Single crystal growth of PrNiGe₂ compounds

Kousei Ishiwatari¹, Kaito Hoshii¹, Keisuke Ida¹ and Masashi Ohashi²*

1 Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

2 Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

* ohashi@se.kanazawa-u.ac.jp

August 15, 2022

International Conference on Strongly Correlated Electron Systems
(SCES 2022)

Amsterdam, 24-29 July 2022
doi:10.21468/SciPostPhysProc.?

Abstract

We report on the magnetic characterization of a praseodym intermetallic $PrNiGe_2$. Several single crystals are grown by the Czochralsky method from Ni- deficient sample as the initial one. X-ray analysis of the sample indicated the $CeNiSi_2$ -type structure as the only phase. The unit-cell volume V tends to decrease as decreasing x. The magnetic measurements clearly indicate that $PrNi_xGe_2$ exhibits a ferromagnetic orderings at 14 K, which is independent with of composition of Ni. A strong anisotropy along the three principal crystallographic directions was observed, reflecting the orthorhombic symmetry of the crystal structure. The b-axis was found to be the easy axis of magnetization.

1 Introduction

A lot of investigations have been reported on a series of ternary compounds $R_x T_y X_z$ (R: rare earth, T: transition metal and X: p element). In these compounds, the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction and Kondo effect compete each other. Competition between the RKKY interaction and Kondo effect was discussed by Doniach as a function of $|J_{cf}|D(\epsilon_F)$, where $|J_{cf}|$ is the magnitude of the magnetic c-f exchange interaction and $D(\epsilon_F)$ is the density of the states at the Fermi energy ϵ_F [1–6].

The ternary compounds $CeTX_2$ (T = transition metal and X = Si, Ge, Sn) form a large family having the orthorhombic $CeNiSi_2$ -type layered structure, which is constructed from deformed fragments of the $CeGa_2Al_2$ and α -ThSi $_2$ structures [7–9]. The lattice parameter along b-axis is extremely large compared to those along a- and c- axes, and it is expected that highly anisotropic magnetic property exists. Indeed, these compounds have received considerable interest of a great variety of magnetic behaviors [10–12]. There are not so many reports on single crystal growth due to the difficulty in obtaining single phase samples. On the other hand, the magnetic properties of polycrystals of RT_xGe_2 (T: Fe, Co, Ni, Cu, x < 1) have been investigated in a previous study, and it seems to be easier to grow polycrystals when the amount of T is reduced [13–16]. $PrNiGe_2$ is known to order ferromagnetically below 13 K [17]. In this study, we have grown a single crystal of $PrNi_xGe_2$ and report the anisotropic magnetic properties here.

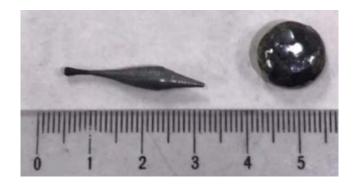


Figure 1: Photograph of a single crystal ingot of PrNi_{0.8}Ge₂.

2 Experimental

The polycrystalline samples of $PrNi_xGe_2$ (x=0.6,0.8, and 1.0) were prepared as starting materials by arc-melting praseodym (99.9%), nickel (99.99%) and germanium (99.999%) in a tetra-arc furnace under argon atmosphere. To improve homogenity, the ingot was turned over and remelted several times. The weight loss is negligible. Single crystals were grown by a Czochralski pulling method. The pulling parameter was kept constant during the growth (pulling rate: 10 mm/h; seed rotation speed: 10 rpm; crucible-rotation speed: 5 rpm). An ingot was 2-3 mm in diameter and 30 mm in length as shown in Figure 1. Its homogeneity and chemical composition were checked by microprobe analysis, which was made using JEOL SEM and Oxford Instrument EDX at Venture Business Laboratory Kanazawa University, based on the measurement of the $Ce L_{\alpha 1}$, $Ni K_{\alpha 1}$ and $Ge K_{\alpha 1}$ X-ray emission lines. The experimental atomic percentages of $PrNi_xGe_2$ are obtained to be Pr 25.3%, Ni 23.7% and Ge 50.9% for x=1.0, Pr 30.0%, Pr 30.0%

The samples were checked by conventional x-ray powder diffraction experiments using Cu- K_{α} radiation. The single crystalline state was confirmed using back-scattering Laue technique. The dc magnetic susceptibility was measured in the temperature range 2.0-300 K using a Quantum Design MPMS-5 superconducting quantum interference device magnetometer. The specific heat was measured by utilizing the Heat Capacity option on a Physical Properties Measurement System.

3 Results and Discussion

Figure 2 shows X-ray powder diffraction pattern of $PrNi_xGe_2$. All diffraction peaks can be indexed in the orthorhombic $CeNiSi_2$ type layered structure (space group Cmcm), as shown in the calculated spectrum. The determined lattice parameters a, b, and c are gathered in Table 1, and are consistent with those of previous reports [13, 17]. The unit-cell volume V tends to decrease as decreasing x.

The specific heat of $PrNi_xGe_2$ single crystal is shown in Figure 3. All samples show an anomaly reaching a maximum of ~ 14 J mol $^{-1}$ K $^{-1}$ at 12 K. It is consistent with the previous result of $PrNiGe_2$ polycrystalline sample [17], which is associated with the onset of ferromagnetic order. A small anomaly is observed only in $PrNi_{0.6}Ge_2$ at ~ 17 K, indicating some magnetic impurity may be included because the sample deviate from stoichiometry.

Figure 4 shows the temperature dependence of M/H in a magnetic field of 1 kOe and the

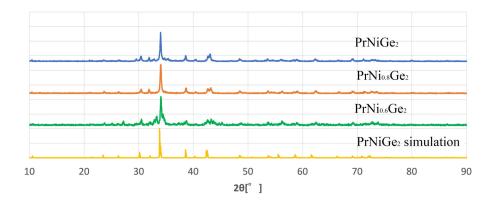


Figure 2: The X-ray powder diffraction pattern of $PrNi_xGe_2$ and the calculated spectrum.

Table 1: Lattice parameters in the orthorhombic structure of XRD patterns and the unit cell volume of $PrNi_xGe_2$.

x	a (Å)	b (Å)	c (Å)	V (Å ³)
1.0	4.25	16.73	4.30	305.9
0.8	4.25	16.80	4.18	298.1
0.6	4.25	16.80	4.18	288.9

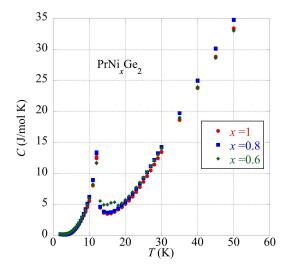


Figure 3: The specific heat of $PrNi_xGe_2$.

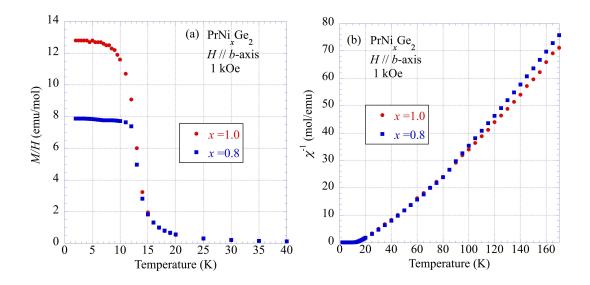


Figure 4: (a) M/H and (b) the inverse magnetic susceptibility as a function of temperature in a magnetic field of 1 kOe along b—axis of $PrNi_rGe_2$.

	PrNiGe ₂	PrNi _{0.8} Ge ₂	PrNi _{0.8} Ge ₂	PrNi _{0.8} Ge ₂
	b-axis	a-axis	b-axis	c-axis
Θ (Κ)	46.1	-6.1	48	-6.0
μ_{rmeff} $(\mu_{ m B})$	3.47	3.06	3.34	2.99
$\chi_0 (10^{-3} \text{emu/mol})$	1.93	1.63	1.88	1.78
$M[5T, 5K] (\mu_B)$	2.55	0.679	2.89	0.982

Table 2: Magnetic data for PrNi_xGe₂ compounds.

inverse magnetic susceptibility of $PrNi_xGe_2$. A strong decrease in magnetization is observed at around 13 K for both x=1.0 and 0.8 samples, which is consistent with the result of specific heat measurement. The magnetic susceptibilities of those compounds in the paramagnetic state are fitted using the following formula:

$$M/H(T) = \frac{N\mu_{\text{eff}}^2}{3k_{\text{R}}(T-\Theta)} + \chi_0,\tag{1}$$

where N is the Avogadro number, $k_{\rm B}$ is Boltzmann's constant, Θ is the paramagnetic Curie temperature, and χ_0 is a temperature-independent part of the magnetism including the diamagnetic core correction, the Pauli susceptibility of the electron gas, or the Van Vleck temperature independent paramagnetism. Θ , χ_0 , and the effective magnetic moment $\mu_{\rm eff}$ are given in Table 2. The χ_0 values are relatively large for both x=1.0 and 0.8 compounds while the $\mu_{\rm eff}$ values are in good agreement with the Hund's rule ground state for \Pr^{3+} ion (3.58 $\mu_{\rm B}$).

The isothermal magnetization of $PrNi_xGe_2$ measured at T=5.0 K along the three principal crystallographic directions is shown in figure 5 (a). For H//b-axis the magnetization increases more rapidly with field than along the other two directions, thus indicating the b-axis as the easy axis of magnetization. Hysteretic behaviour is observed especially along b-axis, confirming the ferromagnetic ground state. At 5.0 K the magnetization saturates to 2.55 μ_B/Pr and 2.89 μ_B/Pr for $PrNiGe_2$ and $PrNi_{0.8}Ge_2$, respectively, which is larger than that of a $PrNiGe_2$ porycrystalline sample [18]. The saturation moment of the free Pr^{3+} ion $(g_JJ\mu_B=3.20\mu_B)$ is relatively close to the saturation magnetization of $PrNi_{0.8}Ge_2$.

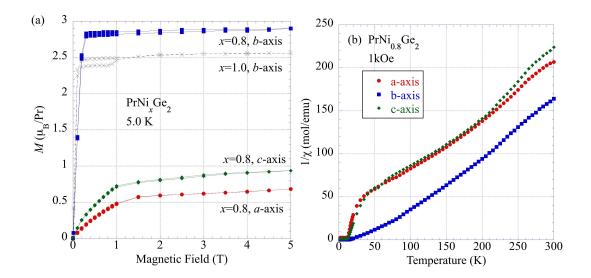


Figure 5: (a) The inverse magnetic susceptibility as a function of temperature (b) The field dependence of the magnetization of PrNi_{0.8}Ge₂ at 5.0 K in a magnetic field of 1 along *a*-, *b*-, and *c*-axes of PrNi_{0.8}Ge₂.

Figure 5 (b) show the temperature dependences of the inverse magnetic susceptibility of $PrNi_{0.8}Ge_2$. The anisotropy in the magnetic susceptibility along the three principal directions is clearly evident. The magnetic susceptibilities in the paramagnetic state are fitted using the formula (1). The Weiss temperature Θ is positive for b-axis, as expected for a ferromagnetic ordering compound. On the other hand, Θ is negative for a- and c-axes.

4 Summary

In this study $PrNiGe_2$ single crystals are grown by the Czochralsky method from Ni- deficient sample as the initial one. X-ray analysis of the sample indicated the $CeNiSi_2$ -type structure as the only phase. The specific heat and the magnetic measurements clearly indicate that $PrNi_xGe_2$ exhibits a ferromagnetic orderings at 12 K, which is independent with of composition of Ni. A strong anisotropy along the three principal crystallographic directions was observed, reflecting the orthorhombic symmetry of the crystal structure. The b-axis was found to be the easy axis of magnetization. From the result of the magnetic susceptibility along the b- plane, the effective magnetic moment is close to the value expected for the free Pr^{3+} ions, while a temperature-independent part of the magnetism remains.

Acknowledgements

This work was financially supported by Takahashi industrial and economic research foundation, Sibuya science culture and sports foundation, and Yamada science foundation.

References

[1] S. Doniach, Valence Instabilities and Related Narrow Band Phenomena, p. 169, Plenum, New York (1977).

[2] Y. Uwatoko, I. Umehara, M. Ohashi, T. Nakano and G. Oomi, *Handbook on the Physics and Chemistry of Rare Earths*, vol. 2, chap. 252, p. 1, North-Holland, Amsterdam (2012).

- [3] M. Ohashi, G. Oomi, S. Koiwai, M. Hedo and Y. Uwatoko, Fermi-liquid instability of $CeRh_2Si_2$ near a pressure-induced quantum phase transition, Phys. Rev. B **68**(14), 144428 (2003).
- [4] H. Miyagawa, G. Oomi, M. Ohashi, I. Satoh, T. Komatsubara, M. Hedo and Y. Uwatoko, Electronic states of single crystal CeAl₂ near the pressure-induced quantum critical point, Phys. Rev. B 78(6), 064403 (2008).
- [5] M. Ohashi, H. Miyagawa, T. Nakano, G. Oomi, V. Sechovsky, I. Satoh and T. Komatsubara, *Thermal and magnetic properties in* $Ce_{1-x}Er_xAl_2$ *intermetallic compounds*, J. Phys. Soc. Jpn. **83**, 024701 (2014).
- [6] M. Ohashi, M. Nagare, Y. Adachi, K. Kobayashi, H. Miyagawa, G. Oomi and K. Shirasaki, Effect of pressure on the electrical resistivity of Ce_{1-x}Er_xAl₂ spin glass, J. Phys. Soc. Jpn. 89, 074708 (2020).
- [7] A. Iandelli and A. Palenzona, *Handbook on the Physics and Chemistry of Rare Earths*, vol. 2, chap. 13, p. 1, North-Holland, Amsterdam (1979).
- [8] K. Ohashi, M. Ohashi, M. Sawabu, M. Miyagawa, K. Maeta and T. Yamamura, Magnetic properties of the UNiGe₂ at low temperature, Journal of Physics: Conference Series 969(012101) (2018).
- [9] K. Ohashi, K. Maeta, M. Sawabu, M. Ohashi and T. Yamamura, *Systematic study of the UNiX*₂ *ternary compounds (X=C, Si, Ge)*, Nuclear Science and Technology **5**, 116 (2018).
- [10] M. Ohashi, G. Oomi, K. Ishida, I. Satoh, T. Komatsubara, T. Kawae and K. Takeda, *Single-crystal growth of layered structure Ce-Ni-Ge ternary compounds*, J. Alloys and Compounds **408-412**, 84 (2006).
- [11] M. Ohashi, G. Oomi and I. Satoh, *AC magnetic susceptibility studies of single crystalline CeNiGe*₂ *under high pressure*, J. Phys. Soc. Jpn. **76**(11), 114712 (2007).
- [12] T. Nakano, M. Ohashi, G. Oomi, K. Matsubayashi and Y. Uwatoko, *Pressure-induced super-conductivity in the orthorhombic kondo compound CePtSi*₂, Phys. Rev. B **79**(17), 172507 (2009).
- [13] M. Francois, G. Venturini, B. Malaman and B. Roques, *Noweaux isotypes de CeNiSi*₂, dans les systemes R-M-X (R=La-Lu, M=metaux des groupes 7 a 11 et X=Ge, Sn). i compositions et parametres cristallins, J. Less-Commom Metals **160**, 197 (1990).
- [14] I. Das and E. V. Sampathkumaran, Magnetic behavior of the interstitial alloys of the type, CeM_xGe_2 , $(M = Fe, Co, Ni \ and \ Cu)$, Solid State Commun. **83**(10), 765 (1992).
- [15] M. Ohashi, G. Oomi, K. Ishida and I. Satoh, *Single-crystal growth of RNiX*₂ (R = U and Ce, X = Si and Ge) ternary compounds, J. Phys. Soc. Jpn. Suppl. **75**, 124 (2006).
- [16] A. Gil, Magnetic phase transitions and magnetic structures in RT_xX_2 , $RSn_{1+x}Ge_{1-x}$ and RSn_2 compounds, Phase transitions **91**(2), 140 (2018).
- [17] J. L. Snyman and A. M. Strydom, *Studying ferromagnetism in PrNiGe*₂ through the magnetocaloric effect, Journal of Applied Physics **113**, 17E135 (2013).

[18] A. Gil, A. Szytula, Z. Tomokowicz, K. Wojciechowski and A. Zygmunt, *Magnetic properties of RNiSi*₂ and *RNiGe*₂ compounds, Joournal of Magnetism and Magnetic Materials **129**, 271 (1994).