in ~ as well. For instance, in the context of open topological string

theory, one is often (though not always) interested in a branch where ψ(x) =
∑

k≥0 ψk(~)ekx

with ψ0 = 1, meaning that the wavefunction has asymptotics normalized to ψ(−∞) = 1.

On the other hand, boundary conditions do not entirely fix the ambiguity. There may

be ~-periodic factors that simply obey the desired boundary condition and one may choose to

include them or not in the answer for ψ(x). A prescription to fix these residual factors is to

take an asymptotic expansion of ψ(x) as a series in ~, and perform a Borel resummation. This

resummation involves the choice of an angular sector ] in the Borel plane, bounded by rays

corresponding to singularities of the Borel transform of the series. Different sectors give rise to

resummations with different ~-periodic normalizations

B][ψ(x)] = S],]′(x)B]′ [ψ(x)] . (3.18)

A detailed analysis of this phenomenon for first-order ~-difference equations associated to the

mirror of C3 can be found in [68]. The quantum mirror curve of the resolved conifold is discussed

in [12, 68]. The choice of a normalization for ψ(x) matters when solving the ~-difference equation,

but does not affect the definition (3.2) of the quantum periods (nevertheless, quantum periods

are sensitive to the phase of ~ through Stokes automorphisms). For this reason we will mostly

neglect this issue in the following.

3.4 WKB for first order ~-difference equations

The most general first order linear ~-difference equation is simply the definition of R:[
eŷ −R(x,Q; ~)

]
ψ(x) = ψ(x+ ~)−R(x,Q; ~)ψ(x) = 0 , (3.19)

with R given explicitly by the equation. As such, a solution is given straightforwardly by (3.15),

(3.16). In Appendix C we discuss the examples of C3 and the resolved conifold; here we will

focus on the half-geometry, that we saw arising as the limit τ → 0 of local P1 × P1.

Half-geometry

The mirror curve (2.37) for the half-geometry can be written equivalently as

ex = (1−Qe−y)(1− ey) , (3.20)

and in the limit Q → 0 it degenerates to the curve of C3, see (C.1). We may quantize (3.20)

by simply replacing x, y with the corresponding operators x̂, ŷ, but the usual polarization (3.7)

leads to a second-order ~-difference equation, namely

(ex − 1−Q)ψ(x) +Qψ(x− ~) + ψ(x+ ~) = 0 . (3.21)

We can however switch to a Fourier-dual polarization where x̂ = −~∂y, ŷ = y, in which the

~-difference equation becomes

ψ̃(y − ~) = (1−Qe−y)(1− ey)ψ̃(y) , (3.22)
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which is a first-order system for the Fourier transform ψ̃ of ψ. We can easily find a solution

with boundary condition ψ̃(−∞) = 1

ψ̃(y) =
(Qey+~; e~)∞

(e−y; e~)∞
. (3.23)

To compute the parallel transport for the Fourier-dual wavefunction we define

R̃(y; ~) =
1

ψ̃(y)
x · ψ̃(y) =

ψ̃(y − ~)

ψ̃(y)
= (1−Qe−y)(1− ey) . (3.24)

Repeating the arguments that led to (3.14) one may show that − log R̃ dy is in the same coho-

mology class as d log ψ̃. Since quantum periods are invariant under changes of polarization11,

they can be computed from R̃ as follows

Πγ = −1

~

∮
γ

log R̃(y; ~) dy , (3.25)

by computing the primitive

−1

~

∫ y

log R̃(y) dy =
1

~

[
Li2(Q−1ey) + Li2(ey)− π2

6
− 1

2
log2(−Qe−y)

]
, (3.26)

and then studying its monodromies along appropriate cycles of Σ. The mirror curve (3.20) is

a sphere with four punctures, located at ey = 0, 1, Q, with two independent periods12. Let

us denote by Cz a small counter-clockwise loop around the puncture at ey = z. In [16] via

exponential networks, the cycle corresponding to the D2 brane in the mirror picture is found to

be

γD2 = C−1
Q ◦ C1, (3.27)

depicted in Figure 6. Using the monodromy properties (C.7), we find that

Li2(Q−1ey) + Li2(ey)
C1→Li2(Q−1ey) + Li2(ey)− 2πi log ey

C−1
Q→ Li2(Q−1ey) + 2πi log(Q−1ey) + Li2(ey)− 2πi log ey

= Li2(Q−1ey) + Li2(ey)− 2πi logQ ,

(3.28)

so that the quantum period is

ΠγD2 = −2πi

~
logQ =

2πR

~
ZγD2 . (3.29)

11A slick argument for this, is via the correspondence between quantum periods of exact WKB with solutions

of TBA equations. The latter do not involve a choice of polarization for the quantum curve (in fact they do not

even involve the choice of a quantum curve). A more direct derivation of this statement involves passing from a

wavefunction ψ in one polarization to another polarization via Fourier transform ψ̃. By direct inspection, it is

not hard to see that quantum periods obtained by transport of ψ coincide with those of ψ̃.
12The number of independent periods is not b1(Σ) due in part to logarithmic branching of λ. For details, see

[15, 16].
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Figure 6: Left: the cycle γD2 on the mirror curve of the half-geometry, shown as a covering

over the y plane. Labels of punctures denote the values of ey = 1, Q respectively. Right: the

cycle γD4 in the half-geometry limit becomes noncompact.

To complete the basis of quantum periods we need a second, linearly independent, cycle. We

choose the cycle γD0 corresponding to the D0-brane, whose computation is completely analogous

and is performed in Appendix C for the resolved conifold. The idea is to note that (3.20) is

a pair of trinions glued along a tube, and then recall that each trinion is a copy of the mirror

curve of C3. The D0 cycle can be embedded into, say, the left trinion: if C0, C1, C∞ are cycles

around the three punctures of the trinion, then

γD0 = C−1
1 ◦ C−1

0 ◦ C−1
∞ = C−1

1 ◦ C−1
0 ◦ C1 ◦ C0 , (3.30)

also see [16, Figure 18]. The period computation proceeds by keeping track of monodromies of

the primitive, and turns out to be

ΠγD0(~) =
4π2

~
=

2πR

~
ZγD0 , (3.31)

A similar computation for the D0 in the resolved conifold is detailed in Appendix C, see equation

(C.15). Note that the periods of first-order systems are almost trivially computed, since the

only possible ~-dependence of the quantum differential logR is the one explicitly coming from

the first-order equation (3.19) (this explicit dependence is absent for the half-geometry quantum

curve (3.21)).

3.5 WKB for second order ~-difference equations

Higher-order ~-difference equations arise typically for Calabi-Yau geometries that engineer in-

teracting five-dimensional theories.13 We focus on second-order ~-difference equations14, that

13Although also first-order systems may be presented in terms of higher-order ~-difference equations by a change

of framing [3].
14The generalization to higher orders can be pursued along similar lines.
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can generally be written as

ψ(x+ 2~) + a1(x; ~)ψ(x+ ~) + a2(x; ~)ψ(x) = 0 . (3.32)

Here ai are really functions of ex, in other words they obey the periodicity constraints

ai(x; ~) = ai(x+ 2πi; ~) . (3.33)

Generically they may also depend on ~ and on the complex moduli of Σ. We will assume for

simplicity that they admit a Taylor series in ~:

ai(x; ~) =

∞∑
k=0

~kai,k(x). (3.34)

Again, for the purpose of studying the quantum periods defined by (3.2), the main problem

is to compute R(x; ~). We then use the definition (3.9) of the latter to recast (3.32) as a a

difference equation in Riccati form:

R(x+ ~; ~)R(x; ~) + a1(x; ~)R(x; ~) + a2(x; ~) = 0 . (3.35)

We will henceforth turn our attention to the solution of (3.35) as a formal series in ~. The WKB

ansatz (3.1) implies that

R(x; ~) =
∞∑
k=0

~kRk(x) , (3.36)

leading to the following expansion for the difference Riccati equation (3.35):

∞∑
k,l,m=0

~k+l+m

l!
Rk(x)∂lxRm(x) +

∞∑
k,l=0

~k+la1,k(x)Rl(x) +
∞∑
k=0

~ka2,k(x) = 0 . (3.37)

To get this expression we used the expansion

R(x+ ~; ~) =
∞∑

k,l=0

~k+l

l!
∂lxRk(x) . (3.38)

An important difference between (3.37) and the more familiar Riccati equation for second

order linear ODEs is that the ~-expansion (3.37) contains derivatives of arbitrary order. How-

ever, since an n-th derivative always comes with a power of ~n, the equation at order n contains

only derivatives of the solution from the previous orders, so that every order can be solved

algebraically as in the usual Riccati equation. The solution can be written explicitly:

R(±)
0 (x) = ey±(x) = −a1,0

2
±

√
a2

1,0

4
− a2,0 , (3.39)

corresponding to the two branches of Σ in the semiclassical limit (3.10). Higher orders are

entirely fixed by the choice of a branch at level zero

R(±)
n = ∓ 1√

a2
1,0 − 4a2,0

[
n−1∑
m=1

m∑
l=0

1

l!
Rm−l∂lxRn−m +

n∑
l=1

1

l!
Rn−l∂lxR0 +

n∑
l=1

a1,lRn−l + a2,n

]
.

(3.40)
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While the idea of using R(x, ~) to solve second order order ~-difference equations is not new, see

e.g. [80, 89], to our knowledge the systematic WKB solution (3.40) is absent in the literature.

There is no substantial complication in passing from the second order Riccati solution to the

higher order one.

3.6 Local P1 × P1

We now use the above formalism to study the ~-difference equation of local P1 × P1 and its

quantum periods. The quantization of the classical curve (2.2) is

ψ(x+ 2~) +
[
τ
(
ex+~ + e−(x+~)

)
− κ
]
ψ(x+ ~) + ψ(x) = 0 , (3.41)

which is of general form (3.32). The associated Riccati equation is therefore

R(x+ ~; ~)R(x; ~) +
[
τ
(
ex + e−x

)
− κ
]
R(x; ~) + 1 = 0 . (3.42)

The first few terms of the general solution (3.39)-(3.40) are

R(±)
0 (x) =

κ

2
±
√

1

4
(κ− 2τCh(x))2 − 1− τCh(x),

R(±)
1 (x) =

τSh(x)

2
(

1
4(κ− 2τCh(x))2 − 1

) ,
R(±)

2 (x) = ± 1

32
(

1
4(κ− 2τCh(x))2 − 1

)5/2
×

[
− τ4Ch(4x) + κτ3Ch(3x) + τ2

(
κ2 + 4τ2 − 6

)
Ch(2x)

− κτ
(
κ2 + 13τ2 − 4

)
Ch(x) + τ2

(
5κ2 + 5τ2 − 2

) ]
,

(3.43)

with τ defined as in (2.16). Higher order terms quickly increase in complexity. Overall the
WKB differential has the following expansion:

1

~
logR(±)(x; ~) =

1

~
log

(
κ

2
±
√

1

4
(κ− 2τCh(x))2 − 1− τCh(x)

)

+
tSh(x)

2
(
1
4 (κ− 2τCh(x))2 − 1

) (
κ
2 ±

√
1
4 (κ− 2τCh(x))2 − 1− τCh(x)

)
± ~

[
−τ4Ch(4x) + κτ3Ch(3x) + τ2

(
5κ2 + 5τ2 − 2

)
+ τ2

(
κ2 + 4τ2 − 6

)
Ch(2x)

−κτ
(
κ2 + 13τ2 − 4

)
Ch(x)

] 1

32

(
1

4
(κ− 2τCh(x))2 − 1

)−5/2

×

(
κ

2
±
√

1

4
(κ− 2τCh(x))2 − 1− τCh(x)

)−1

− ~
τ2Sh2(x)

8
(
1
4 (κ− 2τCh(x))2 − 1

)2 (κ
2 ±

√
1
4 (κ− 2τCh(x))2 − 1− τCh(x)

)2 +O
(
~2
)
.

(3.44)
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This solution for the quantum differential allows to compute the wavefunction on the one

hand, and quantum periods on the other hand.15 We will focus on the computation of quantum

periods, which involves integrating logR along closed cycles as in (3.14). To this end, a few

remarks are in order:

• The only term with logarithmic branching is the classical one, while the other terms have

only square root cuts, so we do not have to worry about the logarithmic branching when

talking about the quantum corrections.

• One may define, in analogy with the case of second order ODEs, the even and odd differ-

entials under the hyperelliptic involution exchanging the two sheets of the square root

Sodd :=
1

2

(
logR(+) − logR(−)

)
, Seven :=

1

2

(
logR(+) + logR(−)

)
. (3.45)

In the differential case, the even contribution is a total derivative, a fact that can be proven

using Riccati equation [91]. Even though no such proof is available to our knowledge

in the ~-difference case, it seems to be also true in this example that Seven is a total

derivative. We checked this statement up to order O(~9). It is worth noting that this

could be stemming from the fact the classical curve (2.2) is invariant under y → −y, so

that ey
(+)(x)+y(−)(x) = 1, so that the classical differential does not have an even component.

• By direct inspection, it also appears that even powers in the ~-expansion of Sodd are

total derivatives. For the purpose of computing quantum periods, the WKB differential

can then be taken to be just the odd ~-expansion of Sodd, in complete analogy with the

differential case. It would be interesting to understand this fact from a more general point

of view.

Despite these simplifications, direct computation of expressions for the WKB differentials

become quickly very unwieldy. A way around this problem is the so-called ”quantum operator

method”, first discovered in [98] for the case of the Modified Mathieu equation. It consists in

writing the higher order periods as linear combinations of the classical ones and their derivatives

with respect to the moduli of the curve, and was used in [78] to compute the first corrections

to the classical periods in the WKB expansion of local P1 × P1. While this method can be

pushed to very high orders in the context of ordinary WKB expansion [66, 67], it seems to be

too computationally expensive in the ~-difference case, an issue that will be circumvented in

Section 5 by the use of q-Painlevé equations.

Exact limits

To conclude our analysis of the WKB quantum periods on a higher note, we remark that there

exist certain limits of the geometry in which an exact computation becomes feasible.

15The computation of a wavefunction involves the choice of suitable boundary condition, as discussed in Section

3.3. In this example it is clear that ψ0(x) and ψ∞(x) will not be constant along either branch of the classical

curve. Since we are mainly interested in quantum periods, we will not discuss solutions for ψ further.
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1. The first one is the region characterized by κ → 0 with τ finite. In this limit it can be

seen by explicit computation (although we do not have a proof of this statement to all

orders) that the higher-order corrections become total derivatives. This can be checked

explicitly by taking the limit κ → 0 in (3.44). The first resulting order of the even and

odd differentials are

Seven =

(
− τ2Sh(2x)

τ2 + τ2Ch(2x)− 2
− ~

τ2
(
τ2 +

(
τ2 − 2

)
Ch(2x)

)
(τ2 + τ2Ch(2x)− 2)2

)
dx+O(~2)

= −1

2
d log

(
τ2 + τ2Ch(2x)− 2

)
− ~d

(
τ2Sh(2x)

2 (τ2 + τ2Ch(2x)− 2)

)
+O(~2)

(3.46)

Sodd =
2πR

~

(
λ(+) − λ(−)

)
−

√
2τSh(x)√

τ2 + τ2Ch(2x)− 2

− ~
τ3Ch(x)

(
2τ2 +

(
2τ2 − 5

)
Ch(2x) + 1

)
√

2 (τ2 + τ2Ch(2x)− 2)5/2

=
2πR

~

(
λ(+) − λ(−)

)
− d log

(√
2τCh(x) +

√
τ2 + τ2Ch(2x)− 2

)
− ~d

(
τ3
(
6τ2 − 5

)
Sh3(x) + 6τ3

(
τ2 − 1

)
Sh(x)

3
√

2 (τ2 − 1) (τ2 + τ2Ch(2x)− 2)3/2

)
+O(~2),

(3.47)

where the total derivatives are single-valued on Σ, and

λ(±) = log

(
±
√
τ2Ch2(x)− 1− τCh(x)

)
dx. (3.48)

Since the higher orders are total derivatives, the quantum periods are classically exact:

lim
κ→0

Πγ =
2πR

~
lim
κ→0

Zγ . (3.49)

Note that the limit considered here coincides precisely with the geometric realization of the

fine-tuned stratum (2.16). As we will see in the next section the solutions to TBA (which

we conjecture to coincide with WKB quantum periods) are in fact exactly semiclassical for

this choice of stability condition. In this light, the observation that higher-order corrections

to WKB quantum periods seem to vanish matches exactly with expectations from the

proposed identification with TBA solutions.

2. The other asymptotics we will discuss is the limit τ → 0 describing the degeneration of

local P1 × P1 to the half-geometry (2.37) (t → 0 limit in (3.44)). Recall from Section

2.3 the charge lattice of local P1 × P1 halves in dimension since certain cycles (such as

γD4) become infinitely large. In this limit, the ~-expansion becomes classically exact (note

for example that all the higher order corrections to the WKB differential in (3.44) are

proportional to τ → 0). The periods along the surviving compact cycles are then simply

the classical periods of the half-geometry that we computed in (3.29), (3.31). Conversely

the periods along non-compact cycles (such as ΠγD4
) become divergent integrals over open

contours.
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4 TBA equations

We now turn to the discussion of the Thermodynamic Bethe Ansatz (TBA) equations associated

to BPS structures.

4.1 Background

The relation between TBA equations and BPS states first appeared in the context of four-

dimensional N = 2 theories on S1 × R3. Circle compactifications of 4d N = 2 theories are

described by 3d N = 4 sigma models with hyperkähler target M [108], whose metric receives

corrections from 4d BPS particles. A way to encode these corrections is to adopt a twistor

description based on a set of Darboux coordinates Yγi [58]. In turn, these Darboux coordinates

are characterized by TBA equations equivalent to a Riemann-Hilbert problem associated to the

BPS spectrum. This description of hyperkähler geometry in terms of topological data of BPS

spectra was soon realized to be an instance of a more general story. A similar construction

was applied to the case of D-instanton corrections to hypermultiplet moduli spaces in type II

string theory [9], see [6] for a review. Even more generally, a class of Riemann-Hilbert problems

connected to BPS counting was defined in [30, 86, 93], and further studied in [28, 29, 32].

Most relevant to our work is the connection between TBA equations and five-dimensional

gauge theories studied in [5, 71, 72]. In this context, solutions to TBA equations should be

related to quantum periods of ~-difference equations considered in the previous section. The

motivation for this expectation comes from extending an observation of [60] connecting RH

problems and ODEs arising in class S theories, to Kaluza-Klein 4d N = 2 theories. 16

The main goal of this section is to provide evidence that the solutions of TBA equations

associated to BPS structures of 5d N = 1 gauge theories coincide, under suitable assumptions,

with the quantum periods of the corresponding ~-difference equations studied in the previous

section

Yγ = Xγ , (4.1)

with Xγ as defined in (3.3). Below we will provide supporting evidence for this relation in a few

examples. Besides this, there are also heuristic reasons to expect such a relation to hold. One of

these is the fact that TBA equations are characterized by certain discontinuities encoded by BPS

states, and the same discontinuities are expected to be a feature of quantum periods of ~DEs.

Indeed the latter are asymptotic series in ~, with leading exponential behavior determined

by the classical differential (2.4). The Stokes graph coincides with the exponential network,

whose abelianization map jumps by Stokes-like automorphisms [15, 59]. Another reason is the

expectation that the ODE/IM correspondence of [20, 43] should admit an extension to ~DEs, see

[56] for a recent discussion. Yet another general motivation is that a similar relation between

quantum periods and TBA systems is known to hold for certain 4d N = 2 theories, and 5d

N = 1 theories on a circle can be regarded as 4d N = 2 theories of Kaluza-Klein type [37, 38].

16In the ‘conformal limit’ studied in [57], and for a certain class of ODEs, this relation can be understood as

a generalization of the ODE/IM correspondence [20, 43]. The full extent of the relation between TBA equations

and ODEs is not fully understood, and is a subject of active investigations [48–50, 66, 67, 82, 113].
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4.2 Integral equations in the conformal limit

Viewing a 5d N = 1 theory on S1 × R4 as a 4d N = 2 Kaluza-Klein theory, we consider

compactifiaction on a further circle of radius R̃, down to T 2×R3. Denoting by Zγ the 4d N = 2

central charge, and by θγ the Wilson-’t Hooft lines on the circle S̃1 taking us from 4d to 3d, we

define the ‘semiflat’ variables following [108]

Y sf
γ (ζ) = exp

(
πR̃

ζ
Zγ + iθγ + πR̃ζ Zγ

)
. (4.2)

The functions Yγ(ζ) are then defined by a set of coupled nonlinear integral equations

Yγ(ζ) = Y sf
γ (ζ) exp

− 1

4πi

∑
γ′

Ω(γ′, u)〈γ, γ′〉
∫
`γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1− σ(γ′)Yγ′(ζ

′))

 (4.3)

where σ(γ) = −1 if Ω(γ) = 1 and σ(γ) = 1 if Ω(γ) = −2, while `γ := ZγR−.

We restrict to the so-called Hitchin section by setting θγ = 0. An important consequence

of this restriction is that Y−γ(−ζ) = Yγ(ζ). We can then simplify the equations by using CPT

symmetry of the BPS spectrum Ω(γ, u) = Ω(−γ, u) to obtain

Yγ(ζ)|θγ=0 = Y sf
γ (ζ) exp

− ζ

πi

∑
γ′>0

Ω(γ′, u)〈γ, γ′〉
∫
`γ′

dζ ′

(ζ ′)2 − (ζ)2
log(1− σ(γ′)Yγ′(ζ

′))

 (4.4)

where γ′ > 0 corresponds to the ‘positive half’ of the charge lattice, defined by Zγ′ ∈ H for some

choice of half-plane H ⊂ C. To take the conformal limit we replace ζ = επR̃ and take R̃ → 0

with ε fixed

log Yγ(ε) =
Zγ
ε
− ε

πi

∑
γ′>0

Ω(γ′, u)〈γ, γ′〉
∫
`γ′

dε′

(ε′)2 − (ε)2
log(1− σ(γ′)Yγ′(ε

′)) . (4.5)

Varying ε across one of the rays `γ′ induces the solutions Yγ(ε) to jump by a Kontsevich-

Soibelman transformation [93]

Yγ → Yγ(1− σ(γ′)Yγ′)
Ω(γ′)〈γ,γ′〉 . (4.6)

4.3 The TBA system for local P1 × P1

Since Yγ obey the product rule

YγYγ′ = Yγ+γ′ , (4.7)

we can always decompose Yγ =
∏
i Y

ni
γi for a choice of generators of the charge lattice γ in which

γ =
∑

i niγi. It follows that one only needs to solve TBA equations for Yγi for i = 1, . . . , 4.

Moreover, in the case of local P1 × P1 the TBA system reduces further, to the computation

of two out of four of these variables. Recall from Section 2 that the charge lattice contains a

two-dimensional flavour sublattice Γf . The variables Yγf for γf ∈ Γf do not receive instanton

corrections in the TBA equations, since flavour charges have trivial pairing with all charges. We

then rotate to a basis (see (2.9))

γ1, γ2, γD0, γD2fD2b
, (4.8)
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that reflects the splitting into gauge and flavour charges

Γ = Γg ⊕ Γf . (4.9)

Then TBA equations for the BPS chamber described in Section 2.2 take the following form

YγD0(ε) = exp
ZγD0

ε
, YγD2fD2b

(ε) = exp
ZγD2fD2b

ε
, (4.10)

log Yγ1(ε) =
Zγ1
ε

+
2ε

πi

∑
k≥0

k

∫
`γ1+k(γ1+γ2)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ1+k(γ1+γ2)(ε

′)
]

− 2ε

πi

∑
k≥0

k

∫
`γ3+k(γ3+γ4)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ3+k(γ3+γ4)(ε

′)
]

+
2ε

πi

∑
k≥0

(k + 1)

∫
`γ2+k(γ1+γ2)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ2+k(γ1+γ2)(ε

′)
]

− 2ε

πi

∑
k≥0

(k + 1)

∫
`γ4+k(γ3+γ4)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ4+k(γ3+γ4)(ε

′)
]

+
2ε

πi

∑
k≥1

k

∫
R<0

dε′

(ε′)2 − (ε)2
log

[
1− Yγ1+γ2+kγD0

(ε′)

1− Yγ3+γ4+kγD0
(ε′)

]
,

(4.11)

log Yγ2(ε) =
Zγ2
ε

− 2ε

πi

∑
k≥0

(k + 1)

∫
`γ1+k(γ1+γ2)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ1+k(γ1+γ2)(ε

′)
]

+
2ε

πi

∑
k≥0

(k + 1)

∫
`γ3+k(γ3+γ4)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ3+k(γ3+γ4)(ε

′)
]

− 2ε

πi

∑
k≥0

k

∫
`γ2+k(γ1+γ2)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ2+k(γ1+γ2)(ε

′)
]

+
2ε

πi

∑
k≥0

k

∫
`γ4+k(γ3+γ4)

dε′

(ε′)2 − (ε)2
log
[
1 + Yγ4+k(γ3+γ4)(ε

′)
]

− 2ε

πi

∑
k≥1

k

∫
R<0

dε′

(ε′)2 − (ε)2
log

[
1− Yγ1+γ2+kγD0

(ε′)

1− Yγ3+γ4+kγD0
(ε′)

]
,

(4.12)

where we used the spectrum (2.15) and the intersection pairing (2.8). Note that the coupled

system (4.11)-(4.12) can be written entirely in terms of Yγ1 , Yγ2 by substitution

γ =
∑
i

niγi ⇒ Yγ = Y n1−n3
γ1 Y n2−n4

γ2 exp

{
1

ε

(
n3ZγD0 + (n4 − n3)ZγD2fD2b

)}
. (4.13)

In fact Yγ3 , Yγ4 can be recovered from solutions of (4.11)-(4.12) as follows

log Yγ3 = ε−1
(
ZγD0 − ZγD2fD2b

)
− log Yγ1 , log Yγ4 = ε−1 ZγD2fD2b

− log Yγ2 . (4.14)
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4.4 An exact solution on the fine-tuned stratum

TBA-type equations like (4.11)-(4.12) are generally difficult to solve in closed form. A basic

exception is the case of uncoupled BPS structures, characterized by the vanishing of (nearly) all

pairings 〈γ, γ′〉 = 0. Explicit solutions for systems of this kind have been studied for example

in [7, 19, 28, 58].

At first sight, solving TBA equations for local P1×P1 appears to be a formidable task, since

the equations are clearly coupled by the nontrivial pairing matrix (2.8). However something

remarkable happens in the fine-tuned stratum C1 of the collimation chamber, described by (2.11).

There is an exact Z2 symmetry acting on the BPS spectrum

γ1 ↔ γ3 , γ2 ↔ γ4 , (4.15)

both at the level of central charges (2.11) and at the level of BPS indices (2.15). This symmetry

is moreover preserved by the conformal limit of the TBA equations (4.5). In order to see this,

consider for example the equation for Yγ1

log Yγ1(ε)− Zγ1
ε

=
∑
k≥0

Iγ1+k(γ1+γ2) +
∑
k≥0

Iγ2+k(γ1+γ2)

+
∑
k≥0

Iγ3+k(γ3+γ4) +
∑
k≥0

Iγ4+k(γ3+γ4)

+
∑
k≥0

Iγ1+γ2+kγD0
+
∑
k≥0

Iγ3+γ4+kγD0

(4.16)

where we arranged the instanton corrections

Iγ′ = − ε

πi
Ω(γ′, u)〈γ1, γ

′〉
∫
`γ′

dε′

(ε′)2 − (ε)2
log(1− σ(γ′)Yγ′(ε

′)) (4.17)

into towers of ‘positive’ states of the BPS spectrum (2.15) of charge γ′ such that ReZγ′ > 0.

Next we claim that

Iγ1+k(γ1+γ2) + Iγ3+k(γ3+γ4) = 0

Iγ2+k(γ1+γ2) + Iγ4+k(γ3+γ4) = 0

Iγ1+γ2+kγD0
+ Iγ3+γ4+kγD0

= 0.

(4.18)

For illustration we prove the first identity. Observe that

〈γ1, γ1 + k(γ1 + γ2)〉 = k〈γ1, γ2〉 = −k〈γ1, γ4〉 = −〈γ1, γ3 + k(γ3 + γ4)〉 (4.19)

where we made use of 〈γ1, γ3〉 = 0 and other pairings in (2.8). Also observe that

Ω(γ1 + k(γ1 + γ2)) = Ω(γ3 + k(γ3 + γ4)) (4.20)

from (2.15). Finally observe that

Yγ1 = Yγ3 Yγ2 = Yγ4 (4.21)
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since each pair solves the same set of equations, up to the relabeling (4.15). Since this relabeling

is a symmetry of the parameters Zγ ,Ω(γ) that define TBA equations, it follows that the TBA

equations for Yγ1 and Yγ3 are identical, and this implies the above identity. Taken together, the

relations (4.19), (4.20) and (4.21) imply the first line of (4.18) by direct substitution into (4.17).

The second and third line follow from a similar reasoning.

We conclude that for stability condition (2.11) the coupled TBA equations of local P1 × P1

simplify dramatically, and have the exact solution

log Yγi ≡
Zγi
ε
, i = 1, . . . , 4 . (4.22)

Recalling that central charges can be determined exactly in terms of moduli on the fine-tuned

stratum, as given in (2.12) we may write down the quantum periods more explicitly as

Yγ1 = Yγ3 = e
π
Rε τ−

i
Rε , Yγ2 = Yγ4 = τ

i
Rε . (4.23)

A few comments are in order:

1. It is remarkable that TBA equations for a coupled BPS structure admit such a simple

solution. The key feature of this system that makes it possible to simplify TBA equations

in this way is the symmetry of the central charges in (2.11). This is the hallmark of

(fine-tuned strata in) collimation chambers defined in [42]. Similar arguments apply to

the other geometries studied in our earlier work, namely local Del Pezzo surfaces.

2. We observed at the end of the previous section that all quantum corrections to quantum

periods appeared to vanish in the limit κ → 0 with τ fixed, see equation (3.49). At the

same time, recall that the same condition on the complex moduli of the curve appeared

in the realization (2.16) of the fine-tuned stratum (2.11). Here we have shown that such

a configuration of central charges implies directly that solutions to TBA equations are

purely semiclassical. Comparing (4.23) with (3.49) provides evidence for the proposed

identification (4.1), by showing that each set of functions behaves semiclassically (in the

respective parameters ~, ε) in the same region of the moduli space. We propose to identify

ε =
~

2πR
↔ Πγ ≡ logXγ = log Yγ . (4.24)

3. The exact solution (4.23) to the TBA equations holds over the whole fine-tuned stratum

(2.11) of the collimation chamber. This corresponds to setting δ = 0 and varying Zγ1 .

As shown in Section 2.3, by taking the limit Zγ1 → i∞ leads to the degeneration into a

half-geometry. Therefore (4.23) also describes solutions to TBA equations arising from

BPS structures of OP1(−2) ⊕ OP1(0). Comparing with the quantum periods (3.29) and

(3.31) obtained in Section 3.4, we again find agreement with the identification (4.24).

4.5 A q-Painlevé appetizer

From the discussion in the previous subsection, the reader may get the impression that TBA

equations of local P1 × P1 become essentially trivial in the collimation chamber. This is not
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quite true. To arrive at the exact solution (4.23) we took two crucial steps: i) we worked in

the conformal limit, and in particular on the ‘Hitchin section’ in the sense of [60]; ii) we chose

stability conditions from the fine-tuned stratum (2.11) of the collimation chamber. These two

conditions underlie the Z2 symmetry (4.15) that led us to the simple exact solution (4.23).

However, relaxing either of these conditions immediately brings back all the complexity that is

characteristic of these systems of coupled integral equations.

Let us consider a deformation of the stability condition away from the fine-tuned stratum,

but still belonging to the collimation chamber. For a concrete example, see the classes of

stability conditions C(δ)
1 , C(ρ)

1 discussed in Section 2.2.3. The BPS spectrum (2.15) is organized

into ‘peacock patterns’ as in Figure 4. A consequence of this is the existence of an affine

Z-symmetry on the BPS spectrum

T (Zγ1+n(γ1+γ2)) = Zγ1+(n+1)(γ1+γ2) , T (Zγ2+n(γ1+γ2)) = Zγ1+(n−1)(γ1+γ2) ,

T (Zγ3+n(γ3+γ4)) = Zγ3+(n+1)(γ3+γ4) , T (Zγ4+n(γ3+γ4)) = Zγ3+(n−1)(γ3+γ4) .
(4.25)

Under this action, both the black and the red tower of states in the upper part of Figure 4

simply shift to the right by one unit. Towers at the bottom shift left by one unit. The states in

the middle stay put. The BPS spectrum is therefore invariant, in the sense of (2.26), under the

action of T on central charges followed by a relabeling of γ’s defined in (2.25).

This affine symmetry of the BPS spectrum leads to an interesting constraint for the solutions

of TBA equations. Indeed, in the conformal limit (and on the Hitchin section) the latter

are entirely determined by Ω(γ) and Zγ , the same data that defines the BPS spectrum. For

convenience let us denote a choice of stability condition in C̃1 by Zγ and let us denote by Zγ the

image under T , while the image under T−1 will be denoted by Zγ . We may rewrite (4.25) as

Zγ1 = Zγ1+(γ1+γ2), Zγ2 = Zγ2−(γ1+γ2) , (4.26)

and similarly for central charges involving γ3, γ4.

The two stability conditions defined by Zγ and Zγ are connected by the continuous path

Zγ(s) = (1− s)Zγ + sZγ , 0 ≤ s ≤ 1 . (4.27)

Along this path, the slopes of BPS rays `γ that define integration contours for TBA equations

(4.12)-(4.12) rotate. There are critical moments 0 < s(γ1), s(γ3) < 1 for which the rays `γ1 , `γ3
cross the phase of ε. At these moments, the values of Yγ′ with nonzero pairing with γ1 or γ3

jump. Recalling the pairing matrix (2.8) we obtain17

Y γ1 = Yγ1+(γ1+γ2) ·
(

1 + Yγ3
1 + Yγ1

)2

Y γ2 = Y−γ1 .

(4.28)

17Let us briefly comment on how this equation is derived. The TBA equations for stability conditions Zγ and

T (Zγ) are nearly identical. They involve the same BPS spectrum, thanks to the symmetry (2.26), therefore the

coefficients in the equations are the same. Naively this would lead to Y γ1 = Yγ1+(γ1+γ2). However there is one

difference between the equations before and after the T -action, which accounts for the correction in (4.28). Since

ε is kept fixed, the BPS rays of `γ1 and `γ1 ≡ `γ1+(γ1+γ2) lie on opposite sides of the Hε half-plane boundary.

This induces a shift Yγ2 → Yγ2

(
1+Yγ3
1+Yγ1

)2

on the right hand side.
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The affine Z-symmetry allows to deduce from the second equation that Yγ2 = Y −γ1 holds as

well. Then using the basic properties YγYγ′ = Yγ+γ′ and Y−γ = Y −1
γ , and combining with the

first equation gives

Y γ1Y γ1 =

(
Yγ1 + Yγ1+γ3

1 + Yγ1

)2

. (4.29)

Finally, recall from (2.9) that γ1 + γ3 is a pure-flavor charge. The TBA solution for Yγ1+γ3 can

be written exactly in terms of (4.10) as

Yγ1+γ3 = exp

(
1

ε
(ZγD0 − ZγD2f

D2b
)

)
= exp

(
2π

εR
− 2i

εR
log τ

)
. (4.30)

Using this we may rewrite the equation entirely in terms of Yγ1

Y γ1Y γ1 =

(
Yγ1 + e

2π
εR τ−

2i
εR

Yγ1 + 1

)2

. (4.31)

This has the form of the q-Painlevé III3 equation associated with the geometry of local P1×P1,

that we will see in more generality in the next section. Note that (4.23) is a particular solution,

we will return to this point in section 5.3.

We have therefore shown how the q-Painlevé equation can be derived by studying the TBA

equations defined by the BPS spectrum of the collimation chamber. A key property of the BPS

spectrum that enters this derivation is the Z-symmetry defined by a combination of T and a

suitable relabeling of charges. In the setting of q-Painlevé, this operation turns out to be related

to a discrete time evolution. There is also a geometric interpretation of this evolution in terms

of an affine translation symmetry within the Cremona group of local P1 × P1, this played an

important role in the study of BPS spectra and the definition of collimation chambers [42].

5 q-Painlevé cluster coordinates

The connection between q-Painlevé equations and the spectrum of BPS states of local P1 × P1

was observed in [26] and further studied in [42]. In this section we propose a relation between

the quantum periods (3.2), the solutions Yγ to the TBA equations (4.5), and solutions to q-

Painlevé equations, that allows us to write the quantum periods as a (convergent) series in the

Kähler parameters of local P1 × P1, exact in ~.

5.1 q-Painlevé equations and cluster integrable systems

There is a natural cluster algebra [51, 54] associated to the BPS quiver, with adjacency matrix

Bij specified by the intersection paring, e.g. (2.8) for the case of local P1 × P1. In the case of

purely four-dimensional theories, this connection to cluster algebras has been used to determine

the BPS spectrum in appropriate chambers through the so-called mutation method [10]. Recall

that a quiver is associated both to a choice of stability condition and of a half-plane of central

charges, determining a labelling of the quiver nodes by basis elements of the charge lattice.

When we vary the moduli it can happen that a central charge Zγk of the state γk ∈ Γ exits from

our choice of half-plane, while its antiparticle enters from the other side. Alternatively, this can
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happen if we rotate the choice of half-plane, leaving the moduli unchanged, an operation called

tilting of the half-plane. We then have a change of charge labels for our quiver nodes, described

by a (left) mutation of the quiver at the node k:

µk(γj) =

{
−γj , j = k,

γj + [Bkj ]+ γk, otherwise
, [Bkj ]+ := max (Bkj , 0) . (5.1)

µk(Bij) =

{
−Bij , i = k or j = k,

Bij +
Bik|Bkj |+Bkj |Bik|

2 , otherwise.
(5.2)

When there is a finite number of BPS states, it is possible to uncover the whole BPS spectrum by

performing a full tilting of the positive half-plane, since every state in the spectrum appears as a

node in the quiver at some point. This happens when there are only hypermultiplet states. Any

state of spin at least one-half18 is an accumulation ray for an infinite tower of hypermultiplet

states (recall that only spin-0 states appear as nodes of the quiver). However, with a bit of care

it is possible to generalize the mutation method to cover the cases with one limiting ray of spin

1/2 as well [11].

In addition to considering the charge vectors γi ∈ Γ, we will introduce the so-called X -

cluster variables: if {γi} is a basis for Γ and γ :=
∑
niγi ∈ Γ for some integers ni, then we

define Xγ as

Xγ =
∏
i

X nii ∈ C× , Xγi := Xi. (5.3)

The adjacency matrix of the quiver defines a Poisson bracket on the so-called X -cluster variety

[53], of which the Xi’s are local coordinates:

{Xi,Xj} = BijXiXj , (5.4)

while mutations and permutations take value in the algebra of Poisson maps of the discrete

integrable system. The mutations on the X -cluster variables are birational transformations

defined by

µk(Xj) =

X
−1
j , j = k,

Xj
(

1 + X sgnBjk
k

)Bjk
, otherwise.

(5.5)

The kernel of the adjacency matrix of the quiver is giving the Casimirs of the Poisson algebra,

one among which plays a distinguished role:

q :=
∏
i

Xi. (5.6)

By the map (5.3) and the identification (2.7), it is associated to the D0-brane charge vector.

From the data of a quiver together with its X -cluster variables, it is possible to introduce a

18By ‘spin’ we refer to the representation of the Clifford vacuum h of a short multiplet, under the little

group SO(3) in 4d. The BPS multiplet is obtained by tensoring with a universal half-hypermultiplet h ⊗ ρhh.

Hypermultiplets have h a spin-0 singlet, vectormultiplets are spin 1/2 doublets, and so on.
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Figure 7: BPS quiver for local P1 × P1.

discrete (nonautonomous, cluster) integrable system, whose deautonomization yields q-Painlevé

equations [22, 52, 63], with dynamical variables the Xi’s. The discrete time evolution of the

system is given by an appropriate sequence of mutations and permutations [22]. Note that

discontinuities (4.6) of solutions of TBA equations when Ω = 1 match exactly with mutations

of cluster variables X (5.19), that fully determine their time dependence19.

It follows then that solutions of the TBA equations must also satisfy the q-difference equa-

tions of the cluster integrable system, i.e. we identify

Xi ≡ Yγi
(4.1)
= Xγi . (5.7)

Since the collimation chamber is a highly fine-tuned chamber in moduli space, the corresponding

solution to the cluster integrable system will turn out to be of a very special kind. The rest of

the section will be devoted to making this statement precise in our example of local P1 × P1.

5.2 Local P1 × P1

The pairing (2.8) gives rise to the quiver in Figure 7, where to the i-th node is associated the

charge γi of the basis (2.7). The adjacency matrix of the quiver is the intersection pairing (2.8):

Bij := 〈γi, γj〉 =


0 −2 0 2

2 0 −2 0

0 2 0 −2

−2 0 2 0

 (5.8)

The spectrum (2.15) of local P1 × P1 in the collimation chamber is produced by acting on

the BPS charges with the affine translation on the A
(1)
1 root lattice [26], realized as

T = (1, 2)(3, 4)µ1µ3. (5.9)

19Analogous relations between 4d N = 2 gauge theories and discrete integrable systems were investigated in

[33, 35].
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Indeed, it was shown in [42] that this discrete flow has the interpretation of a tilting of the

positive half-plane in the collimation chamber described by (2.11).

In this case there are two Casimirs

t := X−1
2 X

−1
4 , q := X1X2X3X4 . (5.10)

Under the identifications (2.7), (5.3), the variable t is associated to D2bD2f , while q is associated

to the D0 brane.

q = X1 . . .X4 = YD0 = XD0, t = X−1
2 X

−1
4 = YD2bD2f

= XD2bD2f
. (5.11)

Since the Casimirs are associated to pure flavour charges, their expression in terms of central

charges is purely semiclassical. The first equation above allows us to relate the different defor-

mation parameters, namely the parameter q appearing in q-Painlevé, the parameter ~ appearing

in the WKB expansion, and the parameter ε in the TBA equations:

q = exp

{
1

ε
Zγ1+γ2+γ3+γ4

}
= e

4π2

~ = e
2π
Rε . (5.12)

The match between ~ and ε is the same as (4.24), found in the discussion of TBA equations.

The other Casimir is parametrized as

t = exp

{
−1

ε
Zγ2+γ4

}
. (5.13)

In the physical slice, where Zγi are given in terms of the moduli of the curve (2.2), the relation

(5.10) together with (2.10) gives

t = τ−
2i
Rε = τ−

4πi
~ . (5.14)

Note that, upon sending ~→ −i~, the identifications (5.12),(5.14) coincide with those appearing

in the TS/ST correspondence [27]. The action of the time evolution (5.9) on the Casimirs is20

T (t) = qt , T (q) = q , (5.15)

corresponding to the motion in the moduli space of stability conditions

Zγ2+γ4 → Zγ2+γ4 − ZD0, (5.16)

extending the Z-action on the fine-tuned stratum defined in (2.23), (2.25) to the whole collima-

tion chamber. On the physical slice, this reduces to

τ → eπiτ . (5.17)

The time evolution on the X -cluster variables and BPS charges reads

X1(qt) = X2(t)
(

1+X3(t)
1+X1(t)−1

)2
,

X2(qt) = X1(t)−1,

X3(qt) = X4(t)
(

1+X1(t)
1+X3(t)−1

)2
,

X4(qt) = X3(t)−1,


Tn(γ1) = γ1 + n(γ1 + γ2),

Tn(γ2) = γ2 − n(γ1 + γ2),

Tn(γ3) = γ3 + n(γ3 + γ4),

Tn(γ4) = γ4 − n(γ3 + γ4),

(5.18)

20Note that the Casimir t is not preserved by the time evolution. This is because q-Painlevé equations are

a nonautonomous discrete integrable system, and the discrete time steps define a foliation of the Casimir level

surfaces.

– 33 –



and the relabeling in the right column coincides precisely with the one from (2.25). Due to (5.10)

only two cluster variables are independent. We can choose them to be X1,X2, and write the

discrete time evolution as the following system of q-difference equations, known as the q-Painlevé

III3 equation of symmetry type A
(1)
1 ,

X1(qt)X1(q−1t) =

(
X1(t) + qt

X1(t) + 1

)2

, X2(qt) = X1(t)−1. (5.19)

Note that, using the expressions (5.12) and (5.14) for the Casimirs t, q, this equation agrees

exactly with the one obtained from TBA equations (4.31) upon identification of Y and X : it

can be easily checked that the time evolution T defined in Section 4.5 coincides with (5.9). The

realization in terms of X -cluster variables gives us a “dual” interpretation of the discrete time

flow21. While in terms of the γi it is natural to view it as a tilting of the positive half-plane, in

terms of the Xi it takes the form of a discrete motion in moduli space. The general solution to

(5.19) has the following form in terms of 5d supersymmetric partition function [22]:

X1 = (qt)1/2

(
ZD(u, s, q, qt)

s
1
2ZD(q

1
2u, s, q, qt)

)2

, X2 = t−
1
2

(
s

1
2ZD(q

1
2u, s, q, t)

ZD(u, s, q, t)

)2

,

X3 = (qt)1/2

(
s

1
2ZD(q

1
2u, s, q, qt)

ZD(u, s, q, qt)

)2

, X4 = t−
1
2

(
ZD(u, s, q, t)

s
1
2ZD(q

1
2u, s, q, t)

)2

. (5.20)

Here22

ZD(u, s, q, t) :=
∑
n∈Z

snZcl(uq
n, q, t)Zpert(uq

n, q)Zinst(uq
n, q, t) (5.21)

with Zcl, Zpert, Zinst being respectively the tree level, one-loop and instantonic contribution to

the 5d gauge theory partition function of pure SU(2) super Yang-Mills [65, 102] (here we use

the conventions of [26]) with vanishing Chern-Simons level:

Zcl(u, q, t) = e
log t

(
log u
log q

)2

= tσ
2
, Zpert(u, q) =

(
u2; q, q−1

)
∞
(
u−2; q, q−1

)
∞ , (5.22)

Zinst =
∞∑
~Y

t|
~Y |Z~Y , Z~Y =

2∏
i,j=1

1

NYi,Yj (ui/uj ; q, q
−1)

,

NY,Y ′(u, q1, q2) :=
∏
s∈Y

(
1− uq−aY ′ (s)−1

2 q
lY (s)
1

) ∏
s∈Y ′

(
1− uqaY (s)

2 q
−lY ′ (s)−1
1

)
.

(5.23)

Here we used the notation u := u1 = u−1
2 , σ := log u/ log q, and ~Y := (Y1, Y2) is a pair of

partitions, with aY (s), lY (s) being respectively the arm and leg length of the box s with respect

to the partition Y . From the gauge theory point of view, u is the electric variable, while s is its

21More precisely, the tilting is the square of the discrete time step (5.9): to produce the full spectrum with

the tilting one has to use both left and right mutations, while the discrete time evolution appears to be more

”fundamental”. See [26] for a discussion of this point.
22This expression for the tau function is not fully general, since there is a leftover ambiguity from the q-difference

equation, see [25, Section 3.2]. However this ambiguity does not affect the variables Xi therefore we will neglect

it in the following.
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dual magnetic variable. From the point of view of q-Painlevé dynamics, they parametrize the

choice of integration constants, and can be written as (assuming Reσ > 0 for simplicity, the

other case is analogous):

u2 = lim
t→0
X1(t)X2(t), s = lim

t→0
X1(t) (qt)−2σ

(
Zpert(uq

− 1
2 )

Zpert(u)

)2

, (5.24)

as can directly be verified from the t → 0 limit of (5.20). Together with equation (5.10), this

specifies all parameters appearing in the dual partition function expression (5.20) in terms of the

X -cluster variables and their asymptotics only. By the identification (2.7), u, s are associated

respectively to the D2f and a regularization of the D4 quantum period in the half-geometry

limit. This is consistent with the expectation from the expression in terms of Nekrasov-Okounkov

dual partition functions, where u is the exponentiated Coulomb modulus, while s is related to

its magnetic dual coordinate.

5.3 TBA solutions in the collimation chamber via q-Painlevé

We are now ready to find out what is the q-Painlevé solution describing the quantum periods

in the collimation chamber. Having already seen that the Yγ satisfy equation (5.19), we need

to identify the correct values for the integration constants u, s.

Let us start from the fine-tuned stratum of the collimation chamber, where everything is

parametrized in terms of the moduli of the curve (2.2). For concreteness, let us assume Im ~ < 0,

so that t → 0 corresponds to the τ → 0 half-geometry limit23. In fact, Zγ1+γ2 and is constant

in the fine-tuned stratum, so

u2 = lim
t→0

Yγ1Yγ2 = exp

{
2πR

~
lim
t→0

(Zγ1 + Zγ2)

}
(2.35)

= e
2π2

~ = q1/2. (5.25)

To find what is the value of s corresponding to the Hitchin section over the fine-tuned stratum,

we use (4.23), together with (5.12), (5.14), which say Yγ1 = (qt)
1
2 in this case:

s = lim
t→0

Yγ1 (qt)−2σ

(
Zpert(uq

− 1
2 )

Zpert(u)

)2

=

(
Zpert(q

− 1
4 )

Zpert(q
1
4 )

)2

= 1, (5.26)

where we also used the property Zpert(u) = Zpert(u
−1), following from its definition (5.22). This

is equivalent to σ = log u/ log q = 1
4 . The constraint u = q

1
4 stems for the restriction ZD2f = π

R ,

which is valid in the fine-tuned stratum. Comparing with the expression (2.35) for the central

charges in the half-geometry, we see that

u2 = q1/2 ←→ κ→ 0. (5.27)

These special values u = q1/4, s = 1 correspond to the so-called algebraic solution to q-Painlevé

III3 (5.20) [25, 27], which coincides with the solution to the TBA equations in the fine-tuned

stratum:

Yγ1
∣∣
u=q

1
4 ,s=1

= Yγ3
∣∣
u=q

1
4 ,s=1

= (qt)
1
2 = e

2π2

~ τ−
2πi
~ , (5.28)

23Due to (5.14) the t → 0 asymptotics of the q-Painlevé solution corresponds to either τ → ∞ or τ → 0,

depending on the sign of the imaginary part of ~.
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Yγ2
∣∣
u=q

1
4 ,s=1

= Yγ4
∣∣
u=q

1
4 ,s=1

= t−
1
2 = τ

2πi
~ . (5.29)

Since in the fine-tuned locus there are no quantum corrections, from the above cluster variables

we can directly read off the central charges by taking a logarithm. What we find reproduces

precisely the stability condition (2.11), thus providing a strong check for the correspondence

between q-Painlevé and solutions to the TBA equations.

Let us see what happens when we deform away from the fine-tuned stratum, staying in the

collimation chamber. The limit t → 0 in terms of stability data corresponds to sending all the

central charges to infinity, while keeping Zγ1+γ2 = ZγD2f
and ZD0 finite. We will take this limit

staying within the same family of stability conditions, so that the spectrum will not jump and

will still be described by the q-Painlevé equation as discussed in Section 4.5. Consider first the

family of stability conditions C(δ)
1 in (2.27), where Zγ3 = Zγ1 + δ, Zγ1+γ2 = π

R :

u2 = lim
t→0

Yγ1Yγ2 = e
2π2

~ (1+O(~)). (5.30)

Note that in general u may receive ~-corrections, since the generic stability condition C(δ)
1 might

not belong to the physical slice of the collimation chamber. The initial condition s is more

complicated. To understand how it is related to stability data, we perform an asymptotic

expansion in ε after the limit t→ 0 defining s:

s = lim
t→0

Yγ1 (qt)−2σ

(
Zpert(uq

− 1
2 )

Zpert(u)

)2

= lim
t→0

exp

{
Z1

ε
− R

2πε
(Z1 + Z3)(Z1 + Z2) +O(ε0)

}
× (nonpert. corrections in ε)

= e−
πR
~ δ(1+O(~)) × (nonpert. corrections in ε).

(5.31)

If we consider the family of stability conditions C(ρ)
1 , using Z3 = ρZ1 and (2.40), we have

u2 = lim
t→0

Yγ1Yγ2 = e
4π2

~(1+ρ) (1+O(~))
, (5.32)

while

s = lim
t→0

Yγ1 (qt)−2σ

(
Zpert(uq

− 1
2 )

Zpert(u)

)2

= lim
t→0

exp

{
Z1

ε
− R

2πε
(Z1 + Z3)(Z1 + Z2) +O(ε0)

}
× (nonpert. corrections in ε)

= eO(~0) × (nonpert. corrections in ~).

(5.33)

Note that C(δ)
1 correspond to deforming the condition u = q

1
4 by subleading orders of ε, while

s = 1 is deformed at leading order. The converse happens for C(ρ)
1 . Furthermore, since these are

both one-parameter deformations of the fine-tuned stratum, in both cases u, s are necessarily

not independent. This is likely a consequence of our restriction to the Hitchin section.

Outside the fine-tuned locus, but still within the collimation chamber, we have a highly

transcendental solution, as opposed to the algebraic one (5.28), (5.29) . For illustration purposes,
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the first few orders in a small t expansion (corresponding to the half-geometry) read (here we

assume that a = log u has a small positive real part):

X
1
2

2 =
s

1
2 ta

1− u2

(u2; q)∞
(u−2; q)∞

+
s−

1
2 t−a

1− u−2

(u−2; q)∞
(u2; q)∞

+

[
s

1
2 ta

1− u2

(u2; q)∞
(u−2; q)∞

Z1(qu2) +
s−

1
2 t−a

1− u−2

(u−2; q)∞
(u2; q)∞

Z1(q−1u2)− Z1(u2)

+
st2a

(1− qu2)(1− u2)

(u2; q)2
∞

(u−2; q)2
∞

+
s−1t−2a

(1− qu−2)(1− u−2)

(u−2; q)2
∞

(u2; q)2
∞

]
+O(t2),

(5.34)

where

Z1(u2) =
2qu2

(1− q)2(1− u2)2
(5.35)

To derive these equations, we expanded the general solution (5.20) in t and used the following

properties:

Zinst(u, q, t) = 1 + t
2

(1− q−1) (1− q) (1− u−2) (1− u2)
+O(t2), (5.36)

(
qz; q, q−1

)
∞

(z; q, q−1)∞
= (qz; q)∞ ,

(qz; q)∞
(z; q)∞

=
1

1− z
. (5.37)

Remark 3. There is a manifest difference between the analytic behaviour in ~ of the TBA

solution Yγ and the q-dependence of the q-Painlevé solution (5.20). While the Yγ’s are piece-

wise analytic asymptotic series in ~, the Xi’s appear to be (almost) single-valued functions in

q = e
4π2

~ . This is because Nekrasov functions are particular resummations of topological string

partition functions [47], and different resummations will be related by Stokes phenomena. The

nonperturbative nature of the q-Painlevé solutions is already manifest in the ~-asymptotics of

their initial conditions, as in (5.31), (5.33).

WKB vs TBA/q-Painlevé: a remark on physical stability conditions.

A final remark is in order: we observed in Section 3.6 that for κ→ 0 with finite τ , the quantum

corrections to WKB differentials are exact 1-forms. This leads to semiclassically exact expres-

sions for the quantum WKB periods. A similar conclusion was derived from the viewpoint of

TBA equations, by noting that in this limit the classical periods lie on the fine-tuned stratum

(see Appendix A), where TBA equations have exact semiclassical solutions (4.23).

While it is certainly true that the algebraic solution belongs to the physical slice corre-

sponding to the mirror curve (2.2), at the moment we don’t know whether this is true for the

solutions corresponding to the families of stability conditions C(δ)
1 , C(ρ)

1 . Nonetheless, it remains

true that q-Painlevé cluster variables provide bona fide solutions to the TBA equations (4.5),

and Bridgeland-type Riemann-Hilbert problems [30], in the somewhat more general context of

the moduli space of stability conditions. This follows from the direct connection between TBA

and q-Painlevé derived in Section 4.5. On the other hand, for stability conditions belonging to

the physical slice, the limit t→ 0 corresponds to a half-geometry. It is then plausible that u and
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s can be computed exactly, since the BPS structure becomes uncoupled. For u2 we can readily

see this: recalling that γ1 + γ2 = γD2f we still have the exact expression obtained in (3.29)

u = lim
t→0

Yγ1+γ2 = e
ΠγD2f = Q−

2πi
~ (5.38)

where Q is a function of κ obtained by inverting (2.38). From (2.7) we see that γ1 involves

the noncompact cycle γD4, and its computation requires more care. Possible strategies for its

evaluation include the approaches of [28, 104] and [12]. In particular, for the q-Painlevé solution

to be physical, the central charges ZD2f , ZD4 must be related by special geometry relations.

6 Conclusions and outlook

In this paper we studied a correspondence between TBA equations defined by BPS states of

5d supersymmetric Yang-Mills theory and q-Painlevé equations. We showed that the moduli

space of the 5d theory contains a fine-tuned stratum where the BPS spectrum is extremely

simple. Using this spectrum to formulate the TBA equations, we explicitly derived the q-

Painlevé equations from them. For the families of stability conditions C(δ)
1 , C(ρ)

1 we argued

that exact expressions for the TBA solutions Yγ are given in terms of Nekrasov-Okounkov dual

partition functions. In the limit δ, ρ→ 0 the stability conditions reduce to that of the fine-tuned

stratum C(0)
1 , and the TBA solutions simplify significantly, coinciding with the known algebraic

solutions of q-Painlevé.

Our work leaves several open questions and raises some directions for future work:

Cluster coordinates in 4d Kaluza-Klein theories and instanton counting. The rela-

tions between cluster variables Xi = Yγi and the gauge theory parameters (u, s) are somewhat

reminiscent of the change of variables from Fock-Goncharov to Fenchel-Nielsen that played a

role in the identification of tau functions as sections of a certain line bundle over the moduli

space of quantum curves in [39] (see in particular equations (5.24)-(5.25) of the reference). This

analogy may deserve further study. On the one hand, the theory we study is precisely the

KK uplift of 4d SU(2) Yang-Mills studied in [39]. More to the point, the asymptotic limit

t → 0 corresponds to a half-geometry where τ → 0, which is a weak-coupling limit of the 5d

gauge theory. As shown in [17, Figure 21], precisely in this limit (and for a suitable choice of

phase) the exponential network becomes of ‘Fenchel-Nielsen type’ in a suitable sense [73–75]. By

analogy with the role of spectral coordinates defined by spectral networks [59] in the definition

of appropriate decompositions of tau functions in terms of Nekrasov-Okounkov dual partition

functions [39, 40], this suggest that a similar role may be played by coordinate systems defined

by (non-)Abelianization for exponential networks [15].

Exact solutions to coupled TBA equations. It would be interesting to study continuations

of the exact solution (4.23), which holds for moduli (2.11), to other stability conditions beyond

(2.27), (2.32). Another possibility would be to rely on differential equations obeyed by Yγ
discussed in [58], presumably reinterpreted in connection to the q-Painlevé equations themselves.

In the same vein, it would also be interesting to deform away from the Hitchin section by turning
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on generic θγ 6= 0. It would also be interesting to see if the explicit solution (5.20) can be used

to compute the Hyperkähler metric on the moduli space, that was the original motivation of

[58]. The main complication arises in taking the ~→ 0 limit of the Xi, which is nontrivial due

to the ~-dependence of q, t in (5.12), (5.14).

In fact, q-Painlevé solutions contain slightly more information. Even though the q-Painlevé

equation itself was obtained from the behavior of the Yγ ’s, the solution (5.20) contains nonper-

turbative corrections that would not appear if we simply solved the TBA order by order in ~:

in this sense, the q-Painlevé solution in terms of Nekrasov-Okounkov dual partition functions

is the resummation (in ~) of the TBA solution. This can be seen for example from (5.34):

the expression for X2 contains an infinite number of nonperturbative terms, with a full series

of perturbative contributions attached to each one. In fact, the q-Painlevé initial conditions

themselves must depend on ~ in a nontrivial way determined by the TBA equations. From

a resurgence point of view, the presence of subleading trans-series sectors is necessary, to re-

cover the KS formula (4.6) as the Stokes jumps of the solution, and so must naturally appear

in the solution of q-Painlevé (see [66, 67, 75] for a discussion of resurgence and BPS states in

four-dimensional pure SU(2) SYM, or e.g. [14] for a general review on resurgent asymptotics).

Beyond local P1×P1. The analysis carried out in this work relied heavily on explicit knowl-

edge of the BPS spectrum of the 5d gauge theory in the collimation chamber. The same

information is available for gauge theories with matter engineered by certain local Del Pezzo

surfaces [42]. It would be interesting to extend our analysis to these models. We expect that this

should lead to a correspondence between their TBA equations and the solutions of q-Painlevé

of “symmetry type” up to E
(1)
5 , corresponding to dP5 [22, 25, 26, 84, 97]. In fact, the discussion

can also be extended beyond the del Pezzo case, as such expressions are also available for some

higher-rank geometries, such as those engineering SU(N) gauge theories [23].

For rank-1 geometries, beyond local dP5 no Nekrasov-Okounkov dual partition functions

are available as there is no low-energy gauge theory interpretation. Nonetheless, the q-Painlevé

tau functions obey bilinear equations that provide an efficient way to compute the solution

order by order in the flavor parameters, that should be related to blowup equations obeyed by

the Topological String partition function [24, 79]. Furthermore, taking the four-dimensional

limits proposed in [26] on the cluster coordinates would provide exact solutions for the quantum

periods also in the purely four-dimensional case.

Collimation chambers and algebraic solutions Algebraic solutions of q-Painlevé equa-

tions are the invariant solutions with respect to the non-affine part of the corresponding Weyl

group (in the case studied in this paper, W (A
(1)
1 )): this is the analytic counterpart of the fine-

tuning (2.11) of central charges characterizing these loci in the moduli space, as defined in [42].

It is then quite reasonable to assume that the link between algebraic solutions and fine-tuned

collimation chambers can be extended well beyond the case of local P1 × P1:

Conjecture 1. There exist highly fine-tuned regions in the physical moduli space of five-dimensional

theories with underlying affine root lattices where collimation chambers are physically realized,

and they are classified by fixed points of the corresponding Weyl group. The quantum periods are
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Figure 8: Sakai’s Classification of discrete Painlevé equations by symmetry type

semi-classically exact, and given by algebraic solutions of the corresponding cluster integrable

system.
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A Geometry and BPS states on the fine-tuned stratum

In this Appendix we explore the geometry of the curve (2.2) in the limit κ → 0 with τ finite.

In this limit the curve becomes

τ(ex + e−x) + ey + e−y = 0 . (A.1)

As a double-covering of C∗ with coordinate ex, the curve is two-sheeteted and ramified at four

branch points

bσ1,σ2 : ex =
σ1 + σ2

√
1− τ2

τ
(A.2)

where σ1, σ2 are signs ±1 chosen independently.

Note that, in addition to the obvious symmetries

x→ −x , y → −y , (A.3)
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of the generic curve (2.2), at κ = 0 there is an additional symmetry generated by

(x→ x± iπ, y → y ± iπ) (A.4)

with independent choices of signs.

A trivialization of Σ, including logarithmic branch cuts for λ ∼ y dx, is shown in Figure 9.

This choice of trivialization is obtained from [17, Figure 4].24

Figure 9: Trivialization of the curve (2.17). Orange points are square-root branch points,

wavy lines are the corresponding branch cuts. Dotted lines are logarithmic branch cuts for the

Seiberg-Witten one-form λ.

The cycle γ1 runs between b−,+ and b−,− while γ3 runs between b+,+ and b+,− as shown

in Figure 10 (this is for |τ | > 1, an analogous discussion can be carried out for |τ | < 1).

Note that the symmetry (A.4) exchanges not only the branch points of these cycles σi → −σi,
but also exchanges the cycles themselves γ1 ↔ γ3. On the other hand, the symmetry does

not leave the differential invariant by shifts to λ = y dx → (y + iπ) dx. However, note that∮
γ1
λ =

∫ b−+

b−−
(λ+ − λ−), where λ± = y±(x) dx are the local values of the Seriberg-Witten

differential on the two sheets of Σ. It follows that the shift of the differential cancels, because

the cycle is anti-invariant under the deck involution of Σ. This implies that Zγ1 = Zγ3 . A

similar argument shows that Zγ2 = Zγ4 .

24The reference studies the curve (2.2) at Qb = −1, Qf = 1, which are related to τ, κ by τ = Qb/Qf and

κ = Q−1
f . Parameterizing Qb = −1 + 2iρ and Qf = 1 + iρ and varying ρ from 0 to +∞, one may observe that

the left-most branch point in the reference becomes the bottom-right branch point in our picture, the second

left-most branch point becomes the top-right one, the top branch point becomes the top-left one and the bottom

branch point becomes the bottom-left one. Following the motion of the branch points carefully, one can also

check that the BPS saddles pi in [17, Figure 5] turn into the BPS saddles shown here in Figure 10.
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Recalling that Zγ2+γ4 = 2i
R log τ due to (2.9)-(2.10), we have thus shown that

Zγ1 = Zγ3 =
π

R
− i

R
log τ , Zγ2 = Zγ4 =

i

R
log τ . (A.5)

The same result can be obtained if we work with |τ | < 1. These two choices correspond to the

chambers described in (2.22). This analysis shows that the fine-tuned stratum (2.11) is realized

in the physical moduli space of the mirror curve Σ, precisely in the limit (2.16).

Figure 10: Exponential networks of the curve (2.17) with τ = 2, at the phase argZγ1 (left) and

argZγ2 (right). Only primary walls are shown, and saddles are highlighted in red. The labels γi
denote the charges (roughly speaking, homology classes) of the cycles obtained by lifting each

saddle to Σ. They correspond to (2.7) and match with conventions from [17]

B Mirror curve degeneration to half-geometry

In this appendix we describe how to take the limit τ → 0 on the curve (2.2) to obtain (2.37).

We introduce the rescaled coordinate

ex̃ = τex (B.1)

and take the limit τ → 0, x→∞ keeping ex̃ finite. This gives the curve for the half-geometry

(ey + e−y) + ex̃ − κ = 0 . (B.2)

For later convenience we rewrite curve in new coordinates, by introducing eỹ = ey/ey+ with

ey± = 1±
√

1−4κ−2

2κ−1 = (ey+)±1. This gives the curve

1− ex̃ − (κ−1ey+)eỹ − (κ−1e−y+)e−ỹ = 0 (B.3)

Finally we replace the complex modulus κ−1 by Q via

κ =
1 +Q

Q1/2
(B.4)
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and rescale

ex
′

= ex̃(1 +Q) ey
′

= eỹ , (B.5)

to obtain a curve described by

(1 +Q)− ex′ −Qe−y′ − ey′ = 0 . (B.6)

C WKB periods of first order ~-difference equations

In the main text we discussed in some detail the computation of compact quantum periods

for the half-geometry. Here we collect analogous results for two more geometries: C3 and the

resolved conifold.

C3

The mirror curve for C3 can be presented as follows

FC3(ex, ey) = 1− ex − ey = 0, (C.1)

in a suitable choice of framing [3, 4]. The quantum curve is obtained in this case by simply

replacing x→ x̂ and y → ŷ, leading to the ~-difference equation

ψ(x+ ~) = (1− ex)ψ(x) ⇔ R(x; ~) = 1− ex . (C.2)

A solution is then obtained by direct application of (3.16)

ψ(x) =
∞∏
n=0

1

R(x+ n~; ~)
=
∞∏
n=0

1

1− ex+n~ =
1

(ex; e~)∞
, (C.3)

where we assumed Re ~ < 0, and chose the normalization

ψ0(ex) = 1 , (C.4)

conventional in open topological string theory [3, 4]. Other normalizatons involving overall

multiplication by ~-periodic factors may also be considered, depending on the desired behavior

at x→ −∞. A prescription based on Borel resummation of the asymptotic series expansion of

(C.3) was discussed in [62, 68].

We next move on to the computation of quantum periods of the difference equation (C.2).

The BPS charge lattice is one-dimensional, and the corresponding generator is the mirror cycle

to a D0 brane. Following [15, 46], we can describe this cycle as follows. We observe that (C.1)

describes a three-punctured sphere with punctures at (ex, ey) = (0, 1), (1, 0), (∞,∞). Denoting

by Cz a based loop around the puncture at ex = z oriented counterclockwise, the three based

loops around punctures obey C∞ ◦ C1 ◦ C0 = 1, where composition is from the left. Then the

BPS cycle is

γD0 = C−1
1 ◦ C−1

0 ◦ C−1
∞ = C−1

1 ◦ C−1
0 ◦ C1 ◦ C0 . (C.5)

The corresponding quantum period is then obtained by integration of the quantum one-form

logR(x; ~) as in (3.14). Since the primitive is

1

~

∫ x

logR(ex) dy = −1

~
Li2(ex) (C.6)
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the quantum period can be deduced from the monodromy of the dilogarithm function. Recall

that Li2 has the following monodromy properties around paths in the z-plane

Li2(z)→ Li2(z)− 2πi log z , around C1

Li2(z)→ Li2(z) , log z → log z + 2πi , around C0

(C.7)

The monodromy along γD0 then adds up as follows

Li2(ex)
C0→Li2(ex)

C1→Li2(ex)− 2πi log ex

C−1
0→ Li2(ex)− 2πi (log ex − 2πi)

C−1
1→ Li2(ex) + 2πi log ex − 2πi (log ex − 2πi)

= Li2(ex)− 4π2

(C.8)

so that the quantum period is

ΠγD0(~) =
4π2

~
=

2πR

~
ZγD0 , (C.9)

where we refer to the D0 central charge given in (2.39). In the case of C3, and more generally in

toric geometries without compact four-cycles, the higher order corrections in (3.11) are absent.

Resolved conifold

The mirror curve for the conifold in a suitable choice of framing is

Fconifold(ex, ey) = 1− ey − ex +Qex+y = 0 . (C.10)

This curve is a four-punctured sphere with punctures at (ex, ey) = (0, 1), (1, 0), (Q−1,∞), (∞, Q−1).

We work in the phase where |Q| < 1, so that the C3 mirror curve (C.1) is recovered by taking

the limit Q→ 0 in (C.10). The corresponding ~-difference equation arising from quantization is

(1−Qex)ψ(x+ ~)− (1− ex)ψ(x) = 0 ⇔ R(x; ~) =
1− ex

1−Qex
. (C.11)

Again we can write down a solution directly from (3.16)

ψ(x) =

∞∏
n=0

1

R(x+ n~; ~)
=

∞∏
n=0

1−Qex+n~

1− ex+n~ =
(Qex; e~)∞
(ex; e~)∞

, (C.12)

where we assumed Re ~ < 0, and chose the normalization (C.4). Other choices of normalizaton,

based on Borel resummation of the asymptotic series expansion of (C.12) are discussed in [12].

The BPS charge lattice is now two-dimensional, with generators corresponding to the D2

and D2 D0 mirror cycles on Σ [16, 46]. Denoting by Cz a counterclockwise loop around the

puncture at ex = z, the D2 cycle is

γD2 = C−1
0 ◦ C−1

∞ = C−1
0 ◦ CQ−1 ◦ C1 ◦ C0 (C.13)
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as shown in Figure 11 (also see [16, Figure 2]). The quantum period is obtained by integration

of the quantum one-form logR(x; ~) as in (3.14). Since the primitive is

1

~

∫ y

logR(ex) dy =
1

~

[
− Li2(ex) + Li2(Qex)

]
(C.14)

we may obtain the quantum period from the monodromy of the dilogarithm using (C.7)

−Li2(ex) + Li2(Qex)
C0→−Li2(ex) + Li2(Qex)

C1→−Li2(ex) + 2πi log ex + Li2(Qex)

CQ−1

→ −Li2(ex) + 2πi log ex + Li2(Qex)− 2πi log(Qex)

C−1
0→ −Li2(ex) + 2πi (log ex + 2πi) + Li2(Qex)− 2πi (log(Qex) + 2πi)

= −Li2(ex) + Li2(Qex)− 2πi logQ .

(C.15)

The D2 quantum period is then

ΠγD2 = −2πi

~
logQ =

2πR

~
ZγD2 . (C.16)

Figure 11: The cycle γD2 on the mirror curve of the conifold, shown as a covering over the x

plane. Labels of punctures denote the values of ex = 0, 1, Q−1,∞ respectively.

To complete the basis of quantum periods we need a second, linearly independent, cycle

which we take to be γD0. The D0 cycle may be obtained by noting that (C.10) is a pair of

trinions glued along a tube, and by recalling that each trinion is a copy of the mirror curve of

C3. In the phase we are studying, characterized by |Q| < 1 it is natural to decompose (C.10)

into two trinions glued by a long thin neck separating x = 0, 1 from x = Q−1,∞. We then

embed the D0 cycle (C.5) into, say, the left trinion

γD0 = C−1
1 ◦ C−1

0 ◦ C−1
neck = C−1

1 ◦ C−1
0 ◦ C1 ◦ C0 . (C.17)
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To really justify our identification of the D0 charge, one should prove that there is a calibrated

cycle in this homology class. This is indeed the case, as shown in [16, Figure 2]. The computation

of the D0 quantum period proceeds in a similar way as for C3, by studying monodromies of

(C.14). The result is of course again (C.9).
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