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Abstract

We present v-Flows, a novel method for restricting the likelihood space of neutrino kine-
matics in high-energy collider experiments using conditional normalising flows and deep
invertible neural networks. This method allows the recovery of the full neutrino momen-
tum which is usually left as a free parameter and permits one to sample neutrino values
under a learned conditional likelihood given event observations. We demonstrate the
success of v-Flows in a case study by applying it to simulated semileptonic tt events
and show that it can lead to more accurate momentum reconstruction, particularly of
the longitudinal coordinate. We also show that this has direct benefits in a downstream
task of jet association, leading to an improvement of up to a factor of 1.41 compared to
conventional methods.
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1 Introduction

Collider physics experiments such as those at the Large Hadron Collider (LHC) [1] are at the
forefront of studying the fundamental interactions of nature. General purpose detectors such
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as ATLAS [2] and CMS [3] are designed to measure nearly all stable particles produced in
the high-energy proton-proton collisions. This means that they can be used to probe almost
all aspects of the Standard Model of particle physics (SM). Reconstruction of these particles
from base detector signals requires sophisticated algorithms and significant computing power.
In recent years, deep learning algorithms have attracted significant attention and have been
used for both kinematic reconstruction and identification for a wide variety of physics objects
in these experiments. Some examples of successful applications include electron identification
[4] and jet flavour tagging [5-7]. Advances in deep learning provide exciting new avenues for
further improving the reconstruction performance of collider experiments.

Neutrino reconstruction requires a slightly different approach to that of jets and electrons.
Neutrinos only couple to the weak nuclear force and typically do not interact with the detector
material. They effectively escape from collider experiments without leaving any measurable
signal. In the transverse plane perpendicular! to the beam pipe, conservation of linear mo-
mentum dictates that the momenta of all particles produced by the collision must sum to zero.
Missing transverse momentum f)’TmiSS serves as an experimental proxy for the net transverse
momentum of all undetected particles and it is calculated from the negative vectorial sum of
all observed transverse momenta. A significant deviation from zero indicates the presence of
at least one undetected particle. There is no such experimental proxy for the longitudinal mo-
mentum of undetected particles for proton-proton collisions as the initial momentum of the
colliding partons is unknown. In events that produce more than one neutrino, accurate ﬁ’%‘iss
reconstruction still leaves the individual neutrino kinematics under-constrained.

Many analyses in collider physics investigate processes that involve neutrino production,
and these could benefit from knowing the individual kinematics of final-state neutrinos. These
processes include many Higgs boson production (VH, ttH) and decay modes (H — WW,
H — 77), as well as decays of the top quark. The top quark decays almost instantaneously,
and 99.9% of decays produce a b-quark and a W boson. In approximately one-third of these
cases, the W boson decays leptonically, producing a final-state with a neutrino. The top quark
is the heaviest particle in the SM which implies that it has the largest coupling to the Higgs
boson. The value of its mass m, has a unique role in the stability of the electroweak vacuum
due to its presence in the quadratic term of the Higgs potential [8]. Due to its almost instan-
taneous decay, it provides us with a unique opportunity to measure the properties of a bare
quark. Reconstruction of a leptonically decaying top quark, as opposed to one that decays
hadronically, can benefit from a smaller sensitivity to the jet energy calibration and resolution.
However, its mass is not directly measurable due to the unknown longitudinal momentum of
the neutrino in the final-state. In tt decays where both top quarks decay leptonically, the full
system is under-constrained, and direct mass measurements for either top quark is impossible.

In addition to neutrinos, many beyond the Standard Model (BSM) theories introduce new
weakly interacting massive particles (WIMPS). These are also expected to escape the detector
without leaving any directly measurable signal. WIMPS are prime candidates for dark matter,
but their presence has yet to be observed in collider physics despite considerable effort [9,10].
Thus, any meaningful restriction of the possible phase space of these undetectable particles
would greatly benefit a wide range of both SM studies and BSM searches.

We introduce v-Flows, a machine learning approach to fully reconstruct the neutrinos pro-
duced in collisions from the missing transverse momentum and observed event kinematics.
The approach taken in this work is that while many possible momenta values might be possible,
they may not all be equally likely. Our method utilises conditional normalising flows [11,12]
which exploits the latest developments in deep Bayesian learning to leverage observed infor-

!The coordinate system used in this work to describe collider experiment observables follows the convention
of the ATLAS collaboration. The x-axis and y-axis lie perpendicular to the beam pipe while the z-axis is parallel.
Pseudorapidity is defined as n = —In(tan %), where 60 is the polar angle.
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mation from the final-state and combine it with an inductive bias to restrict the likelihood over
the possible neutrino momentum values. By sampling from this likelihood, we obtain plausible
estimates of the momenta for each undetected particle, allowing us to reconstruct topologies
that involve neutrinos or other weakly interacting neutral particles. We demonstrate the ap-
plicability of »-Flows in a semileptonic tt decay which has one neutrino in the final-state. We
use estimates of the neutrino kinematics produced by v-Flows to reconstruct properties of the
top quark and compare these to standard methods of neutrino momentum estimation. We
also assess the impact of using v-Flows in the performance of a common downstream task
employed in top quark analyses.

The source code? and data® used for this project are publicly available and can be found
online.

2 Method

Estimation of neutrino momenta p * can be framed as an ill-posed inverse problem. The for-
ward process in this problem, which describes the transformation from p* and other under-
lying variables to the observed quantities, is well understood and can be approximated by
some stochastic process, such as the Monte Carlo simulations used in collider physics. But
the inverse problem, acquiring the p” from our set of observations, is difficult to approximate
and the likelihood of the observations can only be implicitly defined by the simulation. This
problem is ill-posed because there are many situations in collider physics where the individual
neutrino kinematics can never be exactly determined, even given perfect reconstruction. An
example is the under-constrained two neutrino final-state, where many different combinations
of neutrino momenta are viable.

Standard deep learning regression methods collapse both the likelihood and posterior into
a point estimate. This is undesirable as it gives no concept of solution diversity or uncertainty
and ignores the fact that multiple solutions could exist. A probabilistic approach that can
provide the likelihood over a range of viable solutions, rather than collapsing to just one, is
required.

One promising method to perform full likelihood inference is to use conditional normal-
ising flows. A normalising flow is a parametric diffeomorphism that defines a map between
two probability densities over their respective spaces fy : X — Z. They typically map a com-
plex probability distribution px(x) into a simple density p,(z) in a latent space with known
properties, usually a multivariate normal distribution. These functions are often expressed
using invertible neural networks (INNs) which are by design bijective, efficiently invertible,
and possess a tractable Jacobian. Efficient density estimation under X is obtained using the
change of variables formula

px () = pa(fo ()| det(U5 () M

where J¢(x) is the Jacobian of fy evaluated at x. This allows the generation of new data given
px(x) by sampling from pz(z) and applying the inverse of the bijection f;~ 1(2).

Normalising flows have seen great success in the field of computer vision for unconditional
generation [ 14-16]. Conditional normalising flows use conditional invertible neural networks
(cINN) [17] to incorporate contextual information c into the map and lead to expressive con-
ditional densities p(x|c) when training with a maximum (log-)likelihood objective defined by

argmeax(log(px(xlc))) = argmglx(log(pz(fe(xlc))) +log ‘ det(Jf (xlc))D. (2)

2https://github.com /mattcleigh/neutrino_ flows
*https://doi.org/10.5281/zenodo.6782987 [13]
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Figure 1: A schematic overview of the cINN used in v-Flows which predicts the mo-
mentum vector of N many neutrinos as a condition of some chosen event observables.
The latent density is chosen to be a multivariate normal distribution with 3N dimen-
sions, N(0,T).

Our method for p” likelihood estimation, called v-Flows, is built using cINNs. These types
of networks have already been used in collider physics, with notable applications including
event generation [ 18], anomaly detection [19-21], density estimation [22], detector unfolding
[23], and detector simulation [24, 25]. Our work of attempting to recover the p” from our
set of observations falls under detector unfolding and thus it is most similar to Ref [23].

v-Flows define a map from the combined space of all neutrino momenta to a simple density
of equal dimension. To leverage information from the rest of the event, variables from event
reconstruction are used as conditional inputs in the cINN. The flow can be trained directly to
approximate the full conditional likelihood over the neutrino kinematics by performing gradi-
ent ascent on Equation 2. This leads to a rich description of the probability space, effectively
allowing degrees of freedom to be recovered with interpretable uncertainties. A simplified
diagram of this process is shown in Figure 1.

v-Flows can be applied to a wide variety of processes involving any number of invisible
particles. However, for it to learn a useful likelihood it not only requires the observed infor-
mation but also underlying assumptions or implicit biases. For example, the assumption of
the number of neutrinos or undetectable particles in the event is built into the structure of the
cINN. Another necessary assumption is the underlying physical process being studied, which
is ingrained into the flow by the composition and properties of the training set. This bias is
essential, particularly for reconstructing the longitudinal momentum of the neutrino which
can not be recovered directly from measurements. Since the total longitudinal momentum of
the colliding particles is unknown, any estimate of the neutrino longitudinal momentum by
default agrees with direct measurements. But by choosing a specific process and using its data
to train the flow, restrictions on the probability space of momenta beyond the set of all possi-
ble solutions are achievable by looking at the viability of these solutions in the context of the
assumed process and observed properties of the objects in the event. For each process or as-
sumption, a specific implementation of v-Flows should be utilised because without leveraging
these implicit biases it is not possible to constrain the possible phase space of solutions.

3 Case Study: Semileptonic tt

In this work, we demonstrate an implementation of v-Flows designed and applied for semilep-
tonic tt decays. Semileptonic t events are produced frequently at the LHC and can be selected
with a relatively high signal efficiency. The final-state of this process contains at least two b-
jets, two other jets, a lepton, and a single neutrino. The goal is to use v-Flows to recover the
p?, allowing us to fully reconstruct the whole tt system. Semileptonic tf events provide a
logical starting point to introduce v-Flows and benchmark their performance in comparison to

4
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standard techniques, before expanding to other topologies with more neutrinos and additional
degrees of freedom.

The nominal approach to estimate p * assumes that the transverse momentum of the neu-
trino p; is perfectly captured by f)’TmiSS and that the invariant mass of the W boson my, as
measured from its decay products is exactly 80.38 GeV. From the conservation of linear mo-
mentum, it follows that the longitudinal component of the neutrino momentum p_ can be

expressed as

,  —bE+vb2—4ac
p, = 2a ) (3)

where

a= G- P,
b= ap;,

a2 [AVASR AV
C=Z—(E)(pT),

w—m; +2(pipl +pip)).

a=m
This approach has several drawbacks. By assuming an exact value for my, any results or down-
stream tasks are biased. It does not consider the possibility for my, to be off-shell or account
for the misidentification, resolution, or mismodelling effects in the lepton or ﬁ’IT“iSS reconstruc-
tion. As a result, the equation may have no real solutions. The convention in this instance
is to neglect the imaginary component [26], a step that has little physical motivation. Even
in the case where everything is perfectly measured, the equation can yield two real solutions
with no preference. The estimate with the smaller magnitude is usually taken. Alternatively,
both solutions are considered in any downstream tasks.

In contrast, v-Flows does not make such hard assumptions. From the composition of the
training data, it can learn the width of the my, distribution and propagate that to a complex
distribution over the longitudinal momenta. By providing v-Flows with additional informa-
tion from the event it can learn how the resolution of both f)’?iss and p* further affect this
result. With more contextual information, v-Flows combines observables in a fully probabilis-
tic manner to learn the conditional distribution of possible solutions without collapsing the
reconstruction down to singular values. Furthermore, the quadratic solution is only valid for
final-states with a single neutrino, while v-Flows can be scaled to any multiplicity.

3.1 Input Data and Targets

The data used in this work consists of simulated tt events with exactly one of the top quarks
decaying leptonically into a b-jet and with the W* boson decaying into either (e, v,) or (u, Vi)
or their corresponding antiparticles [13]. All sets of events are generated from simulated
proton-proton collisions at a center-of-mass energy of /s = 13 TeV.

Hard interactions are simulated using the MadGraph5_ aMC@NLO [27] framework (v3.1.0),
with decays of top quarks and W bosons modeled with MadSpin [28]. The mass of the top
quark is set to m; = 173 GeV for all events. The event generation is interfaced to Pythia [29]
(v8.243) to model parton shower and hadronisation. All steps use the NNPDF2.3LO PDF
set [30] with ag(m,) = 0.130, as provided by the LHAPDF [31] framework. The detector
response is simulated using Delphes [32] (v3.4.2) with a parametrisation that mimics the re-
sponse of the ATLAS detector [2]. Jets are reconstructed using energy-flow objects and the
anti-k, algorithm [33] in the FastJet implementation [34] with a radius parameter of R = 0.4.
Jet b-tagging corresponding to an inclusive signal efficiency of 70% is used to identify jets
originating from b-quarks. Exactly one reconstructed electron or muon with py > 15GeV in
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the range |n| < 2.5 and at least four jets with pp > 25GeV in the range || < 2.5 are required.
Around 600k events are used to train the model and an additional 100k events are used for
evaluating performance.

Variables from event reconstruction are used as conditioning inputs to all models presented
in this work. These include the kinematics of the signal lepton, kinematics, and b-tagging in-
formation of the reconstructed jets (up to 10 sorted by pr), the p*, and additional event
observables. The full set of inputs is described in Table 1. The target distribution for the net-
works is the single neutrino three-momentum vector defined by (p;’, p jv’, n"). The coordinate
system used to represent the momentum of each physics object is individually optimised. We
find that using p,, p,, and n components alongside the natural logarithm of its energy log E
yields the best results. The target density p,(z) is chosen to be a standard normal distribution.

Table 1: The different input observables used as conditional variables c in the nor-
malising flow.

Category Variables Description
ﬁ’?iss p;niss , p;“iss Missing transverse momentum 2-vector
Lepton pf;, pfv, nl ) logEe Lepton momentum 4-vector
(flay Whether lepton is an electron or muon
Jets pi, pﬁ,, nj ) logEj Jet momentum 4-vector
isB Whether jet passes b-tagging criteria
Misc Niets> Nijets Jet and b-jet multiplicities in the event

3.2 cINN Setup

The architecture of the v-Flows optimised for the neutrino in semileptonic tt decays is shown
in Figure 2. The conditioning variables c are first passed through a feed-forward (FF) network
to ensure that the same high-level features are provided to each of the cINN blocks. In the FF
component, a Deep Set [35] is used to extract information from the jets due to its ability to
handle varying jet multiplicities while also remaining permutation invariant. The main cINN
blocks consist of seven rational-quadratic spline coupling layers [14]. Further details on the
specific structure of each module can be found in Appendix A.

The cINN is trained on the objective function in Equation 2 using the Adam optimiser [36]
with default 8 parameters and a batch size of 256. We use a cosine annealing scheduler that
cycles the learning rate from zero to 5 x 10™* and back every 2 epochs. Gradient clipping is
essential for stable convergence and a max L2-norm of 5 is used. As a preprocessing step, all
conditioning and target variables are independently normalised using the variance and mean
of the training set. For cross-validation, 10% of the training is reserved as a holdout set and
early stopping is used with a patience parameter of 30 epochs. We use the python packages
PyTorch [37] and nflows [38] to construct and train the cINN.

4 Performance

For v-Flows, two different configurations for conditional neutrino generation are investigated.
v-Flows(sample) represents the case where a single neutrino is sampled per event under the
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Figure 2: A schema of the v-Flows for semileptonic tt. The four classes of condi-
tioning inputs are shown in green and are used as inputs for both the Deep Set and
the Embedding Network. There is only one neutrino in the event, so the input and
output vectors of the cINN are three-dimensional.

learned conditional likelihood defined by Equation 2. This method of sampling is less bi-
ased but suffers from a high variance. As an alternative we also introduce v-Flows(mode)
to stochastically approximate arg max, px(x|c). This is done by conditionally generating 256
neutrinos per event and keeping the one with the highest likelihood.

We also train a standard FF regression network that follows the same structure as the FF
component of v-Flows but with a deeper embedding network used to predict the neutrino
three-momentum directly. The FF network is trained using the Smooth-L1 loss function [39],
with p” as the target variable. We use the same data, optimiser, learning rate scheduler,
gradient clipping, and early stopping method as v-Flows. This method is referred to as »-FF.

These methods are compared to the current standard approach which combines ﬁ’?iss and
the solutions defined by Equation 3. As an upper benchmark, we compare all methods to using
the true values of the neutrino taken from the simulation. Plots labelled Truth refer only to
using the true neutrino values, and all other properties, like those of the leptons or the jets,
are taken from the reconstructed objects.

To best illustrate the benefits of a probabilistic method such as v-Flows, Figure 3 shows
the reconstruction of the neutrino pseudorapidity for three different samples drawn from the
evaluation dataset using the my, constraint method, v-FF, and v-Flows. In Figure 3(a) the true
value of n” is around —1.70. One of the solutions of Equation 3 is close to the true value and
is around —1.55 while the other is significantly further away at —3.05. There is no indication
a priori which of these two solutions will be closer to the truth and this is one of the main
drawbacks of the method. »-Flows on the other hand provides us with the full likelihood
across a range of n” values and shows a distribution with two local peaks corresponding to
the quadratic solutions. This is worth noting as v-Flows was able to relearn the kinematic
relationship detailed in Equation 3 entirely from data. But unlike the m, constraint solutions,
v-Flows gives us interpretable uncertainties.

We also trained a version of v-Flows using quadratic solutions as extra conditioning in-
puts and observed a slight performance increase. However, we felt that the version which had
to relearn this relationship purely from the dataset better demonstrated the power and ex-
pressiveness of the method. Furthermore, using v-Flows without the quadratic solutions also
meant the same architecture can be applied to final-states with multiple neutrinos, where the
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Figure 3: The pseudorapidity (1) of three different neutrinos selected from the eval-
uation dataset. The true values are shown in black. The two solutions from the my,
constraint method are shown in green. The single point estimate using v-FF is shown
in blue. The full conditional likelihood learned by v-Flows is shown in orange.

quadratic method would be invalid.

Furthermore, for the event represented by 3(a), v-Flows indicates a preference for one of
the possible solutions, with the highest localised cumulative distribution occurring at n” ~ —1.60,
close to the true value. This preference may be due to several reasons. For example, if the
Deep Set component of v-Flows was able to identify which jet corresponds to the b-quark pro-
duced by the leptonic top, it would allow further constraints on possible n” values. In contrast
v-FF results in a point estimate close to —2.05 which falls between the two peaks, an area of
low probability as estimated by v-Flows. Since v-FF and v-Flows share the same information
and a large portion of network structure it can be proposed that v-FF essentially averages the
multimodal likelihood which is fully expressed by v-Flows.

Figure 3(b) shows a similar situation where v-Flows reproduces the multimodal likelihood
as expected by the kinematic constraint but with less of a preference for one solution over the
other. Because of this v-FF results in a point estimate close to the average of the two solutions,
resulting in an estimate much closer to n” & 0.

Figure 3(c) shows an event where none of the methods could provide a good estimate for
n”. It is important to note that the relative width or uncertainty displayed by the likelihood
plot of v-Flows has increased correspondingly. This shows another benefit of this probabilistic
approach as it can identify this event as being poorly reconstructed and one can filter it from
downstream tasks.

The distribution of the neutrino four-momentum using the different methods for recon-
struction are shown in Figure 4. For all coordinates, the distribution of the v-Flows(sample) is
closest to the true momentum distribution. The v-FF and my, constraint methods induce a neg-
ative bias towards zero. This is most notable for pz" , shown in Figure 4(c), where both methods
significantly overestimate the fraction of events close to zero. This results in an underestima-
tion of the energy as shown by Figure 4(d). v-Flows(mode) also possesses a negative bias in
p, and E”, although it is not as significant. There are notable artifacts in the v-Flows(mode)
distributions in the transverse plane which causes a double peak around 20 GeV. This is caused
by the shape of the p, and p,, distributions of the jets and leptons, which due to the cut on pr
also exhibit these double peaks.

Figure 5 shows heatmaps of 2D histograms using coordinates defined by the reconstructed
and true p). Once again the bias towards zero is apparent in the my, constraint solutions
and in the v-FF, both with an overestimation at zero. The negative bias in v-FF is caused by
the model often guessing between the two kinematic solutions, as shown by Figure 3. Both
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Figure 4: Distributions of each component of the neutrino four-momentum using the
different reconstruction methods.

v-Flows models show a good correlation to Truth, however v-Flows(sample) suffers from too
high a variance, showing the drawback in taking a single sample from the learned density.
Here v-Flows(mode) shows good performance with the bulk of events being highly correlated
with the true values while also showing no obvious bias.

The reconstructed invariant mass of the leptonic W is shown in Figure 6(a), calculated us-
ing the momentum vector of the reconstructed lepton and each estimate of p. The distribution
using the true neutrino is almost exactly matched by v-Flows(sample), while v-Flows(mode)
is tightly centered around the mean. v-FF shows a notable offset of the mean by around 6 GeV.
The my, constraint results in nearly all events having exactly m,, = 80.38 GeV, as expected,
and the positive tail arises from events which lead to no real solutions for Equation 3. As is
expected, v-Flows(mode) is biased towards the central value of the my;, since it is estimating
the most likely neutrino, which is therefore coupled with the most likely value for my,.

When looking at the correlation between the reconstructed my, values and the true values,
no correlations are observed for any of the methods. We find that the resolution effects in the
ﬁ'rTniSS are enough to destroy all information about the my, of the event. This observation holds
even when using the true value p, alongside ﬁ’%ﬁss. It is worth noting that v-Flows learns the
distribution of my, across the dataset even though it could not specify it on an event-by-event
basis. This further demonstrates that it has learned to restrict its predictions of p_ to the true
space of possible solutions.
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Figure 5: Two dimensional histograms showing the reconstructed versus true p.
using both solutions of the m,, kinematic constraint (a), v-FF, (b), v-Flows(sample)
(c), and v-Flows(mode) (d). The diagonal line represents ideal reconstruction. We
use a logarithmic scale for the z-axis.

The reconstructed invariant mass of the leptonic top quark is shown in Figure 6(b). The
correct b-jet from the leptonically decaying top quark is used in the calculation of the top
mass. This is done to highlight the effect of the neutrino reconstruction, and thus only events
for which the b-jet is reconstructed are shown. The »-FF method produces a shifted mass
distribution, demonstrating a strong negative bias, with its peak at around 155 GeV. All other
methods reduce this bias, but still peak at around 169 GeV, slightly under the simulated top
mass of 173 GeV. Notably, the top mass distribution produced when using the true neutrino
is negatively skewed while all other distributions are more symmetrical. The my, constraint
method produces the distribution with the largest variance, resulting in a significant number
of events with a reconstructed top mass greater than 230 GeV as shown by the overflow bin.
The v-Flows(sample) method reduces this mass variance to around the same level as »-FF
but without the negative shift. The v-Flows(mode) method further reduces this variance and
produces the mass distribution most similar to Truth.

x? Jet Association

To assess the impact of v-Flows in a real downstream task, we investigate its effect on solving
the combinatoric assignment of jets to final-state partons in semileptonic tt events. Initially,
it is unknown which (if any) of the jets that were observed in the event can be associated
with the b-quark which was produced alongside the leptonically decaying W boson (bj,p)-
In the final-state of the semileptonic tt channel there are four partons originating from the
tt decay. These are the b-quarks from the leptonically and hadronically decaying top quarks
(biep and byqq respectively), as well as the two decay products from the hadronically decaying
W boson, q; and q,. Additional jets are also reconstructed from initial state radiation, final-
state radiation, and pileup interactions. One of the most common methods used to assign

10
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Figure 6: Distributions of the invariant mass of the £v (a) and b{v (b) systems using
different neutrino reconstruction methods. All methods use reconstructed variables
for the lepton and jet kinematics and Truth Neutrino uses the true neutrino.

the reconstructed jets to each parton is the y? fit [40]. The jet-assignment derived using this
method is dependent on the neutrino kinematics and thus it can be used to demonstrate the
benefits of having a more accurate neutrino estimate.

It is important to note this is just one of many jet combinatoric solving methods. Another
popular approach is KL-Fitter [41] which is similarly dependent on the neutrino momentum.
More recent approaches use deep learning to perform the associations [42] and have shown
significant performance gains over the 2 method. All of these combinatoric techniques should
be complemented by »-Flows, though we demonstrate the potential gains using the y? method
as it is already widely used in analyses [40,43,44].

In the y? fit method, every possible jet permutation is tested, and the one with the lowest
22 value defined by

2 _ (my —my,)? N (my —mgg)* L me— Mpgy)? N (m —mpgq)® @
Oy qu Obev quq

is kept. In this work, the o values are taken from the root mean square error of the relevant

mass distributions, using the true jet-assignments, and are derived for each neutrino recon-

struction method separately. We perform the y? fit using permutations of up to 9 leading

pr ordered jets and record the parton association accuracy for each neutrino reconstruction

method.

The b;., matching efficiency has the highest dependence on the neutrino in the 2?2 fit
and the association accuracy of the by, is shown in Table 2. Using estimates from either
v-Flows(sample) or v-Flows(mode) results in an improved matching efficiency compared to
the standard kinematic approach. The y? fit performed with estimates from v-Flows(mode)
instead of the my, constraint led to an increase in accuracy by a factor of 1.03 for events with
four jets and 1.41 for events with nine jets. For events with a low number of jets, few permu-
tations exist, which means that the neutrino term is less likely to have an impact in Equation
4. Therefore, the observed relationship between the performance gained using v-Flows and
the number of jets in the event is expected.

5 Conclusions

We introduce v-Flows, a probabilistic model for conditional neutrino momentum estimation.
We show that in semileptonic tt events v-Flows leads to better overall momentum reconstruc-
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Table 2: The fraction of events for which the y2 method identified the correct biep jet
using the various neutrino estimation methods. The results are binned by the number
of reconstructed jets in the event. Events must first pass a selection requirement
where the partons were reconstructed as jets, so a correct permutation was at least
possible. This selection did not change the ranking of the methods.

Number of Jets

Neutrino Type 4 5 6 7 8 9
Truth Neutrino 0.864 0.753 0.686 0.641 0.611 0.587
ﬁ’%ﬁss and my, Constraint 0.790 0.576 0.476 0.398 0.366 0.286
v-FF 0.754 0.533 0.410 0.353 0.300 0.302
v-Flows(sample) 0.803 0.624 0.515 0.457 0.391 0.357
v-Flows(mode) 0.813 0.664 0.575 0.508 0.481 0.405

tion in comparison to both standard kinematic approaches and deep feed-forward networks.
This in turn leads to significant improvements in downstream tasks, as demonstrated using
the y2 method for solving the jet associations in tf events.

To continue this work, we will apply v-Flows to final-states with more than one neutrino
and therefore have under-constrained transverse momenta. A natural extension to the pro-
cesses studied in this work is the fully leptonic tt decay. This will provide some insight into
how well v-Flows scales to higher neutrino multiplicities and target dimensions. Furthermore,
we would like to investigate the impact of v-Flows on other downstream tasks in addition to
the y2 method. More sophisticated algorithms for jet-assignment that use deep learning [42]
have been shown to be very successful and may combine well with v-Flows.

Additionally, the agreement between the learned conditional likelihood and the distribu-
tion of the actual momentum targets needs to be investigated. It is currently unclear if the
learned likelihood represents a properly calibrated uncertainty. A further potential utilisation
of the full likelihood produced by v-Flows is that one could reject events where the likelihood
was insufficiently constrained. This would be an effective form of event cleaning and a way
to filter data to only events where v-Flows was sufficiently confident in its output. This is
another benefit of a fully probabilistic approach which is infeasible with standard supervised
regression models.
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A Network Structure

Conditional Attention Deep Set

Several different methods for extracting variables from the jet container were studied in the
development of v-Flows, including manually constructing observables, and passing through
flattened jet data through a dense network. We found that the Deep Set, specifically with
attention pooling, performed considerably better.

Our Deep Set contains three dense networks, the Feature Net,the Attention Net, and
the Final Net as shown in Figure 7. The jet variables from Table 1 are passed separately
through the Feature Net to extract representations per jet f;, and separately through the
Attention Net to extract a weight per jet w;. We then combine these outputs to perform a
weighted sum of the representations of the N jets in each event.

N
F =Zwi fl
i

The result is then passed through the Final Net to obtain the extracted features of the
entire jet container. Conditional information from the ﬁ'ITniSS, lepton, and Misc variables are
provided to each of the dense networks by concatenating them together with the jet inputs.
The Attention Net produces a positive definite weight by applying an exponential activation
function in the final layer.

miss

pr Lepton| | Misc
I I I

Y \ 4

Attention Net | €«— Jet —H Feature Net

Figure 7: The attention weighted Deep Set for the jet container.

cINN Layer

Many different configurations for the cINN were tested over the course of this work. Combin-
ing conditional coupling layers, with rational-quadratic spline transformers [14], and Lower-
Upper triangular (LU) decomposed linear layers resulted in the best-observed performance at
reconstructing the neutrino three momenta. This block is shown in Figure 8. The cINN is
constructed of seven alternating coupling layers. In the very first coupling layer of the flow,
we split the neutrino three-momentum by selecting the transverse coordinates for X, and the
longitudinal coordinate for X5. We then alternate this splitting with each subsequent coupling
layer. We found that the masking order did have an impact on the final performance. Con-
ditioning information is provided to the network by concatenating the extracted high-level
features from the FF module to the inputs of the Spline Net. The python package nflows is
used to construct the cINN.
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Conditioning Tensor

LU
Linear

Figure 8: The building blocks of the conditional invertible neural network in v-Flows.

Dense Network Hyperparameters

The v-Flows model in Figure 2 contains 5 different types of dense network. The three net-
works in the Deep Set, an Embedding Network, and a Spline Net in each layer of the
cINN. The hyperparameters were determined by several grid searches using reconstruction
performance on a validation set. All dense networks have two hidden layers of 64 nodes each.
Each hidden layer applies the LeakyReLU [45] activation function with a slope parameter of
0.1 and Layer-Normalisation [46]. Additive residual connections are used between each hid-
den layer. Conditional information is injected into the dense networks by concatenating the
context tensors to the inputs.

The v-FF network uses the same structure as the FF component of v-Flows but with an
Embedding Network with 4 hidden layers and an output layer with three nodes, correspond-
ing to the neutrino three-momentum.
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Figure 9: Two dimensional histograms showing the reconstruction performance of p_’
using both solutions of the m,, kinematic constraint (a), v-FF, (b), v-Flows(sample)
(c), and v-Flows(mode) (d). In each plot, the true value is plotted along the x-axis
and the reconstructed value is plotted along the y-axis. The diagonal line represents
ideal reconstruction. The z-axis is the natural logarithm of the counts in each bin.
The p ;’ distribution results were virtually identical to these.
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Figure 10: Two dimensional histograms showing the reconstruction performance of
the neutrino energy using both solutions of the m,, kinematic constraint (a), v-FF,
(b), v-Flows(sample) (c), and v-Flows(mode) (d). In each plot, the true value is
plotted along the x-axis and the reconstructed value is plotted along the y-axis. The
diagonal line represents ideal reconstruction. The z-axis is the natural logarithm of
the counts in each bin.
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Figure 11: Two dimensional histograms showing the reconstruction performance of
the tiep mass using both solutions of the m,, kinematic constraint (a), v-FF, (b),
v-Flows(sample) (c), and v-Flows(mode) (d). In each plot, the true value is plotted
along the x-axis and the reconstructed along the y-axis. The correct b-jet is used.
The diagonal line represents ideal reconstruction. The z-axis is the natural logarithm
of the counts in each bin.

20



SciPost Physics

Submission

5 )
e --- lIdealised
0.25 o )
—— pPiss + my Constraint, x?
PPiss + my, Constraint, x? (Correct)
0.20 A
=
!
[} 1
1 1
1 1
'
0.15 o
o
1!
1 1
1 }
1 }
0.101 P
- P,
}
0.05 A
J-’-
0.00 — T T T == r
120 140 160 180 200 220 240
myy, [GeV]
(@
5 )
o --- lIdealised
0.25 A 5
v-Flows(sample), x
v-Flows(sample), x? (Correct)
0.20 A
=
!
[} 1
1 1
1 1
1 )
0.15 o
1 1
1!
1 1
1 }
1 1
0.10- P
= [
i i
) )
=1 )
] i
- 1
0.05 f i
=4 :
- 0
1
_1" [
- I_‘—__ 1=
0.00 = T T T ==
120 140 160 180 200 220 240
myy, [GeV]
©
Figure 12:

S
; —-=-- l|dealised
© 0.25 1
—— V-FF, x?
v-FF, x? (Correct)
0.20 A
0.15 A
0.10 A
0.05 A
0.00 ; T T ; =
120 140 160 200 220 240
mpy, [GeV]
(b)
S
5 —--- lIdealised
© 0.25 1 ,
—— v-Flows(mode), x
v-Flows(mode), x? (Correct)
0.20 A
0.15 A
0.10 A
0.05 A
0.00 v T T T =
120 140 160 200 220 240
mpy, [GeV]
d
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v-Flows(sample) (c), and v-Flows(mode) (d). In each colored plot the b-jet is se-
lected using the y2? method. The Idealised curve uses both the true neutrino and the
correct b-jet. The shaded plots show the subset of data for which the y? method
identified the correct b-jet.
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