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Abstract

We point out that dark matter which is produced non-adiabatically in a phase transition (PT)
with fast bubble walls receives a boost in velocity which leads to long free-streaming lengths.
We find that this could be observed via the suppressed matter power spectrum for dark
matter masses around 108 − 109 GeV and energy scales of the PT around 102 − 103 GeV.
The PT should take place at the border of the supercooled regime, i.e. approximately when
the Universe becomes vacuum dominated. This work offers novel physics goals for galaxy
surveys, Lyman-α, stellar stream, lensing, and 21-cm observations, and connects these to the
gravitational waves from such phase transitions, and more speculatively to possible telescope
signals of heavy dark matter decay.
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1 Introduction

Two major constraints on the properties of dark matter (DM) come from observations of the CMB
and the large scale structure of matter. The former is a powerful probe of the energy content of
the Universe, precisely constraining the matter content of baryons and dark matter, along with the
other ΛCDM parameters [1]. Observations of the matter power spectrum, on the other hand, while
helping pin down the DM density, also provide strong constraints on the DM velocity dispersion.

The matter power spectrum has been measured at large scales through galaxy surveys [2],
at intermediate scales through weak lensing observations [3], and at the smallest scales through
Lyman-α forest data [4–7], Milky Way satellite [8], stellar stream [9], and strong lensing observa-
tions [10–13]. The reported limits on a small scale cut in the spectrum are typically given in the
context of standard warm DM, i.e. two component fermionic DM that freezes out while relativis-
tic, and are in the range mWDM ≳ (2 − 7) keV [4–13]. Future observations of the 21-cm signal
could push this constraint to mWDM ≳ 15 keV [14]. The mWDM limit is not applicable model
independently. When considering alternative models, one can instead calculate and compare with
the free streaming length or velocity dispersion. Taking a fiducial value, mWDM ≳ 5 keV, corre-
sponds to DM free streaming length at matter-radiation equality of λ(teq) ≈ 0.1 Mpc, or a mean
velocity [15–17]

v(teq) =

(
4

11

94 eV

mWDM

ΩDMh
2

)1/3 3.15T eq
γ

mWDM

≃ 5× 10−5

(
5 keV

mWDM

)4/3

, (1)

where T eq
γ ≃ 0.8 eV is the photon temperature at matter-radiation equality. It is possible to have

DM with a non-negligible v(teq), which we will generically refer to as non-cold DM (NCDM),
with a mass much larger than 5 keV. Known examples are DM coming from the evaporation of
priomordial black holes [18–21], freeze-in [22–24], decay of heavier particles [22,24,25], or with
large interactions [26,27]. The effect of early phase transitions (PTs) directly on the late time DM
velocity, however, through the kick the DM particles receive at the phase boundary, has so far not
been considered. For alternative mechanisms where PTs modify the matter power spectrum, but
at (much) lower temperatures, see [28–36].

Particles which gain a mass when crossing the bubble wall separating the high and low temper-
ature phases, also obtain a boost in the original plasma (eventual CMB) frame [37]. In principle,
if the DM interactions with the thermal bath following the PT are sufficiently weak, the DM will
not return to kinetic equilibrium. In this way, the momentum gained at the time of the PT, suitably
redshifted, can lead to NCDM. In the case of DM simply gaining a mass during the PT, such as
in [38–40], however, the velocity dispersion is negligible compared to current limit even if the PT
is supercooled. The reason is the presence of irreducible interactions with the scalar driving the
PT, which means the DM will not retain a large enough velocity to approach free streaming lim-
its. Similar conclusions hold in models of supercooled composite DM; although initially highly
boosted, theoretically unavoidable interactions lead to deep-inelastic scatterings of the DM with
the dilaton field following the PT, which would also bring the DM back into kinetic equilibrium
in this case [41, 42].

We therefore consider the DM production scenario introduced by Azatov, Vanvlasselaer, and
Yin; during a PT in which a scalar gains a VEV vϕ, DM with mass mDM ≫ vϕ is produced non-
adiabatically across the bubble wall [43–45]. The DM is produced with a large Lorentz factor
in the original plasma frame, which when redshifted leads to a non-negligible v(teq). The cru-
cial qualitative difference, in this case, is that mDM may be super-heavy, with mass sufficiently
above the temperature of the bath following the PT, so that interactions with the scalar ϕ are out-
of-equilibrium. Note in this scenario, we must assume a reheating temperature after the usual
cosmological inflation, T ≪ mDM, so that the DM begins with effectively zero abundance in the
initial radiation dominated phase, as we want the majority of our DM to be produced with a kick
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during the PT. Similarly the inflaton should not decay significantly into DM particles. (Alterna-
tively, we may imagine some non-standard expansion history which dilutes DM prior to the epoch
of the PT.)

Finally, we remind the reader, that in this NCDM picture Neff limits at BBN are weaker than
limits from structures because DM is far less abundant at BBN times compared to a standard hot
thermal relic.

2 Phase Transition

We consider a scalar field ϕ, real or complex, which gains a VEV vϕ during an early Universe PT.
We assume an initially radiation dominated Universe following standard cosmological inflation.
Bubbles nucleate at some temperature Tn, expand, collide, and convert the Universe to the new
phase. Two qualitatively different expansion histories present themselves as possibilities. If bub-
bles nucleate early enough, the Universe remains radiation dominated throughout this epoch. If
instead, nucleation is delayed, the radiation density may drop below the false vacuum density and
the Universe enters an additional inflationary phase at temperature defined by

g∗π
2

30
T 4
infl ≡ Λvac ≡ cvacv

4
ϕ. (2)

Here g∗ are the effective radiation degrees-of-freedom and cvac is a dimensionless, model depen-
dent, number parametrizing the vacuum energy difference. For brevity and simplicity, we assume
rapid scalar condensate decay following the PT, see App. A for discussion on how this can be
realised. The temperature of the radiation bath just after the PT is therefore given by

TRH ≃ Max[Tn, Tinfl]. (3)

The leading order pressure from the change in particle masses across the bubble wall, in the ultra-
relativistic ballistic regime, is given by [37, 46]

PLO ≃
∑
a

∆(m2
a)

∫
d3pf eqa

(2π)32Ea
≡ ga

v2ϕT
2
n

24
, (4)

where ∆(m2
a) denotes the mass squared difference between the two phases, f eqa is the equilibrium

number density in the symmetric phase, and ga is a convenient parametrization of the effective
degress-of-freedom gaining a mass of order vϕ. For sufficiently small Tn, one has PLO < Λvac,
and an effectively run-away wall. In this case, the Lorentz factor of the wall grows linearly with
distance and at collision is γwp ≃ Rcol/(3Rn) [47], where Rn and Rcol are the bubble radii at
nucleation and collision respectively. The bubbles nucleate with a typical size Rn ≡ Abub/Tn
with Abub ∼ 1 − 10. At collision, Rcol ≃ (8π)1/3vw/(βHH) where βH is the inverse timescale
of the transition normalised to Hubble,H ∝ T 2

RH/MPl, where we defineMPl as the reduced Planck
mass, and vw ≃ 1 is the wall velocity. Typical values for supercooled PTs are βH ∼ 10. Close
to bubble collision, when the majority of the volume is being converted to the true vacuum, the
bubble wall Lorentz factor as measured in the plasma frame is therefore given by

γwp ≃ 2
√
10TnMPl

π2/3AbubβHg
1/2
∗ T 2

RH

. (5)

The emission of soft quanta with phase dependent masses induces additional pressure [46, 47]. If
no gauge boson obtains a mass at the PT, then the resulting pressure is subleading with respect to
the LO one of Eq. (4), and Eq. (5) for the Lorentz factor is valid. We limit our discussion to this
case in the rest of the paper.
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φ

X

X

wall 〈φ〉 = 0〈φ〉 ≃ vφ

Figure 1: When light ϕ quanta enter the bubble of new phase, they can produceX+X DM pairs,
which are highly boosted in the original plasma frame.

3 Non-Adiabatically Produced DM

We now introduce a real scalar DM candidate, with non-negligible DM mass in the symmetric
phase, together with an interaction with the scalar field gaining a VEV

L ⊃ −1

2
m2

DMX
2 − 1

4
λϕ2X2. (6)

For concreteness, we phrase our discussion assuming ϕ is a real scalar. To avoid problems with
domain walls when ϕ gains a VEV, the symmetry ϕ → −ϕ should be explicitly broken by other
terms, that can be kept small enough to not influence the rest of this paper. Our findings will also
largely be valid for a complex ϕ, as we will comment on later.

We assume zero initial DM abundance in the symmetric phase. This requires negligible pro-
duction via inflaton decay, and a Boltzmann suppression of thermal processes which would gener-
ate a DM population following standard cosmological inflation, which can be achieved provided
mDM/T is always large enough, e.g. mDM/T ≳ O(30) to remain under the observed abundance
via freeze-in. Alternatively, there may be some additional dilution mechanism in play at high T .
Then the dominant DM relic abundance may be produced non-adiabatically when light ϕ quanta
enter the bubbles, as we consider here. The probability of DM pair production reads [43–45]1

P (ϕ→ X +X) =
λ2v2ϕ

192π2m2
DM

, (7)

assuming the Lorentz factor, introduced in Eq. (5), satisfies

γwp ≳
Lwm

2
DM

Tn
≈ m2

DM√
cvacvϕTn

, (8)

where we have approximated the wall width as the inverse of the scalar mass Lw ≈ 1/mϕ ≈
1/(

√
cvacvϕ) (see e.g. [41, 47]). The above is known as the anti-adiabatic regime, for smaller γwp

there is a further sharp suppression of the production probability. The DM abundance normalised
to entropy, in the anti-adiabatic regime, is then given by

YDM =
45ζ(3)

2π4g∗s

λ2v2ϕ
96π2m2

DM

(
Tn
TRH

)3

, (9)

where g∗s are the entropic degrees of freedom. Here the first factor represents the number density
of ϕ quanta normalized to entropy (we have assumed an approximately massless ϕ in the symmet-
ric phase), the second is the X +X production probability multiplied by two as the DM is being

1Taking into account the different normalizations of the coupling, we find a factor of two smaller production proba-
bility than [45, Eq. (58)].
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pair produced, and the third is an entropy dilution factor. In general, there are up to two choices
of TRH which will match the observed value, YDMmDM = 0.43 eV. One corresponds to the PT
occuring in the radiation dominated regime, Tn > Tinfl, and the other in the supercooled vacuum
dominated regime, Tn < Tinfl.

Note that, as first worked out in [43], pair production induces only a small additional contribu-
tion to the pressure, Eq. (4), approximately given by ga → ga+λ

2 log(1+γwpTmϕ/m
2
DM)/(32π

2)
which leaves our estimate of the bulk bubble properties during expansion effectively unchanged.
Locally, the momentum exchange will distort the wall, although to what extent this would, e.g., mod-
ify the effective wall tension is an open question.2 (We do not attempt to solve scalar equations of
motion in the presence of DM pair production in the current work.)

4 Non-Cold Heavy DM

We must also determine v(teq). Consider the kinematics of light quanta entering the bubble and
pair producing DM. The situation is illustrated in Fig. 1. Going into the time independent wall
frame, which will allow us to use energy conservation across the wall, an incoming ϕ quantum
has energy E ∼ γwpTn. To gain intuition, consider the special case in which the outgoing X
quanta share the incoming energy equally. Then, in the wall frame, the DM Lorentz factor is
γxw ∼ γwpTn/2mDM. It is a good and conservative approximation to ignore the momentum
transverse to the direction of the wall velocity. Then the DM Lorentz factor in the plasma frame
is γxp ∼ γwp/2γxw ≈ mDM/Tn. (A more precise derivation is given in App. B.) The initial DM
momentum is therefore pDM(TRH) ≃ m2

DM/Tn. Accordingly, the redshifted velocity at matter-
radiation equality is given by

v(teq) ≃
(
g∗s(Teq)

g∗s(TRH)

)1/3 T eq
γ mDM

TRHTn
, (10)

where g∗s(Teq) ≃ 3.91.
Finally, we need to ensure that scatterings with the thermal bath, namely X + ϕ → X + ϕ

interactions, do not spoil our estimate of the final DM velocity. The strictest condition comes from
the four-point vertex in Eq. (6). A simple criterion is found by demanding the scattering rate,
weighted by the fractional momentum loss, be below Hubble for a point in parameter space to be
considered viable

nϕσ(Xϕ→ Xϕ)vMøl
δpDM

pDM

= nϕ
λ2pCM

8πŝ3/2
< H, (11)

where
√
ŝ is the centre-of-mass energy, pCM is the centre-of-mass momentum, and for this interac-

tion δpDM ≈ pDM/2 (the above formulation does not hold for t-channel scatterings, more on this
below). In the relativistic regime, pDM ≈ m2

DMT/(TRHTn), ŝ ≈ 4m2
DMT

2/(TRHTn), pCM ≃
√
ŝ/2,

and the number density of ϕ in the thermal bath is given by

nϕ =
gϕζ(3)

π2
T 3. (12)

In terms of the temperature, the LHS of Eq. (11) scales as T , while the RHS scales as T 2. One may
therefore worry that the condition will become increasingly more stringent for lower T . However,
the above assumes massless mϕ; for T ≲ mϕ the number density nϕ quickly becomes Boltzmann
suppressed. Here we will make the assumption mϕ ∼ √

cvacvϕ ∼ TRH in the broken phase,
typical for supercooled PTs, and evaluate the above condition at T = TRH. (The effective mϕ

in the symmetric phase may be somewhat different, for example mϕ ∼ Tn if it is dominated by
thermal contributions to the effective potential at the time of the PT.)

2We thank the referee for pointing this out.
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Figure 2: Heavy non-cold DM from fast bubble walls in the plane of nucleation temperature Tn
vs DM mass mDM, for Tn > Tinfl (left) and Tn < Tinfl (right). We set λ = 1 and cvac = 10−2.
Viable non-cold DM can be produced in the range mDM ≈ 108 − 109 GeV (white area), delimited
by: the requirement of the anti-adiabatic regime, Eq. (8), at bubble collision with Abub = 3 and
βH = 10 (green); too small DM yield, Eq. (9), even with the DM number maximizing choice
Tinfl = Tn (red); kinetic equilibration, i.e. violation of Eq. (11) (tan); the bubbles not running
away, i.e. Λvac < PLO of Eq. (4) (gray, left); the warm DM velocity limit for mWDM ≳ 5 keV,
corresponding to v(teq) ≲ 5 × 10−5 (blue). The blue NCDM region spans vϕ/Tn ≈ 5 − 7 (left)
and vϕ/Tn ≈ 7−12 (right). The dashed blue line shows the future sensitivity at mWDM = 15 keV,
v(teq) ≈ 10−5. Purple dashed contours show the VEV, vϕ. The region below (above) the black
contour on the left (right) panel can be tested by LISA with a signal-to-noise ratio SNR > 5. In
the left panel, however, this lies outside the valid domain of parameter space for the DM model.

There are also additional interactions with SM bath particles and ϕ quanta, involving soft t-
channel scalar exchange, which we have carefully checked do not lead to a significant reduction
in the X momentum. The results are given in App. C. The conclusion of our detailed calculations,
given therein, is that we are safe from a return to kinetic equilibrium provided inequality (11)
holds. We also show that even if mϕ ≪ TRH, viable parameter space still exists, due to the
scaling of pCM and ŝ at lower temperatures. Furthermore, if we instead considered a complex
scalar ϕ = ρeia/vϕ , then X scatterings with the axion-like particle a would be dominated by hard
t-channel exchange of the radial mode. We show that these do not impact the estimate in Eq. (11)
as long as TRH ≲ 10Tn.

Finally note, that in the parameter space of interest, the DM is always chemically decoupled
following the PT, i.e. the annhilation rateX+X → ϕ+ϕ is also belowH . Elastic self-interactions
between the DM can reduce the mWDM constraint by ∼ 20% [48, 49], however, because of the
super-heavy nature of our DM, its non-gravitational self-interactions are also completely negligi-
ble.

We now combine all our calculations and constraints and display the results in Fig. 2. As
summarized in the figures, we see NCDM is possible with this mechanism at masses mDM ∼
(108−109) GeV. The NCDM is realized for nucleation temperatures Tn ∼ 10 GeV, and reheating
temperatures TRH ∼ (10 − 102) GeV. The underlying scale of the beyond the standard model
(BSM) sector is vϕ ∼ (102 − 103) GeV. The region close to the NCDM constraint could be
tested by future observations targeting a cut in matter power spectrum at small scales. The bubble
collisions following the PT will also result in a strong gravitational wave (GW) signal, which we
turn to next.
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Figure 3: The solid (dashed) blue lines show the predicted gravitational wave spectrum for the PT
corresponding to a DM mass mDM = 3× 108 GeV, cvac = 10−2, λ = 1, and v(teq) at the current
limit ofmWDM = 5 keV (future limit ofmWDM = 15 keV). The former (latter) corresponds to a PT
with TRH ≈ 40 GeV (TRH ≈ 90 GeV), in the case Tn > Tinfl, and with TRH ≈ 50 GeV (TRH ≈ 150
GeV), in the case Tn < Tinfl. In both cases lower (higher) DM masses would correspond to lower
(higher) reheating temperatures and lower (higher) peak frequencies. We have assumed βH = 10.
The spectra are compared with power law integrated sensitivity curves, with signal-to-noise ratio
SNR= 5, for LISA [50] and a future µHz interferometer [51]. Estimated astrophysical foregrounds
from binary super-massive black holes [52], galactic white-dwarf binaries [53] and extragalactic
white-dwarf binaries [54] are also shown. Gravity gradient noise from asteroids (not shown) could
also be significant up to ∼ 10−6 Hz [55]. The signal for the Tn > Tinfl regime is below LISA
expectations.

5 Gravitational Wave Signal

We now detail the expected GW signal. For our mechanism, we require the bubbles to effectively
run-away until collision, so that the majority of the vacuum energy is transferred to the walls.
Accordingly, in giving an estimate of the expected GWs, it is appropriate to use the numerical
results from Cutting et al. [56],

h2ΩGW(f) ≡ h2
dΩGW

dlog(f)
= 2.0× 10−6 ×

(
α

1 + α

)2 Sϕ(f)

g
1/3
∗ β2H

, (13)

where α is the energy released as bulk motion during the transition (which we approximate as
the false vacuum energy) normalized to the radiation density. Here, the shape of the spectrum is
governed by

Sϕ(f) =
(a+ b)f̃ bfa

bf̃ (a+b) + af (a+b)
, (14)

where for PTs of our type the central numerical results indicate a = 0.742 and b = 2.16 [56].
(Also see [57–61].) The peak frequency of the signal today is

f̃ = 15 µHz × βH g
1/6
∗

(
TRH

103 GeV

)
. (15)

Finally, one should impose the correct ΩGW ∝ f3 scaling for the initially super-horizon IR
modes [62–66], corresponding to frequencies today below

f∗ =

(
a(TRH)

a(Ttoday)

)
× H(TRH)

2π
= 12 µHz × g

1/6
∗

(
TRH

103 GeV

)
.

Now we are ready to use this spectrum together with our results for the NCDM. Accordingly, we
take the prediction of TRH for a given mDM and v(teq) and consider the estimated GW signal. The
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resulting spectra for two parameter points are shown in Fig. 3. We also calculated the SNR for
LISA, strictly using the method given in [42], and display the contours which delineate SNR = 5
in Fig. 2. For Tn > Tinfl, the signal is suppressed by the scaling ΩGW ∝ α2 ∝ (Tinfl/Tn)

8,
as α ≲ O(1). Thus this regime can only be extensively probed through its induced small scale
structure suppression, assuming ga ≳ 1, and partly through far future GW observations. For
Tn ≲ Tinfl, instead, the amplitude of the GW signal is large. For lower values of TRH, however,
the peak frequency is the IR of the LISA sensitivity. This qualitatively explains the behaviour of
the SNR contours in Fig. 2. Note the entire allowed area for Tn ≲ Tinfl, given our estimates, can
be probed by LISA (even beyond the future NCDM region).

6 Conclusion

We investigated the possibility of dark matter being both heavy and non-cold as a result of a phase
transition. In order to achieve sufficient high DM velocities at late times to be relevant for Lyman-α
observations, we considered the non-adiabatic pair production mechanism first introduced in [43,
44]. We find viable non-cold DM compatible with Lyman-α bound in the mass range mDM ∼
(0.1 − 1) (M2

plT
eq
γ )1/3 ∼ (108 − 109) GeV, with an underlying scale of the PT vϕ ∼ (102 −

103)(MplT
eq 2
γ )1/3 ∼ (102− 103) GeV, reheating temperature TRH ∼ (0.1− 1)vϕ, and nucleation

temperature Tn ∼ (0.1 − 1)TRH. Despite the low TRH, which can provide a challenge due to
washout, it may be possible to use the same PT (and mechanism) for baryogenesis [67–70].

The scale of the phase transition vϕ is intriguingly close to the electroweak scale. Our PT
cannot naively be the EW one, even if some BSM physics made the latter first order, because weak
gauge bosons getting a mass would prevent the bubble walls from running away and reaching the
velocities of Eq. (5) [46,47], which are crucial for our mechanism. One may still speculate that the
kind of PT discussed in this paper arises from the breaking of some global symmetry, which is tied
to the mechanism of generation of the EW scale, as it could happen in composite models [71, 72]
or in supersymmetry [73–76]. We do not speculate further in this direction in this paper, we just
provide further details on the coincidence of scales in App. D.

The rather unique signature of the heavy DM picture we presented is the combination of i) a
suppression of structure at small scales, which will be interesting to precisely determine in future
work, and ii) a large amplitude stochastic background of GWs [17, 56, 59, 77–79] from the PT,
with peak frequency in the range f ∼ (10−6 − 10−4) Hz.

Concerning other DM signals, direct detection is unfortunately beyond reach of conceivable
future facilities. Coming to indirect detection, the number densities and hence annihilation signals
are very small and, with the minimal content above, the DM is stable. If the Z2 symmetry X →
−X is broken, then the DM may decay and give a signal at high-energy telescopes.
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A Scalar Decay Rate

In the main text we have assumed the ϕ particles and/or condensate decays rapidly following the
PT. Perhaps the simplest way this can be achieved, is by introducing a portal interaction to the
SM Higgs. To illustrate this consider the interactions between the EW Higgs doublet H and a real
scalar φ,

L ⊃− µ2h|H|2 − λh|H|4 −
µ2ϕ
2
φ2 − λϕ

4
φ4 − λhϕ

2
φ2|H|2, (16)

where λh ≃ 0.13 is the EW Higgs self-quartic, and λϕ ∼ cvac is the exotic scalar analogue. In
principle other terms are also allowed, however, the above will be sufficient to illustrate the idea.
The minimum of the potential lies at (vϕ, vEW) where vEW ≃ 246 GeV is the EW VEV and

µ2h = −λhv2EW − 1

2
λhϕv

2
ϕ, (17)

µ2ϕ = −λϕv2ϕ − 1

2
λhϕv

2
EW. (18)

Around the minimum, ignoring Goldstone directions, we introduce the massive scalar excitations
H = (vEW + h̃)/

√
2 and φ = vϕ + ϕ̃. The physical mass eigenstates are(

h
ϕ

)
=

(
cos θhϕ sin θhϕ
− sin θhϕ cos θhϕ

)(
h̃

ϕ̃

)
, (19)

with associated mass eigenvalues

m2
h = 2λhv

2
EW cos2 θhϕ + 2λϕv

2
ϕ sin

2 θhϕ − λhϕvϕvEW sin 2θhϕ, (20)

m2
ϕ = 2λhv

2
EW sin2 θhϕ + 2λϕv

2
ϕ cos

2 θhϕ + λhϕvϕvEW sin 2θhϕ. (21)

We have introduced the usual mixing angle θhϕ between the two scalars, present once both have
gained a VEV, which is given by

tan 2θhϕ =
λhϕvϕvEW

λϕv
2
ϕ − λhv2EW

≃ 2λhϕvϕvEW

m2
ϕ −m2

h

≃


λhϕvϕ
λhvEW

, for mϕ < mh,

λhϕvEW

λϕvϕ
, for mϕ > mh.

(22)

A.1 Heavy mϕ

Consider first the regime mϕ ≳ 2mh ≈ 250 GeV. As TRH ∼ mϕ, we assume the decay occurs in
the unbroken electroweak (EW) phase. Demanding the decay rate into the SM Higgs doublet,

Γϕ→HH ≃
λ2hϕv

2
ϕ

8πmϕ
, (23)

be above Hubble, translates into a condition

λhϕ ≳ 10−7
( g∗
100

)1/4(10TRH

vϕ

)( mϕ

104 GeV

)1/2
. (24)

Once the symmetries are broken, we therefore have

θhϕ ≳ 10−8
( g∗
100

)1/4(10TRH

vϕ

)( mϕ

104 GeV

)1/2(10−2

λϕ

)(
105 GeV

vϕ

)
. (25)

in the heavy mϕ regime.
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A.2 Light mϕ

If, instead, mϕ is around or below the EW scale, the decay to SM Higgs bosons is kinematically
disallowed, and the decay occurs in the broken EW phase. Through the mixing angle the ϕ can
decay to SM fermions. In the θhϕ ≪ 1 limit, the rate is given by

Γϕ→f̄f ≈
Ncm

2
fθ

2
hϕmϕ

8πv2EW

, (26)

where mf is the fermion mass, and Nc are the number of colours. The decay rate is faster than
Hubble provided

θhϕ ≳ 10−6
( g∗
100

)1/4( 3

Nc

)1/2(4 GeV

mf

)(
TRH

mϕ

)1/2( TRH

10 GeV

)1/2

, (27)

or equivalently

λhϕ ≳ 10−6

(
vEW

10 vϕ

)( g∗
100

)1/4( 3

Nc

)1/2(4 GeV

mf

)(
TRH

mϕ

)1/2( TRH

10 GeV

)1/2

. (28)

The exotic Higgs decay h→ ϕϕ, has a branching fraction Br ≈ 10−9×(λhϕ/10
−6)2 and is safely

below collider constraints for mϕ above the muon threshold (the mϕ parameter space of interest
for our PTs).

B Initial DM Momentum in the Plasma Frame

We consider the pair production ϕ → X + X . Taking the wall to be moving at ultra-relativistic
velocity in the positive z direction, the kinematics in the wall frame can be written as

pϕ = (E′, 0, 0,−
√
E′2 −m2

ϕ)

pX1 = (E′[1− x], 0, k⊥,−
√
E′2[1− x]2 − k2⊥ −m2

DM)

pX2 = (E′x, 0,−k⊥,−
√
E′2x2 − k2⊥ −m2

DM). (29)

The pair production probability, in the anti-adiabatic regime, is given by [44]

P (ϕ→ XX) ≃
λ2v2ϕ
32π2

∫ 1

0
dxx(1− x)

∫
dk2⊥

(k2⊥ +m2
DM)

2
≃

λ2v2ϕ
192π2m2

DM

(30)

From the above, we can also read off the distribution in energy and k⊥ of the outgoing particles.
Azatov et al. also provide a convenient way of calculating the average energy of the outgoing

X in the plasma frame. In terms of the incoming energy in the wall frame, E′, it is given by

ĒX =
1

2

[∫ 1

0
dxx(1− x)

]−1

×
{∫ 1

0
dxx(1− x)γwp

[
E′ −

√
E′2x2 − k2⊥ −m2

DM −
√
E′2[1− x]2 − k2⊥ −m2

DM

]}
≈ 3γwpm

2
DM

2E′ . (31)

Here the probability distribution of energy fraction x has been taken into account, and the Lorentz
transformation E = γwp(E

′ + vwp
′
z) has been applied on the sum of the X energies, which

10
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also explains the pre-factor 1/2. In evaluating the integral, the high energy limit been applied
E′x,E′(1 − x) ≫ mDM, and the k⊥ factor has been ignored. This is justified, as the small x,
large x, and large k⊥ ≳ mDM phase spaces are suppressed. Azatov et al. go on to substitute
E′ ∼ (1 + vw)γwpTn to find ĒX ∼ 3m2

DM/4Tn.
Now that we have ĒX as a function of E′, however, we can also take an appropriate average

over the incoming flux. First we derive a formula for the ϕ flux across the wall. The relative
velocity in the z direction between the wall and a particle in the plasma frame with z velocity, vz ,
is vz,rel = vw − vz ≃ 1− pz

E = 1− cθ. Here cθ ≡ cos θ where θ is the angle between pz and the
z-axis. The flux, Φϕ = d2Nϕ/dAdt, across the wall in the plasma frame is given by

Φϕ =
gϕ

(2π)3

∫
d3pf(E)vz,rel (32)

=
gϕ

(2π)2

∫ 1

−1
dcθ(1− cθ)

∫ ∞

0
dEE2f(E) (33)

=
gϕ ζ(3)T

3
n

π2
. (34)

So Φϕ is just the same as the number density.
Now remembering that E′ = γwpE(1− cθ), the average energy of the X after averaging over

the incoming ϕ flux is given by

⟨ĒX⟩ = 1

Φϕ

g

(2π)3

∫
d3pf(E)vz,relĒX (35)

=
g

Φϕ

3m2
DM

4π2

∫
dEEf(E) (36)

=
π2

8ζ(3)

m2
DM

Tn
≃ m2

DM

Tn
. (37)

This matches the rough derivation of the Lorentz factor, γxp = ⟨ĒX⟩/mDM ≃ mDM/Tn, given in
the main text.

C DM Momentum Loss

After the PT, the absolute value of the DM momentum, pDM, evolves with redshift as pDM =
piai/a ≃ pi(ti/t)

1/2, where the subscript i denotes some initial value, a is the scale factor, and
we have assumed a ∝ t1/2 for consistency with the hypothesis of radiation domination. As a
consequence, the rate of momentum loss due to redshift, reads

dpDM

dt

∣∣∣
redshift

=
pDM

2t
≈ pDMH , (38)

where in the last equality we have used that the age of the Universe is proportional to Hubble at
that time, t ≈ H−1. Our estimate of v(teq) is therefore valid provided

1

pDM

dpDM

dt

∣∣∣
bath

=
dlog(pDM)

dt

∣∣∣
bath

< H, (39)

where dpDM/dt|bath is the rate of momentum loss of a DM particle because of its scatterings with
bath particles.

11



SciPost Physics Submission

C.1 Relativistic DM

Consider the DM after the phase transition. As a function of temperature, the DM momentum is
given by

pDM ≈ m2
DMT

TnTRH

. (40)

In the plasma frame, it is relativistic until pDM ≈ mDM, i.e. for temperatures

T ≳
TnTRH

mDM

(41)

≈ 1 MeV

(
108 GeV

mDM

)(
TRH

104 GeV

)(
Tn

10 GeV

)
.

Now consider such relativistic DM travelling in the z-direction through the plasma frame with
energy and z-momentum component E1 ≃ p1z ≡ pDM. It undergoes scattering with some particle
in the thermal plasma with energy E2 ∼ T (its precise momentum orientation is irrelevant for
the following, as pDM ≫ T , for convenience, we can take it to be in the negative z-direction in
what follows). We wish to determine the momentum loss rate of the DM in the plasma frame.
Denote the initial (final) DM four momentum in the centre-of-mass (COM) frame as p′1 (p′3), and
the initial (final) bath particle four momentum in the COM frame as p′2 (p′4). We then have

p′1 = (
√
m2

DM + p2CM, 0, 0, pCM) (42)

p′2 = (pCM, 0, 0, −pCM) (43)

p′3 = (
√
m2

DM + p2CM, 0, pCMsθ, pCMcθ), (44)

p′4 = (pCM, 0, −pCMsθ, −pCMcθ), (45)

where sθ ≡ sin θ, cθ ≡ cos θ, θ is the usual scattering angle, the COM energy squared is

ŝ = m2
DM + 4pDMT, (46)

and the COM momentum squared is

p2CM =
(ŝ−m2

DM)
2

4ŝ
. (47)

For later convenient reference, when we come to find constraints from DM momentum loss, it is
useful to denote two temperature regimes according to whether DM is relativistic or not in the
COM frame. In the first regime, corresponding to T ≳

√
TRHTn, we have

ŝ ≈ 4p2CM ≈ 4m2
DMT

2

TnTRH

. (48)

In the second regime, T ≲
√
TRHTn, and we have

ŝ ≈ m2
DM ≫ 4p2CM ≈ 4m2

DMT
4

T 2
RHT

2
n

. (49)

In both regimes the combination p2CMŝ, which appears in various expressions below, is approxi-
mately the same. It reads

p2CMŝ ≈
4m4

DMT
4

T 2
RHT

2
n

. (50)

In any case, to bring the photon energy from the plasma to the COM frame requires a Lorentz
boost with

γ =
pCM

T + vT
≃ pCM

2T
, (51)

12
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Figure 4: Interactions of the DM with the scalar driving the PT, ϕ, which can lead to kinetic
equilibrium being re-established following the PT.

where we take the relativistic limit v ≃ 1. Then, using the Lorentz transformation to boost from
the COM frame back into the plasma frame, E = γ(E′ + vp′z), we find a momentum loss of the
DM in the plasma frame

δpDM ≃ E1 − E3 = γvpCM(1− cθ) (52)

= − γvt̂

2pCM

≃ − t̂

4T
, (53)

where we have used the relation t̂ = −2p2CM(1 − cθ). Note our expression above depends on a
relativistic boost; eventually, at low T , we have v ≪ 1, the boost reaches the Gallilean limit, and
there is an additional suppression. For relativistic DM, we therefore estimate

dlog(pDM)

dt

∣∣∣
bath

≈ nbathvMøl

pDM

∫ 0

−4p2CM

dt̂
dσ

dt̂
δpDM (54)

≈ −nbathvMøl

4pDMT

∫ 0

−4p2CM

dt̂
dσ

dt̂
t̂ (55)

≈ −nbathvMøl

2pCM

√
ŝ

∫ 0

−4p2CM

dt̂
dσ

dt̂
t̂, (56)

where σ is the cross section for the process Xψ → Xψ leading to the momentum loss and
vMøl ≃ 2 is the relative (Møller) velocity between the DM and bath particles in the plasma frame.
The differential cross section is given by

dσ

dt̂
=

1

64πp2CMŝ
|M|2, (57)

where M is the usual matrix element. Given our field content, we will be interested in cross-
quartic scalar interactions, and diagrams with scalar exchange in the t-channel.

Note that, in the massless limit, dσ/dt̂ ∝ |M|2/ŝ2. And with our field content, we will always
have a 1/ŝ2 suppression in this quantity. This is qualitatively different to examples featuring vector
mediated interactions, such as in Møller scattering or its scalar QED analogue, in which |M|2 ∝
ŝ2/t̂2 type terms lift the suppression, and lead to IR enhancements in the momentum loss through
soft gauge boson exchange. This is the key reason why, in the end, our naive approximation
of the momentum loss rate via hard scattering, Eq. (11), gives the appropriate, i.e. the strongest
constraint. Note, however, that care must be taken for t-channel diagrams when p2CM < m2

DM, in
order to check that the suppression is not lifted by the p2CM term in the denominator of Eq. (57),
leading to a rapid momentum loss. This is what we go on to check below. (Of course, in the deep
IR, divergences will also be removed by the mass of the mediating particles.)

C.1.1 Interactions within the BSM sector

Scattering with the scalar driving the PT — We first consider scatterings X + ϕ→ X + ϕ, for
which the Feynman diagrams are shown in Fig. 4. We begin with the cross quartic interaction in

13
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Eq. (6). Ignoring interference with the second diagram for now, we have

dσ

dt̂
=

λ2

64πp2CMŝ
, (58)

Using Eq. (56) and demanding Eq. (39) hold, we obtain the condition

dlog(pDM)

dt
≈ nϕ

λ2pCM

8πŝ3/2
≈ nϕλ

2

16πŝ
< H. (59)

In the second approximation, we have used pCM ≃
√
ŝ/2 ≫ mDM, valid here because we only

have to consider high temperatures, as nϕ becomes Boltzmann suppressed at T < mϕ ∼ TRH.
Note Eq. (59) is just the same as Eq. (11) in the main text, thus confirming the latter as a suitable
estimate. Finally, plugging Eq. (48) into Eq. (59) and taking T ≃ TRH, we obtain the upper bound
on the coupling

λ < 1.5×
( mDM

108 GeV

)(10 GeV

Tn

)1/2

. (60)

It is also interesting to consider a more general case withmϕ ≲ TRH or evenmϕ ≪ TRH. Then
nϕ does not become Boltzmann suppressed until lower temperatures. Nevertheless, retaining the
temperature dependencies of ŝ and pCM from Eqs. (48) and (49), we find the strongest constraint
on λ comes from around T ≈ √

TnTRH, when DM turns non-relativistic in the COM frame. The
constraint then reads

λ < 1.5×
( mDM

108 GeV

)(10 GeV

Tn

)1/4(10 GeV

TRH

)1/4

. (61)

This collapses to Eq. (60) for Tn = TRH and becomes stronger for Tn < TRH. Thus the allowed
parameter space for the Tn < Tinfl case becomes somewhat smaller, but still allows for NCDM
(for further details see App. D [Fig. 8]).

Realistically, ϕwill also have a quartic coupling, λϕ, which will lead to an additional Feynman
diagram for the processX+ϕ→ X+ϕ. This involves t-channel ϕ exchange, and so the scattering
rate can have an IR enhancement. First, we ignore the interference term and consider only the
amplitude squared of the t-channel diagram. We get

dσ

dt̂
=

9λ2λ2ϕv
4
ϕ

16πp2CMŝ(t̂−m2
ϕ)

2
. (62)

This gives a momentum loss

dlog(pDM)

dt
≃ nϕ

9λ2λ2ϕv
4
ϕ

16πp3CMŝ
3/2

×
(
log

[
1 +

4p2CM

m2
ϕ

]
− 4p2CM

m2
ϕ + 4p2CM

)
. (63)

We find that Eq. (63) gives a much weaker constraint than Eq. (59),3

λ <
108

λϕ

( mDM

108 GeV

)3(105 GeV

v2ϕ

)2 ( mϕ

104 GeV

)5/2(104 GeV

TRH

)3/2(
10 GeV

Tn

)3/2

, (64)

where we have again allowed for the possibility mϕ < TRH.
So far we have ignored the interference term. But this cannot realistically give us a stronger

limit, as |2Re[M1M†
2]| ≤ 2|M1||M2| ≤ |M1|2 + |M2|2. Indeed, direct computation shows

the leading interference term gives a momentum loss which is suppressed by an additional power
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Figure 5: Tree and loop diagrams contributing to the elastic scattering of scalar dark matter X
with angular mode a.

of v2ϕ/ŝ ≪ 1, compared to Eq. (59) (and also, of course, by the possible Boltzmann factor at
T ≲ mϕ ∼ TRH).

Scattering with the eventual angular mode. — In the case where the scalar field driving the
phase transition is complex, Φ = (vϕ + σ)eia/vϕ/

√
2, the Goldstone boson a when not eaten by a

gauge boson can eventually slow DM down. Scattering of scalar DM with Goldstone bosons are
induced by the terms

L ⊃ ∂µΦ
†∂µΦ− λ

2
|Φ|2X2,

⊃
(
σ

vϕ
+

σ2

2v2ϕ

)
∂µa∂

µa− λ

2

(
vϕσ +

σ2

2

)
X2, (65)

where λ is the X − ϕ quartic coupling. The matrix element for Xa → Xa, from tree-level
t-channel exchanges of a radial mode σ, see Fig. 5 left, reads

M = λ
t̂/2−m2

a

t̂−m2
σ

, (66)

where mσ and ma are the masses of the radial and angular modes.4 In the high momentum
exchange limit t̂≫ m2

σ,m
2
a, we obtain the momentum loss for Xa→ Xa

dlog(pDM)

dt
≃ na

λ2pCM

32πŝ3/2
. (67)

The maximal momentum loss rate is obtained for T =
√
TnTRH when the temperature dependence

of the squared energy ŝ and DM momentum pCM in the COM frame changes from ∝ T to ∝ T 0,
and from ∝

√
T to ∝ T , respectively. We obtain the condition

λ <
( mDM

108 GeV

)(10 GeV

Tn

)1/2(10Tn
TRH

)1/4

, (68)

which becomes competitive with Eq. (60) for TRH ≳ 10Tn. In Fig. 8, with orange shading we
show the region where momentum loss of DM due to scattering with the Goldstone mode is im-
portant. We also study the effects of loop-induced 4-scalar terms. The four diagrams are pictured

3We report the numerical constraints on the couplings even when these are nominally ≫ 1 and thus outside of the
realistic perturbative regime. These can then simply be interpreted as meaning that any sensible perturbative choice of
the coupling will not lead to issues with DM momentum loss via said process.

4For scatterings X + σ → X + σ, we can simply use the computations done for the real scalar ϕ, and replace
mϕ → mσ .
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Figure 6: Interactions of the DM with the particles of SM plasma; the SM Higgs, h, elementary
fermions, f , massive gauge bosons, V , photons, γ, gluons, g, and nucleons N , which can lead
to kinetic equilibrium being re-established following the PT. Note at high enough momentum,
the DM may instead interact with the partons inside the nucleon, and also break apart the initial
nucleon. All corresponding amplitudes of diagrams shown here are suppressed by at least one
power of the portal coupling λhϕ.

in Fig. 5. The corresponding matrix elements in the large momentum transfer limit t̂→ ∞ reads

M1 +M2 ≃
λ

32π2
m2

ϕ

v2ϕ
log

[
m2

ϕ

−t̂

]
, (69)

M3 ≃
λ2

128π2
log2

[
m2

DM

−t̂

]
, (70)

M4 ≃ − λ2

32π2

(
1 + log2

[
−m

4
DM

ŝt̂

])
. (71)

We deduce the resulting contribution to the DM momentum loss

dlog(pDM)

dt
≃ 10−6 na

λ4pCM

ŝ3/2
, (72)

where we have kept only the contribution from the fourth diagram, since λ > m2
ϕ/v

2
ϕ in the

parameter space of our interest. We obtain the same parametric as for the t-channel in Eq. (67)
with an additional suppression due to the extra loop factor (λ/16π2)2. We conclude that the loop
contributions can be neglected.

C.1.2 Interactions with the SM sector

We now turn to momentum loss due to interactions with the SM bath. These exist once a portal
interaction is introduced, to allow ϕ to decay rapidly into the SM following the PT, as discussed in
App. A. The applicable Feynman diagrams are shown in Fig. 6. These processes are all suppressed
∝ λ2hϕ, either directly, or through the mixing angle between the two scalars. However, the initial
state bath particles may have a different mass threshold, i.e. below mϕ ∼ TRH. We therefore have
to check whether the scattering at lower T can lift the λ2hϕ suppression at any points in parameter
space, and therefore lead to a more stringent bound from kinetic equilibrium. We shall find that
this is not the case, but still provide an overview, for completeness, of the scattering rates below.

Scattering with the EW Higgs. — We begin by emphasising that for mϕ ≲ vEW, these scat-
tering are necessarily suppressed compared to the scatterings with the ϕ we have considered ear-
lier, so we will always be assuming we are in the heavy mϕ regime for the purposes of the checks
performed here. Compared to Fig. 2, this corresponds to regions outside the current non-cold DM
limit, but the discussion could be relevant if the limit is substantially improved. From now we
suppress numerical pre-factors from our estimates of the cross sections.
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We first consider the quartic interaction leading to inelastic scattering X + h → X + ϕ. The
differential cross section is given by

dσ

dt̂
∼
θ2hϕλ

2

p2CMŝ
, (73)

which leads to a momentum loss

dlog(pDM)

dt
≃ nh

θ2hϕλ
2pCM

ŝ3/2
< H. (74)

Taking into account the Boltzmann suppression of nh at temperatures below TEW and using
Eqs. (48) and (49), one can readily show that a sufficient condition for the above to be below
the Hubble rate is

θhϕ ≲
10−2

λ

( mDM

108 GeV

)(104 GeV

TRH

)1/4(
10 GeV

Tn

)1/4

(75)

in both pCM ≃
√
ŝ/2 and pCM ≲

√
ŝ/2 regimes. The condition (75) is compatible with our

previous constraint (24), showing both rapid decay and absence of kinetic equilibrium can be
satisfied. Note the example values we have substituted, correspond to an aggressive choice along
the kinetic equilibrium line coming from Eq. (11) in Fig. 2, smaller choices of Tn and TRH would
lead to a weaker constraint.

We now move on to consider the t-channel scattering involving external scalar statesX+h→
X + h. First consider the ϕ exchange diagram. The cross section behaves as

dσ

dt̂
∼

λ2ϕhλ
2v4ϕ

p2CMŝ(t̂−m2
ϕ)

2
. (76)

Hence, we have an approximate momentum loss

dlog(pDM)

dt
∼
nhλ

2
ϕhλ

2v4ϕ

p3CMŝ
3/2

log

[
4p2CM

m2
ϕ

]
< H. (77)

This gives a very weak constraint

λϕh ≲
103

λ

( mDM

108 GeV

)3(105 GeV

vϕ

)2(
104 GeV

TRH

)3/2(
10 GeV

Tn

)3/2

. (78)

(Here we have assumed parameter space with pCM > mϕ at T ≈ mh, if instead pCM < mϕ,
the limit would be weakened, due to finite mass propagator effects.) This condition is obviously
compatible with our constraint (24). Similar or weaker constraints arise for the cross sections
coming from the squared amplitudes of the X + h → X + h via h exchange diagram and the
t-channel X + h → X + ϕ diagrams. As argued above, interference terms do not lead to any
stronger constraints. We are therefore safe from scatterings with the EW Higgs.

Scattering with massive EW gauge bosons. — We now consider scatterings with the mas-
sive EW gauge bosons, in order to check whether there can be any additional enhancement com-
pared to the above processes, due to the presence of the external vectors. Taking into account the
relative minus sign between the ϕ and h exchange diagrams, coming from the rotation into the
mass basis, we find the tree level diagrams squared give a cross sections of the form

dσ

dt
∼
λ2hϕλ

2v4ϕ
p2cmŝ

(
8m4

V + (t̂− 2m2
V )

2
)

(t̂−m2
ϕ)

2(t̂−m2
h)

2
(79)
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wheremV is the gauge boson mass, and we have substituted in for the mixing angle using Eq. (22).
In the above, we have used the polarization sum completion relation for massive vectors. Note the
absence of any dependence on the gauge coupling or EW VEV for the term ∝ t̂2 in the numerator.
In the high energy limit, this term corresponds to scatterings with longitudinal gauge bosons,
which through the Goldstone boson equivalence theorem can be related to scatterings of the DM
with would-be EW Goldstone bosons via t-channel ϕ exchange. The latter amplitude is manifestly
independent of the gauge coupling or EW VEV, which explains the absence of these parameters
in the above term of the cross section.

After performing the integral over t̂, in themϕ ≳ mV ,mh parameter space, we find a momen-
tum loss

dlog(pDM)

dt
∼
nV λ

2
hϕλ

2v4ϕ

p3CMŝ
3/2

(
log

[
1 +

4p2CM

m2
ϕ

]
− 4p2CM

m2
ϕ + 4p2CM

)
, (80)

where nV is the gauge boson number density. The strongest constraint comes from the logarithmic
term at temperature T ≈ mV . Even for parameter space in which pCM > mϕ at such temperatures,
the constraint is very weak,

λhϕ ≲
102

λ

( mDM

108 GeV

)3(105 GeV

vϕ

)2(
104 GeV

TRH

)3/2(
10 GeV

Tn

)3/2

, (81)

again showing compatibility with Eq. (24).

Scattering with fermions. — Finally we also consider scatterings with the elementary SM
fermions. Again taking into account the relative minus sign between the ϕ and h exchange dia-
grams, we find

dσ

dt̂
∼
λ2hϕλ

2v4ϕm
2
f

p2CMŝ

(4m2
f − t̂)

(t̂−m2
ϕ)

2(t̂−m2
h)

2
, (82)

where mf is the fermion mass, and we have again substituted in for the mixing angle using
Eq. (22). In the regime where mϕ ≳ mh, we obtain a momentum loss

dlog(pDM)

dt
∼
nfλ

2
hϕλ

2v4ϕm
2
f

p3CMŝ
3/2m2

ϕ

4p2CM

4p2CM +m2
ϕ

. (83)

The strongest constraint comes from momentum loss at T ≈ Max[TRH

√
Tn/mDM,mf ], where the

first condition comes from pCM > mϕ and the second from simply having an unsuppressed fermion
population in the bath. We thus set our hypothetical fermion mass to mf = TRH

√
Tn/mDM,

in order to derive the strongest possible constraint (taking into account the actual SM fermion
masses would only weaken the derived constraint). With this substitution, together with our earlier
assumption mϕ ∼ TRH, we obtain a constraint from demanding the momentum loss be below the
Hubble rate,

λhϕ ≲
102

λ

( mDM

108 GeV

)9/4(105 GeV

vϕ

)2(
TRH

104 GeV

)(
10 GeV

Tn

)3/4

. (84)

One can readily check that at lower pCM, the momentum loss becomes suppressed by m4
ϕ and

eventually also by m4
h, due to the propagators. Thus no stronger constraint arises at lower pCM,

even accounting for the possibility of them2
f > −t̂ in the numerator of Eq. (82). Similar arguments

hold if we instead begin with the assumption mϕ ≲ mh (taking into account the lower TRH this
implies for consistency). Comparison of Eq. (84) to Eqs. (24) and (28) shows compatibility with
the rapid ϕ decay assumption. So we are safe.
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Scattering with photons and gluons. — The population of photons and gluons does not be-
come Boltzmann suppressed at low T (although the gluons eventually become confined.) We
therefore also check whether scatterings of the DM with massless gauge bosons can lead to non-
negligible momentum loss at low T . Fermionic triangle diagrams in the broken EW phase lead to
the effective coupling of the Higgs to gluons via the effective operator

L ∼ αs

vEW

hGa
µνG

aµν . (85)

Here αs is the QCD fine structure constant and Ga
µν are the QCD field strength tensors. A similar

operator for the photons arises from fermionic triangle diagrams and loop diagrams involving
charged gauge bosons,

L ∼ αEM

vEW

hFµνF
µν , (86)

where Fµν is the electromagnetic (EM) field strength tensor.
After the ϕ− h mixing is taken into account, we find a differential cross section

dσ

dt̂
∼
α2

EM,sλ
2λ2hϕv

4
ϕ

p2CMŝ

t̂2

(t̂−m2
ϕ)

2(t̂−m2
h)

2
. (87)

The contribution to the vertex coming from the top triangle diagram is suppressed at large momen-
tum exchange, −t̂ > m2

t , by a factor ∼ m2
t /(2t̂)log

2(−t̂/m2
t ), which in turn suppresses the above

cross section for the gluon scattering. The EM counterpart, however, includes effects of the longi-
tudinal W bosons for which — in analogy with the heavy Higgs limit in the decay h → γγ [80]
— we do not expect any suppression. Hence, to derive a sufficient constraint in a simple manner,
we use the cross section as written above also for pCM > mt. Considering our benchmark values
for which mϕ > mh, and ignoring the finite mh for simplicity, we have a momentum loss

dlog(pDM)

dt
∼
nγ,gα

2
EM,sλ

2λ2hϕv
4
ϕ

p3cmŝ
3/2

(
log

[
1 +

4p2CM

m2
ϕ

]
− 4p2CM

m2
ϕ + 4p2CM

)
, (88)

where nγ (ng) is the photon (gluon) number density. Note, up to the two powers of the relevant
fine structure constant and suppressed loop factors, this is just the same as the scattering with the
gauge bosons, Eq. (80), which is also dominated by the longitudinal gauge boson contribution at
large momentum exchange. For the scattering with the massless gauge bosons, however, we now
no longer have the Boltzmann suppression of the bath particles, so the constraint can be somewhat
stronger. Using Eq. (88), together with Eqs. (49) and (50), one finds a sufficient condition to avoid
momentum loss given by

λhϕ ≲
10−2

αEM,sλ

( mDM

108 GeV

)7/4(105 GeV

vϕ

)2(
TRH

104 GeV

)(
10 GeV

Tn

)1/4

, (89)

where we have used that the strongest constraint comes from when pCM ≈ mϕ (note for the
benchmark values this occurs before the QCD phase transition when the gluons confine). Similarly
weak constraints arise for areas of parameter space where we instead have mh ≳ mϕ ≈ TRH. So
we are safe.

Scattering with nucleons. — After QCD confinement, at TQCD ≈ 0.1 GeV, relativistic DM
can interact with the nucleons. The latter are non-relativistic as mN/TQCD > 3. In the plasma
frame we write the four-momenta as

pµDM ≡ p1 ≃ (
√
p2DM +m2

DM, 0, 0, pDM), (90)

pµN ≡ p2 ≃ (mN , 0, 0, 0). (91)
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The centre-of-mass energy squared is

ŝ ≃ m2
DM + 2pDMmN ≃ m2

DM, (92)

as pDMmN < m2
DM for T < TnTRH/mN which is always satisfied in our model for T ≤ TQCD.

The momentum in the centre-of-mass frame is

p2CM =
(ŝ− (mDM +mN )2)(ŝ− (mDM −mN )2)

4ŝ
(93)

≃
(
pDMmN

mDM

)2

≃
(
mDMmNT

TnTRH

)2

. (94)

Now if pCM > mN the incoming DM probes the internal constituents of the nucleon and deep
inelastic scattering (DIS) is possible. This translates into a condition pDM > mDM, so DIS is
possible as long as DM is relativistic. Consider now the interaction of the DM with a parton
carrying fractional momentum p′p = xpCM, where 0 < x < 1. In the DM-nucleon centre-of-mass
frame we have four-momenta of the DM and parton

p′DM ≡ p′1 ≃ (
√
p2CM +m2

DM, 0, 0, pCM), (95)

p′p ≡ p′2 ≃ (xpCM, 0, 0,−xpCM). (96)

We now go into the DM-parton COM frame, in which quantities will be denoted with a double
prime. Accordingly, the momenta are

p′′1 ≃ (
√
p2CM +m2

DM, 0, 0, pCM), (97)

p′′2 ≃ (xpCM, 0, 0,−xpCM). (98)

The COM energy squared is

ŝ′′ = (p′1 + p′2)
2 (99)

≃ m2
DM + 2xpCMmDM (100)

≃ m2
DM + 2xpDMmN , (101)

where we have used that pCM ≪ mDM in our temperature/parameter range of interest.5 This
implies the boost from the prime to the doubly primed frame is a non-relativistic one. From this
we find

p′′CM ≃ x
pDMmN

mDM

≃ xpCM. (102)

We consider elastic scatterings at the parton level

p′′3 = (

√
m2

DM + p′′CM
2, 0, p′′CMsθ, p

′′
CMcθ), (103)

p′′4 = (p′′CM, 0, −p′′CMsθ, −p′′CMcθ), (104)

The Mandelstam variable at the parton level is

t̂′′ = 2m2
DM − 2p′′1 · p′′3 = −2p′′CM(1− cθ). (105)

The momentum loss of the relativistic DM in the plasma frame, can be estimated from the differ-
ence in its energy before/after scattering in said frame,

δpDM ≃ γvp′′CM(1− cθ) = − t̂′′

2xmN
, (106)

5The kinematics is thus different to the usual terrestrial DIS, because in terrestrial experiments with electron beams
one has pCM > mN > me. In contrast, we have DM playing the role of the electron projectile, and the hierarchy is
instead mDM > pCM > mN .
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where γ = pCM/mN is the Lorentz factor of the boost from the plasma to the DM-parton COM
frame (at our level of approximation equal to the Lorentz factor for the boost from the plasma to
the DM-nucleon COM frame), and v ≃ 1 is the associated velocity.

The approximate momentum loss of the DM is therefore

dlog(pDM)

dt
(107)

≈ nNvMøl

pDM

∫ 1

0
fp(x)

(∫ 0

−4x2p2CM

dσ

dt̂′′
δpDMdt̂

′′

)
dx

≈ −nNvMøl

2pDMmN

∫ 1

0

fp(x)

x

(∫ 0

−4x2p2CM

dσ

dt̂′′
t̂′′dt̂′′

)
dx,

≈ −nNvMøl

2pCM

√
ŝ

∫ 1

0

fp(x)

x

(∫ 0

−4x2p2CM

dσ

dt̂′′
t̂′′dt̂′′

)
dx,

where fp(x) is the parton distribution function for parton p, vMøl ≃ 1, and

nN ∼ Max
[
(mNT )

3/2e−mN/T , YBT
3
]
, (108)

is the nucleon density (which is set by the baryon asymmetry, YB ≈ 10−10, at late times). It is
also useful to remember the relation, ∫ 1

0

∑
p

xfp(x)dx = 1, (109)

coming from the physical requirement that the sum over the partonic momenta should equal the
total nucleon momentum. This implies

∫ 1
0 xfp(x) ≤ 1, which we shall use below.

We now consider DM interacting with a quark in the nucleon. We take the cross section from
Eq. (82), with Mandelstam and momenta in the DM-parton COM frame. We substitute this into
Eq. (107) and find, assuming mh > mϕ > mf , a momentum loss

dlog(pDM)

dt
∼
nNλ

2
hϕλ

2v4ϕm
2
f

p3CMŝ
3/2

∫ 1

0
dx
ff (x)

x3

∫ 0

−4x2p2CM

dt̂′′
(t̂′′ − 4m2

f )t̂
′′

(t̂′′ −m2
ϕ)

2(t̂′′ −m2
h)

2

∼
nNλ

2
hϕλ

2v4ϕm
2
f

ŝ3/2

{∫ mf
pCM

0
dx[xff (x)]

m2
fpCM

m4
hm

4
ϕ

+

∫ mϕ
pCM

mf
pCM

dx[xff (x)]
x2p3CM

m4
hm

4
ϕ

+

∫ mh
pCM

mϕ
pCM

dx[xff (x)]
1

x2m4
hpCM

+

∫ 1

mh
pCM

dx[xff (x)]
1

x6p5CM

}

≲
nNλ

2
hϕλ

2v4ϕm
2
fpCM

ŝ3/2m4
hm

2
ϕ

. (110)

In deriving the above inequality, we have used the following trick: (i) we split the integral over x
into effective regions in which the momentum exchange falls above/below relevant mass thresh-
olds, (ii) we then chose xff (x) to be a delta function which maximizes each individual contribu-
tion. The true contribution is necessarily below this due to the condition (109). Thus we avoid
having to explicitly substitute in the parton distribution functions and arrive at the bound in the
final line. Then demanding our upper bound on the momentum loss be below the Hubble rate, we
find a sufficient condition on the coupling

λhϕ ≲
102

λ

(
GeV

mf

)( mDM

108 GeV

)( mϕ

10 GeV

)( Tn
10 GeV

)1/2( TRH

10 GeV

)1/2(102 GeV

vϕ

)2

,

(111)
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Figure 7: One loop correction contributing to the beta function of the λhx coupling.

where the constraint comes from highest applicable temperature T ∼ 0.1 GeV. Note we have
chosen a somewhat different benchmark point, which for this process leads to a numerically stricter
constraint. Also note the constraints for parameter points with mϕ > mh are not stricter than the
above. So we are safe.

Let us now consider DM interacting with a gluon in the nucleon. We can take our partonic
cross section to be as in Eq. (87). Consider again mh > mϕ, then the momentum loss from DIS is

dlog(pDM)

dt
∼
nNα

2
sλ

2λ2hϕv
4
ϕ

ŝ3/2

{∫ mϕ
pCM

0
dx[xff (x)]

x4p5CM

m4
hm

4
ϕ

+

∫ mh
pCM

mϕ
pCM

dx[xff (x)]
pCM

m4
h

+

∫ 1

mh
pCM

dx[xff (x)]
1

x4p3CM

log

(
1 +

4x2p2CM

m2
h

)}

≲
nNα

2
sλ

2λ2hϕv
4
ϕpCM

ŝ3/2m4
h

, (112)

where we have used a similar trick as above. Thus a sufficient condition for the momentum loss
to be below Hubble reads

λhϕ ≲
10

λ

( mDM

108 GeV

)( TRH

10 GeV

)1/2( Tn
10 GeV

)1/2(102 GeV

vϕ

)2

, (113)

where the constraint again comes from the highest applicable temperature T ∼ 0.1 GeV. Similar
weak conditions arise for parameter space in which mϕ > mh, so we are safe. Although we have
dealt with nucleons, scatterings with lighter QCD bound states such as pions would in principle
also occur. Around the QCD cofinement temperature, their number density is unsuppressed com-
pared the nucleons. However, the constraints we derived above would be very weak even if we
artificially set YB = 1. Hence, we expect also DIS with pions and other light QCD bound states
to give only weak limits, and hence no substantial DM momentum loss.

C.1.3 Direct coupling of the DM with the Higgs

Due to diagrams of the type shown in Fig. 7, after some running under the renormalization group
equations (RGEs), we expect also a portal coupling between the DM and the SM Higgs

L ⊃ −λhx|H|2X2, (114)

with λhx ∼ λhϕ as λ ∼ 1. This interaction does not lead to any more stringent constraint on the
model than what has been considered above. For example, with regard to the diagrams control-
ling t-channel scatterings with the EW gauge bosons and fermions, there is now no cancellation
between propagators, but vEW enters in numerators instead of vϕ. This compensates and leads to
comparable or weaker limits. Let us anyway run through the most important constraints.
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Scattering with the EW Higgs. — The strongest constraint on scattering with the EW Higgs
again comes from the four point vertex. The differential cross section is given by

dσ

dt̂
∼ λ2hx
p2CMŝ

. (115)

The momentum loss is
dlog(pDM)

dt
∼ nhλ

2
hxpCM

ŝ3/2
. (116)

Assuming T ≳ mh, so that the Higgs number density in the plasma is not suppressed, we find a
resulting sufficient condition to avoid momentum loss

λhx ≲ 10−3
( mDM

108 GeV

)(104 GeV

TRH

)1/4(
10 GeV

Tn

)1/4

, (117)

covering both relativistic and non-relativistic DM in the COM frame. The t-channel diagram
mediating the DM scattering with h leads to much weaker limits.

Scattering with massive EW gauge bosons. — Consider now the scatteringX+V → X+V
via a t-channel h propogator. The coupling (114) leads to a differential cross section

dσ

dt̂
∼ λ2hx
p2CMŝ

(t̂2 − 4t̂m2
V + 12m4

V )

(t̂−m2
h)

2
. (118)

The strongest constraint comes from the ∝ t̂2 term in the numerator, which from the momentum
loss leads to the same limit on λhx, Eq. (117), as for the scattering with the EW Higgs. The term
∝ m4

V eventually leads to a much weaker constraint. To see this, we calculate the corresponding
momentum loss

dlog(pDM)

dt
∼ nV λ

2
hxm

4
V

p3CMŝ
3/2

(
log

[
1 +

4p2CM

m2
h

]
− 4p2CM

m2
h + 4p2CM

)
. (119)

Given the cut-off below T ∼ mV , together with our parameter space of interest which gives
pCM > mh at such temperatures, this translates into a very weak constraint

λhx ≲ 109
( mDM

108 GeV

)3(104 GeV

TRH

)3/2(
10 GeV

Tn

)3/2

, (120)

where we have used Eq. (50), so we are safe from scattering with the massive EW gauge bosons.
Scattering with fermions. — We now consider the λhx induced DM scattering with fermions

via t-channel Higgs exchange. We have

dσ

dt̂
∼
λ2hxm

2
f

p2CMŝ

(4m2
f − t̂)

(t̂−m2
h)

2
. (121)

The momentum loss is dominated by the ∝ t̂ term in the numerator, because if −t̂ is below the
EW scale, there is a m4

h suppression due to the propagator. The momentum loss is given by

dlog(pDM)

dt
∼
nfλ

2
hxm

2
f

p3CMŝ
3/2

(
16p4CM + 8p2CMm

2
h

4p2CM +m2
h

− 2m2
hlog

[
1 +

4p2CM

m2
h

])
. (122)

The strongest constraint occurs for the lowest applicable T , and largest applicable mf . This
occurs when

√
TnTRH coincides withmf around the EW scale, but still results in a weak sufficient

condition

λhx ≲ 103
( mDM

108 GeV

)2(104 GeV

TRH

)3/4(
10 GeV

Tn

)3/4

, (123)
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covering both relativistic and non-relativistic DM in the COM frame. So we are safe from scatter-
ings with fermions.

Scattering with photons and gluons. — The differential cross section arising due to the λhx
coupling and the effective operator (85) or (86) is given by

dσ

dt̂
∼
α2

EM,sλ
2
hx

p2CMŝ

t̂2

(t̂−m2
h)

2
. (124)

The strongest constraints come from the regime pCM > mh, where the momentum loss is given by

dlog(pDM)

dt
∼
nγ,gα

2
EM,sλ

2
hxpCM

ŝ3/2
. (125)

From this, one readily finds a sufficient condition to avoid momentum loss

λhx ≲
10−3

αEM,s

( mDM

108 GeV

)(104 GeV

TRH

)1/4(
10 GeV

Tn

)1/4

, (126)

encompassing both the pCM > mDM and pCM < mDM regimes. So we are safe from scatterings
with gluons and photons.

Scattering with nucleons. — We can also find constraints on λhx from the DIS scatterings
with nucleons. The general formula for the momentum loss in this case has of course already been
derived above. First we considering DIS scatterings with quarks inside the nucleons. Adapting our
cross section in Eq. (121) to the DM-parton COM frame, and using Eq. (107) we find a momentum
loss

dlog(pDM)

dt
∼
nNλ

2
hxm

2
f

ŝ3/2

{∫ mf
pCM

0
dx[xff (x)]

m2
fpCM

m4
h

+

∫ mh
pCM

mf
pCM

dx[xff (x)]
x2p3CM

m4
h

+

∫ 1

mh
pCM

dx[xff (x)]
1

x2pCM

}

≲
nNλ

2
hxm

2
fpCM

ŝ3/2m2
h

. (127)

Demanding our upper bound on the momentum loss not exceed the Hubble rate, we find a suffi-
cient condition on the portal coupling

λhx ≲ 104
(
GeV

mf

)( mDM

108 GeV

)( Tn
10 GeV

)1/2( TRH

10 GeV

)1/2

, (128)

coming from T ∼ 0.1 GeV. So we are safe.
We can also check the constraint from DIS with the gluons. Adapting the cross section in

Eq. (124) to the DM-parton COM frame, we find a momentum loss

dlog(pDM)

dt
∼ nNα

2
sλ

2
hx

ŝ3/2

{∫ mh
pCM

0
dx[xff (x)]

x4p5CM

m4
h

+

∫ 1

mh
pCM

dx[xff (x)]pCM

}

≲
nNα

2
sλ

2
hxpCM

ŝ3/2
. (129)

This results in a constraint

λhx ≲ 10
( mDM

108 GeV

)( Tn
10 GeV

)1/2( TRH

10 GeV

)1/2

. (130)

So we are safe.
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C.2 Non-Relativistic DM

We now turn to considering scatterings when the DM is non-relativistic as measured in the plasma
frame. This corresponds to temperatures,

T ≲
TnTRH

mDM

(131)

≈ 1 MeV

(
108 GeV

mDM

)(
TRH

104 GeV

)(
Tn

10 GeV

)
.

We need to check whether these lead to a stronger constraints on the portal couplings than what
we have found above.

Consider first scattering with radiation. In our simplified treatment we take the particles in the
plasma frame to have four momenta

p1 = (mDM, 0, 0,mDMvDM) (132)

p2 = (T, 0, 0,−T ). (133)

Consequently we have
ŝ ≈ m2

DM + 2mDMT (1 + vDM), (134)

and
pCM ≈ T (1 + vDM) ≈ T. (135)

To go into the COM frame we must boost with a non-relativistic velocity

u =
pDM − T

mDM + T
≃ pDM

mDM

. (136)

In the COM frame, as before, we have four-momenta

p′1 = (
√
m2

DM + p2CM, 0, 0, pCM) (137)

p′2 = (pCM, 0, 0, −pCM) (138)

p′3 = (
√
m2

DM + p2CM, 0, pCMsθ, pCMcθ), (139)

p′4 = (pCM, 0, −pCMsθ, −pCMcθ). (140)

Following the scattering, boosting back into the plasma frame via a Gallilean transformation one
finds

δpDM = − t̂

2pCM

, (141)

where we have again used t̂ = −2p2CM(1− cθ). We therefore estimate the momentum loss as

dlog(pDM)

dt

∣∣∣
bath

≈ nbathvMøl

pDM

∫ 0

−4p2CM

dt̂
dσ

dt̂
δpDM (142)

≈ −nbathvMøl

2pDMpCM

∫ 0

−4p2CM

dt̂
dσ

dt̂
t̂. (143)

(As pCM ≈ T and vMøl ≃ 1, this is the same as Eq. (55) but differs to Eq. (56) for relativistic DM.)

Scattering with photons. — We can immediately apply our results to non-relativistic DM
scattering with photons (for all our parameter space DM is still relativistic at the QCD phase
transition). For the λhϕ mediated process we can use the cross section in Eq. (87) with appropriate
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replacement of the strong force associated quantities with their electromagnetic analogues. The
momentum loss is then

dlog(pDM)

dt
∼
nγα

2
EMλ

2λ2hϕv
4
ϕp

5
CM

pDMŝm4
hm

4
ϕ

. (144)

Demanding this be below the Hubble rate implies the easily satisfied

λhϕ ≲
1016

λ

( mDM

108 GeV

)9/2(105 GeV

vϕ

)2(
104 GeV

TRH

)(
10 GeV

Tn

)3

, (145)

in the appropriate non-relativistic regime pCM ≃ T . In deriving the above, we have set T to its
largest value in the non-relativistic regime, T ≃ TnTRH/mDM, and assumed mϕ ≃ TRH. Because
pCM ≪ m4

h,m
4
ϕ, the resulting limit is much weaker than for relativistic DM, Eq. (89).

The picture repeats. For the λhx mediated process we can use the cross section (124) adapted
for the photons. The momentum loss is given by

dlog(pDM)

dt
∼ nγα

2
EMλ

2
hxp

5
CM

pDMŝm4
h

, (146)

which again gives a very weak constraint

λhx ≲ 1018
( mDM

108 GeV

)9/2(104 GeV

TRH

)3(
10 GeV

Tn

)3

. (147)

Thus we are safe from scatterings with photons.

Scattering with relativistic fermions. — We first consider non-relativistic DM scattering with
relativistic fermions (for our standard benchmark parameter values the DM turns non-relativistic
at T a little above the electron mass). For the λhϕ mediated process we can use the cross section
(82). The momentum loss is

dlog(pDM)

dt
∼
nfλ

2λ2hϕv
4
ϕm

2
fp

3
CM

pDMŝm4
hm

4
ϕ

. (148)

We can then substitute mf = me as this is the only SM fermion of relevance in this regime. By
demanding the momentum loss be below the Hubble rate find

λhϕ ≲
1014

λ

( mDM

108 GeV

)7/2(105 GeV

vϕ

)2(
10 GeV

Tn

)2

, (149)

where the strongest constraint again comes from T ≃ TnTRH/mDM, and we have set mϕ ∼ TRH.
For the λhx mediated process we instead use the cross section (121) to find the momentum loss,

dlog(pDM)

dt
∼
nfλ

2
hxm

2
fp

3
CM

pDMŝm4
h

. (150)

The resulting constraint is

λhx ≲ 1016
( mDM

108 GeV

)7/2(104 GeV

TRH

)2(
10 GeV

Tn

)2

, (151)

which does not pose any problems.

Scattering with non-relativistic fermions. — We can also consider scattering with non-relativistic
fermions. In the current context this means electrons and nucleons. As we shall see below, the low
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pCM here means we can take the DM to be effectively interacting with the entire nucleon rather
than probing its internal structure. The number density of the fermions is taken approximately as

nf ∼ Max
[
(mfT )

3/2e−mf/T , YBT
3
]
, (152)

where the electron density at low T is approximately related to the baryon asymmetry, YB, in order
for the Universe to be net EM charge neutral. In our simplified treatment we take the particles in
the plasma frame to have four momenta

p1 ≈ (mDM, 0, 0,mDMvDM) (153)

p2 = (mf , 0, 0, 0), (154)

as the SM fermion momentum is always negligible compared to pDM. Here we have

ŝ ≈ m2
DM +m2

f + 2mDMmf , (155)

and
pCM ≃ mf

mDM

pDM ≃ mDMmfT

TnTRH

. (156)

As before we have

δpDM = − t̂

2pCM

, (157)

and the approximate momentum loss

dlog(pDM)

dt

∣∣∣
bath

≈ nfvMøl

pDM

∫ 0

−4p2CM

dt̂
dσ

dt̂
δpDM (158)

≈ − nfvMøl

2pDMpCM

∫ 0

−4p2CM

dt̂
dσ

dt̂
t̂. (159)

The relative velocity is approximately

vMøl ∼ Max

[
mDMT

TnTRH

,

√
T

mf

]
. (160)

The first term is simply the speed of the DM in the plasma frame and the second the fermion speed.
The latter follows from the usual non-relativsitic relation with the kinetic energy of the fermion,
taken to be ∼ T (as these are still kinetically coupled to the photon bath). Throughout this regime
the electrons are always faster than the DM while the nucleons are slower down to keV scales,
even assuming our extremal benchmark parameter point.

Using our previously derived cross sections for the scattering with fermions, we find the mo-
mentum loss for the λhϕ dependent scattering,

dlog(pDM)

dt
∼
nfλ

2λ2hϕv
4
ϕy

2
fm

4
fpCMvMøl

pDMŝm4
hm

4
ϕ

, (161)

where yf ≡ 1 (∼ 0.2) for electrons (nucleons) as the latter are composite and one must include
the effective Higgs-nucleon coupling [81]. For the λhx dependent scattering we have momentum
loss

dlog(pDM)

dt
∼
nfλ

2
hxy

2
fm

4
fpCMvMøl

pDMŝm4
h

. (162)
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From these, the strictest bounds on the couplings come from scatterings with the nucleons at the
highest temperatures for which DM is non-relativistic in the plasma frame T ≃ TnTRH/mDM.
They read

λhϕ ≲
1011

λ

( mDM

108 GeV

)2(105 GeV

vϕ

)2 ( mϕ

104 GeV

)2(104 GeV

TRH

)1/2(
10 GeV

Tn

)1/2

,

(163)

and

λhx ≲
1013

λ

( mDM

108 GeV

)2(104 GeV

TRH

)1/2(
10 GeV

Tn

)1/2

(164)

We are therefore safe.

C.3 Summary of the DM scattering constraints

We thus conclude our examination of momentum loss. The strongest constraint in general came
from hard X + ϕ → X + ϕ scatterings at T ≈ mϕ ∼ TRH, given after a careful derivation in
Eq. (59), and given via an approximation in the main paper as Eq. (11). If ϕ is complex, scattering
with the angular mode must also be accounted for TRH ≳ 10Tn, compare (68) and (59). The
strongest constraints on the portal couplings, in contrast, arose from hard scatterings with the EW
HiggsX+h→ X+ϕ,X+h→ X+h in the regime of relativistic DM in the plasma frame. These
limits were given in Eqs. (75) and (117) and are easily compatible with the couplings required for
rapid ϕ decay following the PT, given in Eqs. (24), (25), (27), and (28).

D Analytic Derivation of the Coupling and Mass Scales

In the following, it will be useful to remember that the temperature of matter-radiation equality,
the DM mass, and yield are related by

YDMmDM =
3

4

g∗(T
eq
γ )

g∗s(T
eq
γ )

T eq
γ − YBmN (165)

≃ 0.54T eq
γ ≃ 0.43 eV. (166)

D.1 The quartic coupling

In order to have NCDM, the coupling λ cannot be arbitrarily small. Requiring v(teq), Eq. (10), be
above some reference value vlim we find

λ ≳
( vlim
10−4

)1/2 ( cvac
10−2

)1/4 ( g∗
102

)5/12(TRH

Tn

)(
TRH

Tinfl

)
, (167)

where we have used the DM yield, Eq. (9), to relate temperatures and mass scales appearing in
the expressions. The temperature ratios appearing above are at their minima, unity, precisely at
the vacuum dominated border Tn = TRH = Tinfl, so we immediately get a lower bound on λ. The
coupling λ is of course limited from above by the usual arguments from perturbitivity.
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Figure 8: Heavy non-cold DM from fast bubble walls in the plane of vϕ vs DM mass mDM, for
Tn < Tinfl. The heavy DM is efficiently produced by fast bubble walls (outside of the green area),
compatible with Lyman-α bound (outside of the blue area - here taking mWDM > 3 keV), and
kinetically decoupled from the bath (outside of the orange area). Bounds from kinetic equilibration
via scatterings of DM with light radial and angular modes σ and a, Eqs. (61) and (68), have also
been indicated. Future 21-cm reach is shown with a dashed blue line. Amount of supercooling is
shown with dotted purple lines. At fixed DM abundance, the decrease of the DM-scalar mixing
λ (from left to right) leads to an increase of the phase transition scale vϕ which implies a longer
redshift of the DM momentum, and results in colder DM. In red, the yield YDM in Eq. (9) is
insufficient to explain DM. In brown, the Bodeker&Moore criterium [37] PLO > Λvac is satisfied
and the acceleration of bubble walls is stopped by thermal friction (we chose ga = 20 and cvac =
0.01). In gray (right panel), the reheating temperature is larger than the DM freeze-out temperature
TRH > TFO and DM goes back into thermal equilibrium (we assumed the maximal annihilation
cross-section allowed by unitarity).

D.2 The DM mass scale

To avoid a return to kinetic equilibrium following the PT, we impose Eq. (11), which gives a lower
bound on the DM mass

mDM > 8.0× 107 GeV

× g
2/3
ϕ λ2/3

( cvac
10−2

)1/6 ( g∗
102

)1/6( M
2/3
Pl T

eq 1/3
γ

1.7× 109 GeV

)(
TRH

Tn

)1/3(TRH

Tinfl

)2/3

. (168)

Here we have explicitly included the factor (M2
PlT

eq
γ )1/3 ≃ 1.7 × 109 GeV, to show the scaling

with these cosmological quantities. The temperature ratios appearing are at least one, and λ is
bounded from below, so we obtain a lower bound on the DM mass.

Conversely, we can use the anti-adiabaticity condition, coming from Eqs. (5) and (8), to find
an upper bound on the DM mass

mDM <
9.4× 108 GeV

λ2/3

×
( cvac
10−2

)1/3( 30

AbubβH

)2/3
(

M
2/3
Pl T

eq 1/3
γ

1.7× 109 GeV

)(
Tn
TRH

)1/3

, (169)

where the temperature ratio is now at most unity. Thus from Eqs. (169), (168), (167), together with
perturbativity of the coupling, we arrive at the DM mass scale mDM ∼ (0.1 − 1) (M2

PlT
eq
γ )1/3 ∼

(108 − 109) GeV.
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D.3 The scale of the VEV

As shown in Fig. 8, fast bubble walls produce NCDM if the VEV of the scalar driving the PT
is around the electroweak scale vϕ ∼ 0.1 TeV. In order to explain this coincidence, we can also
derive this scale analytically. Avoiding kinetic equilibrium gives a lower bound

vϕ > 110 GeV
g
1/3
ϕ

λ2/3

( g∗
102

)5/12 ( cvac
10−2

)1/12(M1/3
Pl T

eq 2/3
γ

1.2 GeV

)(
TRH

Tn

)5/3(TRH

Tinfl

)1/3

. (170)

The requirement for anti-adiabaticity gives an upper bound

vϕ <
360 GeV

λ4/3

( g∗
102

)1/2 ( cvac
10−2

)1/6( 30

AbubβH

)1/3
(
M

1/3
Pl T

eq 2/3
γ

1.2 GeV

)(
TRH

Tn

)4/3

. (171)

The range of the VEV in the NCDM region — which is centered around Tn ∼ Tinfl — is therefore
roughly vϕ ∼ (102 − 103)(MPlT

eq 2
γ )1/3 ∼ (102 − 103) GeV. Indeed, in the case Tn ≥ Tinfl

the range of the VEV can only be tightened by considering some Tn > Tinfl. While in the case
Tn < Tinfl, we can restrict the range of the VEV by requiring the DM to have some non-negligible
v(teq) = vlim, which implies a given temperature ratio TRH/Tn. For a lower bound, we thus have

vϕ > 115 GeV × g
1/3
ϕ λ

(
102

g∗

)5/18(
10−2

cvac

)1/3(
10−4

vlim

)5/6
(
M

1/3
Pl T

eq 2/3
γ

1.2 GeV

)
(172)

And for an upper bound we have

vϕ < 370 GeV

(
102

g∗

)1/18(
10−2

cvac

)1/6(
10−4

vlim

)2/3(
30

AbubβH

)1/3
(
M

1/3
Pl T

eq 2/3
γ

1.2 GeV

)
. (173)

Thus conclusively showing that the range of the VEV in the current NCDM region is approxi-
mately vϕ ∼ (102 − 103)(MPlT

eq 2
γ )1/3 ∼ (102 − 103) GeV.

On the other hand, ignoring the requirement of being close to the current NCDM bound, we
can find where the bounds (170) and (171) intersect, in the case Tn < Tinfl. This gives the absolute
upper bound,

vϕ ≲
50 TeV

g
4/3
ϕ λ4

( g∗
102

)5/6 ( cvac
10−2

)1/2( 30

AbubβH

)5/3
(
M

1/3
Pl T

eq 2/3
γ

1.2 GeV

)
, (174)

which corresponds to the peak of the allowed region in Fig. 8.
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