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We present a comprehensive study of the velocity operator, v̂ = i
~ [Ĥ, r̂], when used in crystalline

solids calculations. The velocity operator is key to the evaluation of a number of physical properties
and its computation, both from a practical and fundamental perspective, has been a long-standing
debate for decades. Our work summarizes the different approaches found in the literature, but
never connected before in a comprehensive manner. In particular we show how one can compute the
velocity matrix elements following two different routes. One where the commutator is explicitly used
and another one where the commutator is avoided by relying on the Berry connection. We work
out an expression in the latter scheme to compute velocity matrix elements, generalizing previous
results. In addition, we show how this procedure avoids ambiguous mathematical steps and how to
properly deal with the two popular gauge choices that coexist in the literature. As an illustration of
all this, we present several examples using tight-binding models and local density functional theory
calculations, in particular using Gaussian-type localized orbitals as basis sets. We show how the the
velocity operator cannot be approximated, in general, by the k-gradient of the Bloch Hamiltonian
matrix when a non-orthonormal basis set is used. Finally, we also compare with its real-space
evaluation through the identification with the canonical momentum operator when possible. This
comparison offers us, in addition, a glimpse of the importance of non-local corrections, which may
invalidate the naive momentum-velocity correspondence.

I. INTRODUCTION

The quantum mechanical velocity operator, v̂, plays
a central role in the evaluation of macroscopic optoelec-
tronic properties of crystalline solids. The velocity ma-
trix elements (VMEs) are generically needed to deter-
mine transitions between band states through several for-
malisms such as Fermi’s golden rule [1] for decay and op-
tical excitation processes or the more general Kubo linear
response theory [2]. Closely related to v̂, the canonical
momentum operator p̂ also plays a key role, but more
from a methodological standpoint. The momentum ma-
trix elements (MME) are, for instance, needed to find
parameter-free effective models within k · p̂ perturbation
theory [3].

It is common to consider the velocity operator as
v̂ = i[Ĥ, r̂] (in atomic units, which we will use through-
out the text), following a classical to quantum mechanics
identification through the Heisenberg equations of mo-
tion (Heisenberg picture). In the cases where Ĥ only
contains the kinetic energy and a potential commuting
with the position operator r̂ (i.e., in absence of spin-
orbit coupling or non-local potentials), to work with v̂
or with p̂ becomes completely equivalent. In coordinate
representation this means that i[H, r] and −i∇r are in-
terchangable.

In the following, we review the state of the art of the
uses and misuses of these two operators as well as the
position operator r̂ when evaluating matrix elements be-
tween band states. Evaluating the commutator matrix
elements presents no problems when dealing with local-

ized states, as in atomic physics, but fundamental diffi-
culties can be found when dealing with Bloch eigenstates
due to rψnk(r) not belonging to the same Hilbert space
as that of the states themselves, ψnk(r). This issue has
been addressed by Gu and coworkers [4], in addition to
presenting an extensive review of the existing p-r rela-
tions (as called in their work) in the literature. Gu et
al. find the correct relation between the momentum (or
velocity for the case when v̂ and p̂ are equivalent) and
position matrix elements:

〈nk| v̂ |n′k′〉v = i[εn(k)− εn′(k′)] 〈nk| r̂ |n′k′〉v
+ Cnk,n′k′ .

(1)

When deriving the previous formula, eigenstates are nor-
malized following the usual mathematical convention of
considering a finite volume v and making wavefunctions
obey periodic boundary conditions (PBCs), therefore not
decaying at the boundaries even if the volume tends to
infinity. The surface term C is calculated on the (hy-
pothetical) surface of the solid. With this is mind, one
can easily convince oneself that the position (also called
dipole) matrix element depends on the origin of coordi-
nates and that C compensates this choice (as the VME
cannot depend on the origin). Eq. (1) above presents a

fundamental view of i[Ĥ, r̂] rather than convenient short-
cut to evaluate the VME, as a challenging integration in
coordinate space is needed on the right side of the equal-
ity. It also remarks the difference with the atomic case,
where the surface term does not appear.

In practice, Bloch eigenstates are very often repre-
sented in a Bloch basis which, in turn, may be expanded
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in a local orbital basis. In this regard, a good effort has
been put in the actual evaluation of the VME over the
last decades. As we will show below, the VME between
same-k Bloch eigenstates can be calculated through the
following expression:

〈nk|v̂|n′k〉v =
∑
αα′

c∗αn(k)cα′n′(k)∇k 〈αk|Ĥ|α′k〉v

+
∑
αα′

c∗αn(k)cα′n′(k)
[
iεn(k)Aαα′(k)

− iεn′(k)A∗α′α(k)
]
,

(2)

where the c’s are the coefficients of the expansion of
eigenstates in a generic |αk〉v Bloch basis and Aαα′(k) is
the Berry connection associated with such a Bloch basis.
There is a vast literature where one can find expressions
seemingly related to Eq. (2) with implementations in-
volving local orbital basis sets. Our derivation of Eq. (2)
does not need the aid of these type of basis sets, thus
constituting a generalization of previous works.

The first term of Eq. (2) is sometimes referred to as the
Peierls approximation (we will also call it the “k-gradient
approximation”), while the second term is needed to de-
liver the full matrix element. The suppression of the sec-
ond and third terms, as we will show later, can lead to
large and uncontrolled quantitative errors. This issue was
first explored by Pedersen et al. [5], by trying to com-
plete the Peierls approximation within a tight-binding
scheme. Paul et al. [6] noted the importance of using the
Peierls approximation with the appropiate gauge choice
in a Wannier basis. Later, Wang et al. [7] derived the
equivalent of Eq. (2) for the specific case of a Wannier
basis with the aid of perturbation theory. Years after,
Tomczak et al. [8] independently worked out an expres-
sion for VMEs, introducing an intra-unit cell correction
to ∇kHαα′(k) (we will see later that this can be under-
stood as a consequence of the gauge choice), and adding
extra terms to this quantity similar to those in Eq. (2).
Tomczak et al. contribution was later replicated, perhaps
in a clearer and more complete way, in the work of Lee
et al. [9], who presented a complete expression similar to
that of Eq. (2) for a general, nonorthonormal local ba-
sis. Actually, as originally reported in Ref. [9], the Berry
connection did not appear. The fact that Eq. (2) can be
recast in this form will be shown below in this work, thus
generalizing the evaluation of the VME to any basis, not
necessarily comprised of local orbitals.

The relative importance of every term in Eq. (2) is an
open issue, mainly because it depends on the specific ba-
sis and gauge choice that is used. We note a very recent
work by Ibanez-Aspiroz et al. [10] exploring this issue in
the context of a Wannier-function interpolation scheme.
They have found that neglecting inter-atomic contribu-
tions when evaluating VMEs can lead to important errors
in the evaluation of optical properties. Here we perform
a similar analysis by means of density functional the-
ory (DFT) calculations relying on Gaussian-type orbitals
(GTOs).

In the light of Eq. (1), Eq. (2) presents a somewhat
puzzling aspect: first, there is no surface term and, sec-
ond, no term depends on the placement of the integration
volume v. However, Eq. (2) was derived in Ref. [9] es-
sentially in the same manner as Eq. (1) was derived in

Ref. [4], namely, by making use of v̂ = i[Ĥ, r̂] projected
in a chosen basis, the coordinate basis in Eq. (1) and
a Bloch basis (in turn, constructed from a local orbital
basis) in Eq. (2). This have has been unnoticed in the
literature and is an additional motivation to carry out the
present work. We will also explain how the the popular
expression for position matrix elements given by Blount
[11] fits into this comparison.

We organize this study as follows. In Sec. II we present
the main theoretical ingredients by first recalling the dif-
ferences between periodic boundary conditions versus the
infinite volume case when defining Bloch eigenstates. We
follow by introducing two ways of treating v̂ = i[Ĥ, r̂],
one relying on an integration in the whole finite volume
of the system, and the other based on using the k rep-
resentation for operators, involving matrix elements be-
tween the cell-periodic part of the Bloch eigenstates. In
Sec. III we explain how Eq. (2) rigorously comes about
from the second method, while showing the way it has
been previously derived in the literature is mathemati-
cally inconsistent, to say the least. In Sec. IV we present
a numerical study that gives us insight into the quanti-
tative error that one makes when assuming the equality
〈nk|v̂|n′k′〉 = 〈nk|p̂|n′k′〉 (again, recall the use of atomic
units), even in the presence of a local potential, and the
trade-off between computational simplicity and accuracy
when using the Peierls approximation in a practical sit-
uation. Finally, we summarize our main conclusions in
Sec. V.

II. THEORY

A. Preliminary definitions

We start by recalling the normalization choices for
eigenstates in a crystal. This turns out to be a key point
to understand the relation between position and veloc-
ity operators. Two options are compatible with Bloch
theorem: one can assume a finite volume v normaliza-
tion or let the eigenstates extend to all space following
a distribution-like normalization. In order to distinguish
the two cases, we write

|nk〉v =
1√
N
eik·r̂ |unk〉 ,

|nk〉 =
1

(2π)2/3
eik·r̂ |unk〉 ,

(3)
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being the normalization conditions for every case case

〈nk|n′k′〉v =

∫
v[x0]

d3rψ
(v)∗
nk (r)ψ

(v)∗
n′k′(r) = δnn′δkk′ ,

〈nk|n′k′〉 =

∫ ∞
−∞

d3rψ∗nk(r)ψ∗n′k′(r) = δnn′δ(k − k′).

(4)

Note that this convention assumes |unk〉 to be normalized
to one in the finite volume case and to the unit cell vol-
ume (denoted with Ω in the following) in the distribution
case. The

∫
v[x0]

means that the integration domain (the

volume v) is defined by the parallelepiped determined by
Niai with Ni being the number of cells in each direc-
tion given by the primitive vectors ai. Its origin vertex
is located at the x0 point, which have to be selected in
the first place. Finally N = N1N2N3 is the total num-
ber of cells of the crystal. Born-von Karman boundary
conditions ψnk(r + Niai) = ψnk(r) are applied, leading
to a quantization of the crystal momentum according to
k = l1

N1
G1 + l2

N2
G2 + l3

N3
G3 with G being reciprocal lat-

tice vectors and li = −Mi, . . . ,Mi such as Ni = 2Mi + 1.
In general, matrix elements of operators whose applica-
tion on eigenstates breaks periodicity may depend on x0.
On the other hand, in the case of infinite volume nor-
malization, the integrals run over the whole unbounded
space, including infinities. In this case, k vectors become
a dense set inside the Brillouin zone (BZ).

The representation of a given operator Ô in both cases
becomes (we will assume that

∫
is equivalent to

∫∞
−∞ in

the following)

O
(v)
nk,nk′ ≡ 〈nk|Ô|n′k′〉v

=

∫
v[x0]

d3rψ
(v)∗
nk (r)[Ôψ

(v)
n′k′ ](r),

Onk,n′k′ ≡ 〈nk|Ô|n′k′〉

=

∫
d3rψ∗nk(r)[Ôψn′k′ ](r),

(5)

where [Ôψ](r) ≡ 〈r|Ô|ψ〉 If the operator Ô is such that

[Ôψ](r) is still of Bloch form, the matrix elements can be
reduced to an integration within the unit cell involving
the periodic part of eigenstates

〈nk|Ô|n′k′〉v = δkk′ 〈unk|Ôk|un′k〉Ω . (6)

where Ôk ≡ e−ik·R̂Ôeik·r̂, sometimes called the “k repre-
sentation of an operator”. The kronecker delta is factor-
ize using the relation 1

N

∑
R e

i(k−k′)·R = δkk′ for wave
vectors inside the first BZ, after doing the usual change
from the total integration volume to a sum of unit cell
volumes. In the infinite volume case the expression is
similar but taking unk(r) −→ Ω−1/2unk(r), according to
our criteria of Eq. (3), as well as replacing the Kronecker
delta by a Dirac delta. In what follows we particular-
ize to the velocity operator v̂ and its relation to other
quantities.

B. Relation between the velocity and momentum
matrix elements

As discussed in the introduction, the velocity and mo-
mentum operators can only be interchanged if spin-orbit
coupling is neglected and the periodic potential in the
crystal is assumed to be local. Let the Hamiltonian be
separated into Ĥ = ĤL + Ĥ ′, where ĤL = p̂2/2 + V (r̂)
with V (r̂) the local periodic part of the lattice potential.

Ĥ ′ includes all the non-local parts of the Hamiltonian,
e.g. pseudopotential terms, spin-orbit coupling, or even
the contribution of non-local functionals in case they are
used in the DFT calculation. Then, for the first term
one can write p̂ = i[ĤL, r̂], and the projection of the full
velocity operator on a subspace of band states can be
written as

〈nk|v̂|n′k′〉v =i 〈nk|[ĤL + Ĥ ′, r̂]|n′k′〉v
= 〈nk|p̂|n′k′〉v + i 〈nk|[Ĥ ′, r̂]|n′k′〉v .

(7)

The presence of the second term in Eq. (7) is challeng-

ing from a practical standpoint and only when Ĥ ′ = 0,
Eq. (7) becomes the theoretical velocity-momentum
equality. In any case, evaluating the VME seems to re-
quire, in principle, the evaluation of the MME through
its representation -i∇r.

In a practical calculation, one can expect an appre-
ciable discrepancy between the left and right hand sides
of the equation above. This is due to the closure rela-
tion Î =

∑
nk |nk〉 〈nk| not being fully satisfied, as the

Hilbert space is truncated in first principles calculations.
This can also be ultimately traced back to the fact that
the canonical commutation relation [r̂α, p̂β ] = iδαβ can
never exactly hold for a finite-matrix representation since
in such cases Tr(r̂αp̂β) = Tr(p̂αr̂β). Therefore, one can
only expect the (7) to be negligible if the physical states
are sufficiently well represented in the working Hilbert
space. We will give below a few examples of this practi-
cal limitation.

In the following we explore two routes that can be fol-
lowed to by-pass the evaluation of the MME and, at the
same time, of the non-local term if present.

C. Relation between velocity matrix elements and
the Berry connection

We first write the VME in the k representation. It is
easy to see that v̂k = e−ik·r̂i[Ĥ, r̂]eik·r̂ = ∇kĤk, so one
can write

〈nk| v̂ |n′k′〉v = δkk′ 〈unk|(∇kĤk)|un′k〉Ω . (8)

By applying chain rule it is straightforward to find

〈nk|v̂|n′k′〉v = δkk′ [iωnk,n′kAnn′(k) +∇kεn(k)δnn′ ]
(9)
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where ωnk,n′k ≡ εn(k) − εn′(k) and Ann′(k) ≡
i 〈unk|∇kun′k〉Ω, this last quantity being the Berry con-
nection [12]. Eq. (9) can be found in the literature, see
e.g. Ref. [13]. The equation above replaces Eq. (7) by
introducing the evaluation of the Berry connection as-
sociated with the Bloch eigenstates. This, however, can
be a cumbersome task since k derivatives of eigenstates
are not known in numerical diagonalization procedures.
While this problem can be circumvented through pertur-
bation theory [14], in Sec. III we show how Eq. (9) can
be recast in a more convenient and familiar form. Inci-
dentally, note that Eq. (9) provides a way to compute
the non-diagonal Berry connection elements if the VMEs
are known.

D. Relation between velocity and position matrix
elements

Alternatively, we can directly perform the integrals
that appear in Eq. (7) when representing in coordinate

space. Assuming Ĥ ′ = 0 and, therefore, being able to
write v̂ ≡ i[Ĥ, r̂] = p̂, one is free to use −i∇r̂ or i[Ĥ, r̂].
In both cases the explicit knowledge of the real-space
wavefunction of the eigenstates is required. In the former
case derivatives need to be carried out, which depending
on the orbital basis can be more or less cumbersome to
implement. In the latter, the use of the commutator en-
tails further steps, where one needs to pay attention to
the correct use of the hermiticity of Ĥ in the Ĥ r̂ prod-
uct. This procedure, which has been followed by Gu
and coworkers in Ref. [4], only applies to eigenstates in
the framework of finite volume normalization, where in-
tegrals for matrix elements can be converged. One starts
with

〈nk|v̂|n′k′〉v = i

∫
v[x0]

d3rψ
(v)∗
nk (r)[Hr − rH]ψ

(v)
n′k′(r),

(10)

where we have to act with−∇2
r on rψ

(v)
n′k(r) and ψ

(v)
n′k′(r).

After performing the derivatives and using Gauss’s the-
orem, one obtains

〈nk|v̂|n′k′〉v = iωnk,n′k′ 〈nk|r̂|n′k′〉v + Cnk,n′k′ , (11)

where

Cnk,n′k′ =− i

2

∫
∂v[x0]

dS ·
{
ψ

(v)∗
nk (r)∇rψ

(v)
n′k′(r)

− [∇rψ
(v)
nk (r)]∗ψ

(v)
n′k′(r)

}
r

(12)

(same comment [12] applies here). Note the presence of
the r = (x, y, z) breaking the periodicty of the integrand
at two opposite surfaces. The appearance of this last sur-
face term arises from the finite value of the wavefunctions
in the surface of the material volume, which we denote

with ∂v[x0]. It is important to note that the wavefunc-
tions do not decay even in the limit of an infinite volume
and this term is always present.

As noticed in Ref. [4], the hermiticity prop-
erty cannot be applied as usual in 〈nk|v̂|n′k′〉v =

i 〈nk|[Ĥ r̂ − r̂Ĥ]|n′k′〉v, which results in the surface term
above. Secondly, both matrix elements on the right hand
side (RHS) in Eq. (11) depend on the origin of the in-
tegration volume and are not k-diagonal, while the sum
does not depend on this arbitrary choice of origin and is
diagonal in the wave vector as the VME actually is. The
relative weight of 〈nk|r̂|n′k′〉v versus Cnk,n′k′ with re-
spect to the full VME is also explored in Ref. [4] showing
that, in general, one cannot find a point x0 that makes
the surface term to vanish, even for certain analytical
models.

We note that in the diagonal case, 〈nk|v̂|nk〉, the first
term of Eq. (10) vanishes, and all contribution goes to
Cnk,nk. In that case the dependance of this term with
the origin for the crystal is removed due to the symmetry
inside the integrand. Comparing with Eq. (9), we see
that the value of Cnk,nk is equal to ∇kεn(k).

Therefore, Eq. (11) presents no advantage versus di-
rectly computing −i 〈nk|∇r̂|n′k′〉 to find the VME, as
one still has to perform nontrivial integrations for posi-
tion and surface matrix elements. It provides us, how-
ever, with the conclusion that momentum and dipole ma-
trix elements (multiplied by the frequency) should never
be interchanged when dealing with Bloch eigenstates in
a finite volume.

E. Relation between velocity and position matrix
elements with a distribution basis

If Bloch eigenstates are normalized as distributions [re-
call Eqs. (3) and (4)], then one can still use them as a
basis to represent general physical quantum states in the
crystal. We will name this basis states as the distribu-
tion basis. This was originally referred to as the crystal
momentum representation (CMR) [11], where one writes

|φ〉 =
∑
n

∫
BZ

d3kgn(k) |nk〉 , (13)

with gn(k) being the envelope function for the n band.
The matrix elements between two physical states is writ-
ten

〈φ1|Ô|φ2〉 =
∑
nn′

∫
BZ

d3kd3k′g(1)∗
n (k)g

(2)
n′ (k) 〈nk|Ô|n′k′〉 .

(14)

Now one needs the find the matrix element 〈nk|Ô|n′k′〉
that enters the calculation above. As only the full n sums
and k integrations are relevant, we can take into account
the boundary properties of the state |φ〉. This is the
case of the matrix elements for the position operator, for
which Blount [11] noticed that 〈nk|r̂|n′k′〉 is ill-defined
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by itself but that a distribution form can be given if r̂ is
assumed to act on a state |φ〉 belonging to its domain.
Specifically, Blount showed that

〈nk|r̂|n′k′〉 =− i∇k′δ(k′ − k)δnn′

+
1

Ω
δ(k′ − k)Ann′(k).

(15)

The effect of boundary conditions on eigenstates is high-
lighted here, as 〈nk|r̂|n′k′〉 fundamentally differs from
〈nk|r̂|n′k′〉v, addressed in the previous section. Here,
only the diagonal matrix elements of the position opera-
tor depend on an origin through the arbitrary choice r̂ →
r̂ + d, which involves doing 〈nk|r̂|n′k′〉 → 〈nk|r̂|n′k′〉+
dδnn′δ(k − k′). On the other hand, assuming a finite
volume always makes 〈nk|r̂|n′k′〉v depend on the inte-
gration limits. Position operator matrix elements in Eq.
(15) do not depend on any arbitrary origin, but only
make sense within Eq. (14).

As far as the velocity operator is concerned, Eq. (9) is
still perfectly valid in the infinite volume case:

〈nk|v̂|n′k′〉 =δ(k − k′)[∇kεn(k)δnn′

+
i

Ω
ωnk,n′k′Ann′(k)],

(16)

expression to be used, again, only in the context of
Eq. (14). Alternatively, in Appendix A we also show
that projecting v̂ on general physical states 〈φ|v̂|φ′〉 =

i 〈φ|[Ĥ, r̂]|φ′〉, along with Eq. (15), also leads to Eq.
(16).

Finally, to complete the connection between the differ-
ent matrix element expressions, it is straightforward to
show that

〈nk|v̂|n′k′〉 = iωnk,n′k′ 〈nk|r̂|n′k′〉 . (17)

Again, one simply needs to project 〈φ|v̂|φ′〉 =

i 〈φ|[Ĥ, r̂]|φ′〉 and proceed in the same manner as ex-
plained in previous section. Here, however, the surface
term vanishes due to |φ〉 and |φ′〉 being square-integrable
over all space. Notice that this momentum and posi-
tion relation matches that in atomic physics. This is also
shown in Ref. [4] by using narrow k envelope functions
in the limit of zero width.

III. VELOCITY MATRIX ELEMENTS WHEN
REPRESENTING IN A BLOCH BASIS.

Having established a comprehensive overview of the
available recipes to evaluate the VME and their proper
use, we proceed now with their actual computation when
a generic and possibly non-orthonormal Bloch basis is
used to expand the Bloch eigenstates:

|nk〉v =
∑
α

cαn(k) |αk〉v . (18)

We stress again that |αk〉v is a generic basis state sat-
isfying Bloch’s theorem in a finite volume, with α being

a generic quantum number. The coefficients cαn(k) are
found by solving the generalized eigenvalue problem∑

α′

H
(v)
αα′(k)cα′n(k) = εn(k)

∑
α′

S
(v)
αα′(k)cα′n(k), (19)

where H
(v)
αα′(k) and S

(v)
αα′(k) are the matrices representing

the Hamiltonian and identity operators, respectively.

Eq. (9) can now be properly converted into more fa-
miliar expression. First the Berry connection reads

Ann′(k) =i
∑
αα′

S
(v)
αα′(k)c∗αn(k)∇kcα′n′(k)

+
∑
αα′

c∗αn(k)cα′n′Aαα′(k).
(20)

In this expression one has to perform derivatives in k
space of the coefficients cαn(k). In most cases these coef-
ficients are obtained by numerical diagonalization of Eq.
(19) so that they are not continuous and, therefore, dif-
ferentiable. However, this can be avoided by directly em-
ploying the chain rule after inserting Eq. (20) into Eq.
(9), leading to

〈nk|v̂|n′k〉v = v
(A)
nn′(k) + v

(B)
nn′(k);

v
(A)
nn′(k) =

∑
αα′

c∗αn(k)cα′n′(k)∇kH
(v)
αα′(k),

v
(B)
nn′(k) = i

∑
αα′

c∗αn(k)cα′n′(k)
[
εn(k)Aαα′(k)

− εn′(k)A∗α′α(k)
]
.

(21)

We show the complete derivation in Appendix B. Eq.
(21) is one important result of this work: it allows to
compute VME from the Hamiltonian matrix elements
and the Berry connection in whichever Bloch basis. It
also generalizes similar formulas that can be found in the
literature [see our discussion at the introduction section
about Eq.(2)]. We have differentiated two contributions,
A and B, to the VME. The first one is evokes the exact
expression v̂k = ∇kĤk, but the second one is equally im-
portant, as we will show below. Eq. (21) clearly shows

that ∇kĤk is not, in general, equivalent to ∇kH
(v)
αα′(k).

In many practical cases the Bloch basis is expanded, in
turn, in a local orbital basis. Regarding this, two different
types of basis can be found in the literature:

|αk〉v =
1√
N

∑
R

eik·R |αR〉v and

|α̃k〉v =
1√
N

∑
R

eik·(R+dα) |αR〉v ,
(22)

where |αR〉v is an orbital with dα position vector inside
the unit cell of site R. A finite size crystal containing N
cells is assumed throughout. Bloch eigenstates are now
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given by

|nk〉v =
∑
α

cαn(k) |αk〉v , or likewise

|nk〉v =
∑
α

bαn(k) |α̃k〉v ,
(23)

with both expansions being related by cαn(k) =
eik·dαbαn(k). We will use the former basis in this work
by default, which we refer to as the cell gauge, and make
considerations related to the other one, the atom gauge,
when appropriate. In this basis the matrices needed in
Eq. (19) become

H
(v)
αα′(k) =

∑
R

eik·R 〈α0|Ĥ|α′R〉 and

S
(v)
αα′(k) =

∑
R

eik·R 〈α0|α′R〉 .
(24)

Now we can recast the Berry connection terms in Eq.
(21) into an explicit form involving the position operator

Aαα′(k) =
∑
R

eik·R 〈α0|r̂|α′R〉+ i∇kS
(v)
αα′(k),

A∗α′α(k) =
∑
R

eik·R 〈α0|r̂|α′R〉 ,
(25)

Note that Berry connection between non-orthonormal
states is not an hermitian quantity and present a cer-
tain asymmetry for its conjugate. The gradient of the
overlap matrix can be directly computed using Eq. (19).
With this expressions, Eq. (21) becomes identical to that
reported in Ref. [9] (we invite the reader to see Appendix
B for all the details in the derivation).

It is important to note that neither of the two terms
in Eq. (21) is gauge independent. One can easily check
how the two terms change when switching to the atom
gauge, according to Eq. (22). For instance, the first term
becomes (we denote the gauge choice in the superscripts)

v
(A, atom)
nn′ (k) =

∑
αα′

b∗αn(k)bα′n′(k)∇kH̃
(v)
αα′(k)

= v
(A, cell)
nn′ (k)

+ i
∑
αα′

c∗αn(k)cα′n′(k)H
(v)
αα′(k)(dα′ − dα),

(26)

while the correction for the B term is the same with op-
posite sign, showing that the absolute value of the sum

v
(A)
nn′ +v

(B)
nn′ is gauge invariant, as it should be for a phys-

ical operator.
It is an interesting exercise to obtain the form of Eq.

(21) when one works with maximally localized Wannier
functions (MLWFs) and in the purely tight-binding (TB)
limit. MLWFS still have a finite spread while TB orbitals
are considered to be point-like. Despite this difference,

one usually neglects inter-atomic and intra-atomic posi-
tion matrix elements beyond orbital centers [10] in both
cases. Denoting this basis orbitals with ν, we obtain

〈nk|v̂|n′k〉v =
∑
νν′

c∗νn(k)c∗ν′n′(k)∇kHνν′(k)(v)

+ i
∑
νν′

c∗νn(k)c∗ν′n′(k)Hνν′(k)(dν′ − dν),

(27)

which is the same as Eq. (26). This tells us that if
we neglect inter-orbital contributions, the computation
of the VME with only the gradient term (the A term) in

the atom gauge, therefore neglecting v
(B, atom)
nn′ , is equiv-

alent to computing both terms (the full VME) in the cell

gauge. This means that v
(B, atom)
nn′ = 0, as can be easily

checked. The second line of Eq. (26) [or equivalently Eq.
(27)] was presented in Ref. [8] as a “Peierls substitution
approach to the case of multiatomic unit cells”. Based
on our previous discussion, we see that it appears nat-
urally within the atom gauge. In the more general case
of a non-orthonormal basis, both terms of Eq. (21) must
be evaluated regardless of the gauge choice. We examine
this more in depth in Sec. IV by using GTOs as ba-
sis functions, which are far from the maximally localized
limit.

It is worth ending this section by briefly discussing
the work of Lee et al. [9]. They present an expres-
sion for the VME which is, in fact, a particular case
of our general expression Eq. (21) (we reproduce it
in Appendix B). However, we believe that in order to
reach their expression for the VME, they have inad-
vertently mixed Hilbert spaces. Their derivation starts
from v̂ = i[Ĥ, r̂] and, briefly, they follow by projecting

〈nk|v̂|n′k〉v = i 〈nk|[Ĥ, r̂]|n′k〉v, expanding eigenstates
in a non-orthonormal local orbital basis, and inserting
the closure relation Î =

∑
αR,α′R′ SαR,α′R′ between the

product of operators. We note that their procedure is
equivalent to start by writing

〈nk|v̂|n′k〉v = iωnk,n′k 〈nk|r̂|n′k〉 , (28)

and proceeding in the same manner. The problem of
starting with Eq. (28) is that, as explained in Sec. II,
this equality only holds in the case of open boundary
conditions (infinite systems). This is not the case when
using Bloch states constructed as a phased sum of lo-
cal orbital basis sets, namely, Wannier orbitals or TB
models, where the band eigenstates obey a finite volume
normalization [see Eq. (5) and Eq. (22)]. The correct
result found in Ref. [9] can only be explained by the
unjustified identification of 〈nk|r̂|n′k〉v +Cnk,n′k′ in Eq.

(11) with 〈nk|r̂|n′k〉 =
∫∞
−∞ d3rψ

(v)∗
nk (r)rψ

(v)
n′k′(r), which

leads to Eq. (28). By doing this, the dependence on an
arbitrary origin of integration is effectively removed by
the new integration limits, but the integral is ill-defined.
This subtle issue, which can be easily missed, is stressed
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by our notation in Eq. (28), where we have put the sub-
script v is on the left hand side but not on the right hand
side of the equality.

In the next section we present some numerical exam-
ples in order to explore the details of the VME formulas
in a practical situation.

IV. PRACTICAL CASES: HEXAGONAL
BORON NITRIDE AND GRAPHENE

The first goal of this section is to gauge the
importance of the different terms in Eq. (7),
by comparing between independent evaluations of
the VME and MME. Particularizing to a local or-
bital basis case, the former can be evaluated from
Eq. (21), while the latter becomes 〈nk|p̂|n′k〉 =
−i
∑
αα′R c

∗
αn(k)cα′n′(k)eik·R 〈α0|∇r̂|α′R〉. Our second

goal is to explore the relative importance of the two terms
in Eq. (21).

A. Detailed numerical analysis of VME and MME

We start by computing the band structure of a bench-
mark material. We choose a monolayer of hexagonal
boron nitride (hBN), which is a sufficiently complex sys-
tem to our purposes. In Fig. 1, we show: (i) a tight-
binding (TB) two-band calculation for the upper (lower)
valence (conduction) bands, including only first neigh-
bour interactions between the pz orbitals of B and N
atoms, (ii) a DFT calculation employing a small-core
pseudopotential basis set [15] to replace the 1s2 elec-
trons in every atom (labelled here as CRENBL [15, 16])
and, (iii) an all-electron calculation with the 6-31G* ba-
sis set [16, 17]. The DFT calculations were performed
using CRYSTAL17 [18] with the local von Barth-Hedin
exchange-correlation functional [19]. For our further
analysis, we require to perform matrix elements in the

form 〈γ(αi)
lm |Ô|γ

(α
′
i)

l′m′〉, with γ
(αi)
lm (r) GTOs basis sets [18]

centered at the atomic sites (l and m give the symmetry
of the orbital while αi its spatial extent). For momentum
and position operators, we are left with integrations that
can be evaluated in an analytical fashion.

We are not concerned here with the accuracy of the
obtained gap so we have excluded the use of hybrid func-
tionals and their possible extra non-local contributions.

Both DFT band structures are essentially similar up
to the conduction band. The agreement is particularly
good for the valence and conduction bands, both with
a band gap of 4.55 eV, except maybe for a noticeable
difference at the M point of ' 0.5 eV. As expected, only
the more accurate all-electron calculation with a large
basis can reproduce results in the literature [20]. The
tight-binding parameters can be fitted to resemble one of
these calculations. It is easier to obtain a better overall fit
to the CRENBL band structure with a hopping t = 2.15

eV, as only two pz orbitals are present to reproduce the
energy dispersion.

FIG. 1. Comparison of the band structure of monolayer hBN
using different approaches: (i) a first-neighbour tight-binding
two-band model with 2.15 eV hopping, (ii) a DFT calculation
using a small-core pseudopotential basis set and (iii) a DFT
all-electron calculation (see text for further details).

We now explore in some detail Eqs. (7) and (21). To
this purpose, in Fig. 2 we show the magnitude of sev-
eral quantities relevant to the band-gap optical transition
along the Γ−K−M path. Fig. 2(a) shows the absolute
value of the x component of the VME and the MME for
the three cases shown in Fig. 1. Looking at the VME,
the TB result deviates quantitatively from the other two,
but not qualitatively. When comparing the VME and the
MME, we observe that for the CRENBL basis the differ-
ence is significant, particularly near M, while that for the
large basis this difference is negligible. We explain this
differences as follows. For the CRENBL case, this differ-
ence comes, as reflected in Eq. (7), due presence of the
non-local pseudopotential, invalidating the velocity and
momentum equivalence. In the all-electron case, the dif-
ference is almost negligible. Since the evaluation of the
MME is essentially analytical due to the use of Gaus-
sian orbitals, we discard possible errors when evaluating
Eq. (21). Hence, we attribute the very small difference
to the finite size of the Hilbert Space, which is always
required in numerical calculations [see our discussion be-
low Eq. (7)]. This effect is, of course, also present in
the pseudopotential case and should be more important
due to the smaller Hilbert Space (8 and 36 bands for the
CRENBL and all-electron case, respectively.)

We have therefore notice the use of non-local function-
als in the starting DFT calculation. In order to explore
this effect further in, we have repeated the all electron
(6-31G*) calculation using the HSE06 hybrid functional
[21]. We have also used the same large all-electron basis
as before, allowing us to isolate the effect of the non-
locality from that coming from the finite basis size. We
show the results in the inset of Fig. 2(a), where we com-
pare the velocity and momentum curves. In this case, the
deviation between the VME and MME curves becomes
appreciable, but not larger than the one stemming from
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the finite basis in the previously discussed CRENBL case.
Our results suggest that the use of a nonlocal functional
have a relevant impact when assuming the equality versus
momentum and velocity operators. In summary, these
results explicitly show that the VME and MME cannot
always be taken as the same quantity. This can only
be safely done, in principle, when using large all-electron
basis sets in DFT-LDA calculations.

In Fig. 2(b), we compare the magnitude of the k-
gradient term [the A term in Eq. (21)] calculated in
the atom gauge for the three different cases. In the TB
case, this term gives the full value for the VME. In the
DFT case, the results deviate significantly from the ex-
act value [shown in Fig. 2(a)], showing the importance of
the B term in Eq. (21). The CRENBL basis presents a
larger deviation: this shows that having a smaller size do
not guarantees having small inter-orbital contributions
to Eq. (25), which turn into an important contribution
to v(B,atom). As mentioned in Sec. III, only the maximal
localization condition (or point-like orbitals) for the basis
set ensures that v(A, atom) gives the exact VME. This con-
dition is not met in neither of the two DFT basis sets used
in our calculations. We also show the result obtained in
the cell gauge in Fig. 2(c). Now, not only quantitative
differences appear, but also selection rules break when
approaching the Γ point (here the VME must be zero
according to the irreducible representations of the wave
functions). Therefore, identifying the VME simply as a
k-gradient of the Bloch Hamiltonian in the cell gauge can
lead, not only to quantitative errors, but also to incorrect
physical interpretations.

B. Optical conductivity

The calculation of an experimentally measurable quan-
tity such as the optical conductivity can be affected by an
incorrect evaluation of the VME. To show this we make
use of the Kubo-Greenwood [22] expression (we do not
use atomic units here for clarity):

σαβ(ω) =− i

Nk

e2~
Ω

∑
nn′k

(
fnk − fn′k

ωnk,n′k

)
×
〈nk|v̂α|n′k〉v 〈n′k|v̂β |nk〉v

~ω + ωnk,n′k + i~η
,

(29)

where fnk is the Fermi-distribution occupation number
and Nk is the number of k points in the discretized Bril-
louin zone.

In Fig. 3 we show the longitudinal optical conductiv-
ity, computing the VMEs within the different approxima-
tions considered in previous section. We have separated
the results obtained with the small-core basis from those
with the all-electron basis, as shown in Fig. 3(a) and Fig.
3(b), respectively, where we have also added the calcula-
tion with the TB model in both panels. At the bandgap
frequency, the DFT and TB calculations involving the

FIG. 2. Absolute value of matrix elements for the band-gap
transition along the Brillouin zone of monolayer hBN. (a) Ve-
locity and momentum matrix elements for the two DFT cal-
culations presented in 1 [the inset show an extra DFT case
using the HSE06 functional (see main text)] and in the tight-
binding approximation (b) Same for the first term of Eq. (21)
in the atom gauge [see. Eq. (23)]. (c) Same as (b) but in the
cell gauge.

exact VME are able to reproduce the quasiuniversal be-
haviour [23] for a parabolic noninteracting semiconduc-
tor, yielding σ = e2/2~. The use of MMEs, instead of
the VMES, fails for the pseudopotential and small basis
case [black dashed line in Fig. 3(b)], as expected from
the discussion in previous subsection. At higher frequen-
cies the TB model underestimates the response, which is
similar in magnitude for both DFT cases, the only dif-
ference being the position of the Van Hove singularity
which originates in the bands at the M point (see Fig.
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FIG. 3. Frequency-dependent sheet conductivity of monolayer
hBN as obtained from the evaluation of Eq. (29) using (a)
a all-electron and (b) small-core pseudopotential DFT calcu-
lations. The calculation with a first-neighbour tight-binding
model is included in both panels. See Fig. 1 for the corre-
sponding band structures.

1). In both DFT calculations, replacing the VME by
its k-gradient approximation overestimates the exact re-
sult. A calculation with the k-gradient term in the cell
gauge v̂ → v(A, cell) (not shown) gives an even larger
discrepancy at all frequencies, but worse, also removes
the isotropic behaviour of the conductivity tensor with
σxx 6= σyy. This erroneous behaviour has been already
discussed for graphene in Ref. [24] and highlights the
importance of taking the k-gradient approximation for
VME using the appropriate gauge. It is also worth men-
tioning here the work by Wissgott et al. [25]. There, the
Peierls approximation in the atom gauge is tested versus
the complete VME also through a conductivity analy-
sis of transition-metal oxides. Our conclusion about the
gauge choice, not explored in their work, could give a
better insight about the discrepancies that are found in
Ref. [25].

A direct comparison with experiments can be made
by analyzing the optical response of graphene. It is
known that monolayer graphene shows a quasi-constant
absorbance of ∼ 2.3%, corresponding to σ = e2/4~,
over the energy region that goes from the far-infrared
to the visible spectrum where excitonic effects are negli-
gible (< 2 eV) [26–28]. Therefore, in this energy range,

Kubo-Greenwood DFT-based calculations are expected
to give a faithful optical response. In Fig. 4 we show the
optical conductivity calculated with two different basis
sets, equivalent to those used for hBN. We present re-
sults for the exact VMEs and their approximated values
using the MMEs. Experimental results from Ref. [26] are
also shown. We can see that both basis sets give results
in very good agreement with the experimental ones when
employing VME. For the case of MMEs, the CRENBL
basis set gives ∼ 0.175e2/~, which translates in a 30 %
error when comparing to the experimental curve. This
result complements our previous study of hBN, showing
the significant effect of non-local operators and finite ba-
sis sets when trying to replace the VMEs by the MMEs.

We end this section by commenting the recent work
by Ibañez-Aspiroz and coworkers [10], which has been
carried out in parallel to our study. They have explored
the effect of progressively adding inter-atomic position
matrix elements in Eq. (27), through a Wannier interpo-
lation scheme. In Ref. [10] it is found that including po-
sition matrix elements beyond orbital centers in Eq. (25)
leads to appreciable quantitative differences in the eval-
uation of the linear (dielectric function) optical response
of BC2N. Even more, it is shown that very significant
errors are introduced when computing the quadratic re-
sponse (shift photoconductivity). Here, we have shown
that performing such approximation using GTOs as basis
sets can lead to greater discrepancies even in the evalu-
ation of the Kubo linear response. This is related to the
fact that GTOs are less localized that Wannier functions,
which are usually maximally localized per construction.

FIG. 4. Same as Fig. 3 for the case of graphene. Experi-
mentals results from Ref. [26] are shown. VME and MMe
has been used to represent the velocity operator in the Kubo-
Greenwood formula for the two DFT calculations (other ap-
proximations are not shown in this case).

V. CONCLUSION

We have presented a comprehensive study of the eval-
uation of VME in crystalline solids, as obtained from
the fundamental relation v̂ = i[Ĥ, r̂]. We have scruti-
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nized several available expressions in the literature, fill-
ing the gaps and connecting them in a coherent story.
We have seen that, when working in coordinate repre-
sentation, one is bound to deal with a very inconvenient
surface term which can be avoided by going first into
the k-representation. We have obtained a general ex-
pression which contains a familiar k-gradient term plus
a correction term which involves the Berry connection of
the Bloch basis elements. When using local orbitals as a
basis, this can be rewritten in a more familiar form (see,
e.g., Ref. [9]), but whose previous derivations contain un-
justified mathematical steps. We have also shown several
equivalences which involve the momentum and position
operators, including well-known expressions in the crys-
tal momentum representation (nonphysical distribution
basis).

We have numerically tested the validity of different ap-
proximations to the VME by computing the optical con-
ductivity of monolayer hBN and graphene through the
Kubo-Greenwood formula. In particular, we have shown
that approximating the VME by ∇kHαα′(k) in a non-
orthonormal basis produces significant quantitative er-
rors and may also give rise to qualitative ones if one is
not careful with the choice of gauge. We have also made
emphasis on the fact that the velocity and momentum
matrix elements can only be safely interchanged if the

Hamiltonian is free of non-local terms and eigenstates
are well-represented in the working Hilbert space.

Additionaly, our numerical analysis is in close relation
to a very recent work of Ref. [10], where a similar study
has been carried out using Wannier functions. We ex-
pect our work will contribute to remark the importance
of going beyond the k-gradient approximation for the ve-
locity matrix elements when using general local orbital
basis sets. In summary, this work may well serve as a
complete as well as a rigorous guide to the intricate rela-
tions behind the evaluation of the velocity, momentum,
and position matrix elements in crystalline solids.
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Appendix A REPRESENTATION OF v̂ = i[Ĥ, r̂] IN THE DISTRIBUTION BASIS

In this appendix we prove that projecting v̂ = i[Ĥ, r̂] in CMR along with the corresponding expression for the
position operator, Eq. (15), allows to obtain Eq. (9). Let |mk〉 be a general Bloch basis (orthonormal for simplicity)
following a distribution normalization. An identification with the eigenstates basis will be made in the end. We have

〈φ1|v̂|φ2〉 = i 〈φ1|[Ĥ, r̂]|φ2〉 = i
∑
mm′

∫
BZ

d3kd3k′g(1)∗
m (k)g

(2)
m′ (k

′) 〈mk|[Ĥ r̂ − r̂Ĥ]|m′k′〉 . (30)

Now we insert the closure relation between the two operators:

〈φ1|v̂|φ2〉 =i 〈φ1|[Ĥ, r̂]|φ2〉

=i
∑

mm′m′′

∫
BZ

d3kd3k′d3k′′g(1)∗
m (k)g

(2)
m′ (k

′)(Hmk,m′′k′′rm′′k′′,m′k′ − rmk,m′′k′′Hm′′k′′,m′k′)

≡〈φ1|v̂(1)|φ2〉+ 〈φ1|v̂(2)|φ2〉 .

(31)

We have splitted the full matrix elements into two terms according to the two parts in Eq. (15). First we work out
〈φ1|v̂(1)|φ2〉,

〈φ1|v̂(1)|φ2〉 =
i

Ω

∑
mm′m′′

∫
BZ

d3kd3k′d3k′′g(1)∗
m (k)g

(2)
m′ (k

′)Hmm′′(k)δ(k − k′′)[−iδm′′m′∇k′δ(k′ − k′′)]

− i

Ω

∑
mm′m′′

∫
BZ

d3kd3k′d3k′′g(1)∗
m (k)g

(2)
m′ (k

′)[−iδmm′′∇k′′δ(k′′ − k)]Hm′′m′(k′′)δ(k′′ − k′).

(32)

We have taken into account that a crystal Hamiltonian is diagonal in the k vector, this is Hmk,m′k′ ≡
Ω−1Hmm′(k)δ(k − k′). Using the identity F (k)[∇kδ(k − k′)] = −[∇kF (k)]δ(k − k′) straightforwardly, one can
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see

〈φ1|v̂(1)|φ2〉 =
1

Ω

∑
mm′

∫
BZ

d3kd3k′d3k′′g(1)∗
m (k)g

(2)
m′ (k

′)Hmm′(k)δ(k − k′′)[∇k′δ(k′ − k′′)]

− 1

Ω

∑
mm′

∫
BZ

d3kd3k′d3k′′g(1)∗
m (k)g

(2)
m′ (k

′)[∇k′′δ(k′′ − k)]Hmm′(k′′)δ(k′′ − k′)

=− 1

Ω

∑
mm′

∫
BZ

d3kg(1)∗
m (k)[∇kg

(2)
m′ (k)]Hmm′(k) +

1

Ω

∑
mm′

∫
BZ

d3kg(1)∗
m (k)g

(2)
m′ (k)[∇kHmm′(k)]

− 1

Ω

∑
mm′

∫
BZ

d3kd3k′∇k[g(1)∗
m (k)Hmm′(k)]g

(2)
m′ (k

′)δ(k − k′),

(33)

and applying the chain rule,

〈φ1|v̂(1)|φ2〉 = − 1

Ω

∑
mm′

∫
BZ

d3k∇k[g(1)∗
m (k)g

(2)
m′ (k)Hmm′(k)] +

1

Ω

∑
mm′

∫
BZ

d3kg(1)∗
m (k)g

(2)
m′ (k)[∇kHmm′(k)]. (34)

The first term is zero following the conditions required by Blount [11]. Now we look at the Berry connection term

〈φ1|v̂(2)|φ2〉 =
i

Ω2

∑
mm′m′′

∫
BZ

d3kd3k′g(1)∗
m (k)g

(2)
m′ (k

′)

× [Hmm′′(k)Am′′m′(k′′)δ(k − k′′)δ(k′ − k′′)−Amm′′(k)Hm′′m′(k′′)δ(k′′ − k)δ(k′′ − k′)]

=
i

Ω2

∑
mm′m′′

∫
BZ

d3kg(1)∗
m (k)g

(2)
m′ (k

′)[Hmm′′(k)Am′′m′(k)−Amm′′(k)Hm′′m′(k)].

(35)

We now find the expression in the eigenstates basis. For clarity we rename m = n, and use Hnn′(k) = εn(k)δnn′Ω,
obtaining

〈φ1|v̂|φ2〉 =
∑
nn′

∫
BZ

d3kg(1)∗
n (k)g

(2)
n′ (k)

{
∇kεn(k)δnn′ +

i

Ω
[εn(k)− εn′(k)]Ann′(k)

}
≡
∑
nn′

∫
BZ

d3kd3k′g(1)∗
n (k)g

(2)
n′ (k′) 〈nk|v̂|n′k′〉 ,

(36)

where 〈nk|v̂|n′k′〉 = δ(k − k′)
[
∇kεn(k)δnn′ + iΩ−1ωnk,n′k′Ann′(k)

]
, which is precisely Eq. (16).

Appendix B DERIVATION OF EQ. (21)

We start from Eq. (9) for the case k = k′,

〈nk|v̂|n′k〉v = iωnk,n′kAnn′(k) +∇kεn(k)δnn′ (37)

Recall that the Berry connection is defined Ann′(k) ≡
i 〈unk|∇kun′k〉Ω. Expanding the periodic part in a Bloch
Basis, |nk〉 state is |unk〉 =

∑
α cαn(k) |uαk〉, we readily

obtain

Ann′(k) =i
∑
αα′

Sαα′(k)c∗αn(k)∇kcα′n′(k)

+
∑
αα′

c∗αn(k)cα′n′Aαα′(k).
(38)

We now insert this expression into Eq. (37), obtaining

〈nk|v̂|n′k〉v =

− εn(k)
∑
αα′

c∗αn(k)∇kcα′n′(k)S
(v)
αα′(k)

+ εn′(k)
∑
αα′

c∗αn(k)∇kcα′n′(k)S
(v)
αα′(k) +∇kεn(k)δnn′

+ i[εn(k)− εn′(k)]
∑
αα′

c∗αn(k)cα′n′(k)Aαα′(k).

(39)

Applying the chain rule in the second term

εn′(k)
∑
αα′

c∗αn(k)∇kcα′n′(k)S
(v)
αα′(k) =

− εn′(k)
∑
αα′

∇kc
∗
αn(k)cα′n′(k)S

(v)
αα′(k)

− εn′(k)
∑
αα′

c∗αn(k)c∗αn′(k)∇kS
(v)
αα′(k),

(40)
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so we have

〈nk|v̂|n′k〉v =

−
∑
αα′

εn(k)S
(v)
αα′(k)c∗αn(k)∇kcα′n′(k)

−
∑
αα′

∇kcαn(k)εn′(k)S
(v)
αα′(k)c∗α′n′(k)

− εn′(k)
∑
αα′

c∗αn(k)cα′n′(k)∇kS
(v)
αα′(k) +∇kεn(k)δnn′

+ i[εn(k)− εn′(k)]
∑
αα′

c∗αn(k)cα′n′(k)Aαα′(k).

(41)

Now we can introduce the Hamiltonian matrix elements
in the first two terms according to the eigenvalue equa-
tion, yielding

−
∑
αα′

H
(v)
αα′(k)c∗αn(k)∇kcα′n′(k)

−
∑
αα′

∇kc
∗
αn(k)H

(v)
αα′(k)cα′n′(k) =

−∇k

[∑
αα′

c∗αn(k)H
(v)
αα′(k)cα′n′(k)

]
+
∑
αα′

c∗αn(k)cα′n′(k)∇kH
(v)
αα′(k).

(42)

The first term cancels the gradient of the energy band
in Eq. (41). In order to write the final form of the ex-
pression, we note that Aαα′(k) ≡ i 〈uαk|∇kuα′k〉Ω =

i∇kS
(v)
αα′(k) + A∗α′α(k), which leave us with

〈nk|v̂|n′k〉v = v
(A)
nn′(k) + v

(B)
nn′(k);

v
(A)
nn′(k) =

∑
αα′

c∗αn(k)cα′n′(k)∇kH
(v)
αα′(k),

v
(B)
nn′(k) =

∑
αα′

c∗αn(k)cα′n′(k)
[
iεn(k)Aαα′(k)

− iεn′(k)A∗α′α(k)
]
,

(43)

as presented in the main text. Finally this expression is
particularized for Bloch states expanded in a local orbital
basis, where |αk〉v = 1/

√
N
∑

R e
ik·R |αR〉v, leading to

the Berry connection

Aαα′(k) =
∑
R

eik·R 〈α0|r̂|α′R〉 −
∑
R

eik·RR 〈α0|α′R〉 .

(44)
The expression above is a generalization for that of a
Wannier basis, see e.g. Ref. [14, 29]. Also note that

−
∑

R e
ik·RR 〈α0|α′R〉 = i∇kS

(v)
αα′(k). Here, an extra

term arises accounting from the nonorthonormal char-
acter of atomic states, differently from the Wannier or-
bitals, which are orthonormal by construction. This is
also reflected by the appearance of the overlap matrix in
the first line of Eq. (20). In Eq. (44), dipole matrix
elements between the basis set are integrated in all space
and not in the unit cell, different than in the original def-
inition for the Berry connection. This change is done by
passing from

∫
cell

to limN→∞
1
N

∫∞
−∞, that is well-defined

for a periodic integrand. Finally Eq. (43) can be written

〈nk|v̂|n′k〉v =∑
αα′

c∗αn(k)cα′n′(k)
[
∇kH

(v)
αα′(k)− εn(k)∇kS

(v)
αα′(k)

]
+ i[εn(k)− εn′(k)]

∑
αα′

c∗αn(k)c∗αn′(k)

×
∑
R

eik·R 〈α0|r̂|α′R〉 ,

(45)

which is the formula given in Ref. [9].
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