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Abstract: The steady-state properties of an open quantum system are investigated via the collision 

model method of system-reservoir interaction. In our collision model, the system of interest 

consists of two coupled qubits, each of which interacts with its own independent thermal reservoir. 

Each thermal reservoir is modeled as a set of clusters of qubits (or linear harmonic oscillators). 

First, the steady-state entanglement of the system is studied. We show that collective interaction 

between the system and the elements (qubits or linear harmonic oscillators) in the clusters is 

beneficial to the generation and enhancement of the steady-state entanglement. And increasing the 

size of the clusters forming the low-temperature thermal reservoir is more conducive to the 

improvement of steady-state entanglement. Remarkably, we show that the steady-state 

entanglement can be greatly improved by choosing the suitable size of the clusters forming the 

thermal reservoirs. We also study the effect of the size of the cluster on the steady-state coherence. 

The numerical results show that for the qubit clusters, whether the steady-state coherence of the 

system can be enhanced by increasing the size of clusters depends on the coupling strength 

between the two system qubits and the coupling strength between the system and the thermal 

reservoirs. While for the case of the harmonic oscillator clusters, in addition to the coupling 

strengths, whether the steady-state coherence can be enhanced also depends on the temperature of 

the thermal reservoirs. 
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1. Introduction 

Quantum entanglement and quantum coherence are recognized as essential physical 

resources in emerging several fields of quantum technology, such as quantum computation and 

quantum information[1], quantum cryptography[2-4], quantum metrology[5-6], quantum 

thermodynamics[7-9]. It is widely known that quantum entanglement and quantum coherence must 

be attached to an actual quantum system. However, all realistic quantum systems cannot be 

isolated, but would be affected by the external environment. The inevitable interaction between 

the system and the environment will lead to decoherence, which makes the initial entanglement 

and coherence of a particular quantum system for quantum tasks easy to be destroyed. This has 

seriously hindered the application of quantum entanglement and quantum coherence as physical 

resources in these new fields of quantum technology. Hence, the exploration of new measures for 

protecting and enhancing quantum entanglement and coherence in different environments or at 

least delaying their decay is of considerable practical significance. 

So far, many methods have been proposed to generate, protect and improve the quantum 

entanglement[10-24] and quantum coherence[25-30]. Interestingly, it has been found that noise and 

dissipation can be exploited for the generation of entanglement and coherence. In particular, more 

recently, the steady-state entanglement[16,20,22,24,31-37] and coherence[38-42] of an open quantum 

system have attracted much attention. In [32,33], the authors studied the steady-state entanglement 

of two interacting qubits coupled to different heat baths and found that the temperature gradient 
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can enhance the entanglement under certain conditions. In Ref. [31], a new protocol has been 

proposed to generate the steady-state entanglement of a bipartite quantum system from incoherent 

resources. Ref. [22] has found that the steady-state entanglement of a coupled two-qubit can be 

enhanced by leading into a third thermal reservoir which is common to both qubits. In Ref. [40], 

the authors have shown that the steady-state coherence can be generated spontaneously in a 

two-level system in contact with a single thermal bath by the composite system-bath interaction. 

In Ref. [42], the authors have shown that the steady-state coherence in the two-level system can be 

enhanced by repeated system-bath interactions. In their model, the effective bath is modeled as a 

stream of clusters of qubits (or linear harmonic oscillators) in thermal states. 

In this paper, focusing on a coupled two-qubit system, we explore the feasibility of enhancing 

the steady-state entanglement and the steady-state coherence in the open system by collision 

model[43-53] which can be 

straightforwardly realized 

using superconducting 

quantum circuits[54] and cold 

trapped ions[55]. Different from 

the previous collision models, 

in our model, each thermal 

reservoir is simulated by a set 

of qubit (or linear harmonic 

oscillator) clusters initially 

prepared in the thermal state. 

The results show that the 

steady-state entanglement and 

the steady-state coherence can 

be substantially enhanced by 

increasing the size of the 

cluster appropriately. 

Compared with the collision 

model used to study 

entanglement in Ref. [37], we 

extend each element 

constituting the heat reservoirs in this model from one qubit to a cluster composed of multiple 

qubits (or harmonic oscillators). This improvement enables our model to study the effects of 

various coherences of the bath on the thermalization [49] of the system and local heat flow [56].   

2. Model and Quantum master equation 

In the model we consider, the open system consists of two coupled qubits 1S  and 2S , with 

respective frequency 
1S  and 

2S . And each qubit iS  ( 1,2i = ) interacts with its heat 

reservoir iR . Here, the heat reservoir iR  is simulated as a collection of clusters of qubits (or 

linear harmonic oscillators), and each cluster in the heat reservoir iR  is composed of iN  

Fig.1. Schematic of collision model considered in this paper. In the nth 

collision, qubit iS  collides with the nth cluster in reservoir iR . After 

collision, the two clusters are discarded, and immediately two system 

qubits interact with a new cluster in corresponding heat reservoir, 

respectively. The process is then repeated sequentially. 



non-correlated and identical qubits (or linear harmonic oscillators) with frequency i , which are 

initially prepared in the thermal states with the temperature iT  (without loss of generality, we 

assume 2 1 0T T T = −   in this paper), as depicted in Fig.1. Each system qubit iS  collides 

collectively with one cluster of iN  non-correlated qubits (or harmonic oscillators) in the 

reservoir iR  at a time in a short period of time  . After each collision, the clusters in the two 

heat reservoirs that have collided with the system qubits are discarded and the system qubit iS  

immediately interacts with the next fresh new cluster in the heat reservoir iR . Then the process is 

repeated sequentially. Here, we assume that the time interval between the two successive 

collisions is negligible compared to the time   and that each cluster in the two heat reservoirs 

will not share any initial correlations with the system of interest. So, during the time of interaction 

of duration  , the total Hamiltonian can be written as  

ˆ ˆ ˆ ˆ
S R SRH H H H= + + ,                                           (1) 

where 
1 1 2 2 1 2 1 2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
2 2

z z

S S S S S S S S SH         + − − += + + +  is the Hamiltonian of the system of 

interest, with ˆ
i

z

S  being the Pauli operator, ˆ ˆ( )
i iS S + −

 being the raising (lowering) operator for 

the system qubit iS ( 1,2i = ), and   being the coupling strength between the two qubits. 

2

1

ˆ ˆ
iR R

i

H H
=

=  is the free Hamiltonian of the corresponding two clusters in two heat reservoirs. 

And 

2

1

ˆ ˆ
i iSR S R

i

H H
=

= , with ˆ
i iS RH  denoting the interaction Hamiltonian between the subsystem 

iS  and the cluster in the corresponding heat reservoir iR .  

A quantum master equation describing the evolution of the system is next constructed. For 

the convenience of taking the continuous time limit, the system-reservoir interaction Hamiltonian 

is rescaled by an interaction time factor
1


[30,45-47]. Thus, the total Hamiltonian can be 

reformulated as 

1ˆ ˆ ˆ ˆ
S R SRH H H H


= + + .                                        (2) 

We assume that the system qubit iS  ( 1,2i = ) collides with the first cluster in the corresponding 



heat reservoir iR  at time 0t = . Then the state of the total system after the nth collision can be 

expressed as 
1( ) ( ) n

S Rn n     +=  , where ( )S n   is the state of the system of interest after 

the nth collision. 
1 2

1 1 1n n n

R R R  + + +=   is the total state of the forthcoming two clusters in the two 

reservoirs, with
1

i

n

R
+

being the state of the (n+1)th cluster in the heat reservoir iR . The reduced 

density matrix of the system of interest after the (n+1)th collision is dominated by the map 

1

ˆ ˆ1

ˆ ˆ[( 1) ] { [ ( ) ] }

{ [ ( ) ] }

n

S R S R

iH n iH

R S R

n Tr U n U

Tr e n e 

    

  

+

− +

+ = 

= 

†

,                            (3) 

where 
ˆˆ iHU e −=  is the unitary evolution operator and RTr  denotes the partial trace over the 

heat reservoirs degrees of freedom. We expand the evolution operator Û  up to second order in 

 and put it into Eq. (3) together with Eq. (2), leads to 

      

[( 1) ] ( )

ˆ ˆ ˆ[ , ( )] {[ ,[ , ( ) ]]}
2

S S

S S R SR SR S R

n n

i H n Tr H H n
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+ −

= − − 
.            (4) 

In the limit 0 → , the master equation describing the evolution of the system is obtained, as 

follows 

      
0

( ) [( 1) ] ( )
lim

1ˆ ˆ ˆ[ , ] {[ ,[ , ]]}
2

S S S

S S R SR SR S R

d t n n

dt

i H Tr H H



    



  
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+ −
=
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 .                     (5) 

The interaction between the two qubits and their corresponding clusters can be written as 

           

2

1

ˆ ˆ ˆˆ ˆ( )
i iSR i S i S i

i

H g J J + − − +

=

= + ,                                       (6) 

where ,

1

ˆ ˆ
i

i

N

i R j

j

J B 

=

= ( 1,2i = ) represents the collective raising and lowering operators[31,49] of 

each qubit cluster (or collective creation and annihilation operators of each oscillator cluster) in 

the reservoir iR . More specifically, , ,
ˆ ˆ

i iR j R jB  = for the cluster of qubits and 

†

, , , ,
ˆ ˆ ˆ ˆ( ) ( )

i i i iR j R j R j R jB B a a− + =  for the cluster of oscillators, with ,
ˆ

iR j −
( ,
ˆ

iR ja ) and ,
ˆ

iR j +
(

†

,
ˆ

iR ja ) 

being the individual lowering (annihilation operators) and raising operators (creation operators) in 

the reservoir clusters, respectively. ig  is the coupling between the qubit iS  and each cluster in 

the reservoir iR . Putting Eq. (6) into Eq. (5), the quantum master equation can be written as 



2

1

( ) ˆ[ , ] ( )S
S S i S

i
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i H
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
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=

= − +  ,                                  (7) 

where  
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2
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with
2

i ig = being the dissipation rate. For the sake of simplicity, in the following, we 

assume 1 2  = = . ˆ ˆ( )R
R

X Tr X= represents the average of X̂ , and ˆ ˆ ˆ ˆ ˆ ˆ{ , }X Y XY YX= +  

stands for the anti-commutator. 

Note that, in this paper, we are concerned only with the steady-state properties of the system. 

We adopt concurrence[57-58] to measure the steady-state entanglement. According to the master 

equation (i.e., Eq. (7)), in the ordered basis 
1 2 1 2 1 2 1 2

, , ,
S S S S S S S S

ee eg ge gg , the density 

matrix of the system of interest in the steady state can be expressed as  

11 14

22 23

32 33

41 44

0 0

0 0

0 0

0 0

SS SS

SS SS

SS

SS SS

SS SS

 

 


 

 

 
 
 

=  
 
 
 

.                                     (9) 

The concurrence is given as   

        23 11 44 14 22 33( ) 2max{0, , }SS SS SS SS SS SSC       = − − .                     (10)  

In addition, to quantify the steady-state coherence of the coupled two-qubit system, we use 

the 1l -norm of coherence measure[59], which is expressed as 

                  
1

SS SS

l ij

i j

C 


= .                                            (11) 

3. Heat reservoirs composed of qubit clusters  

This section presents the case in which each cluster in the reservoir iR  is composed of iN  

( 1,2i = ) non-correlated and identical qubits. Under this circumstance, the state
i

n

R of the nth 

cluster in the reservoir iR  is given by the tensor product of the states of iN  qubits, i.e., 

1
i

i i

Nn j

R j R ==  , where 
, ,

ˆ( ) /
2i i i

j zi
R R j R j

i

exp Z
T


 = −  ( 1, 1Bk = = ) is the initial state of the jth 



qubit forming each cluster in the reservoir iR , with 
, ,

ˆ( )
2i i

zi
R j R j

i

Z TrExp
T


= −  being the 

partition function. Therefore, the expectation values ˆ ˆ
i i

R
J J− +

and ˆ ˆ
i i

R
J J+ −

in Eq. (7) can be 

easily obtained, as follows 

ˆ ˆ (1 tanh )
2 2

i i
i i

R
i

N
J J

T

− + = + ,                                     (12) 

 ˆ ˆ (1 tanh )
2 2

i i
i i

R
i

N
J J

T

+ − = − .                                     (13) 

By substituting Eq. (12) and Eq. (13) into Eq. (7), and letting 
( )

0Sd t

dt


= , the steady-state 

solutions can be obtained. For simplicity, we assume
1 2 1 2S S    = = = = in this section. 

Firstly, we discuss the steady-state entanglement of the system. In Fig.2, we show an overall 

picture for the dependence of the steady-state concurrence ( )SSC   on the size of each cluster in 

the two reservoirs (i.e., 1N and 2N ) for a given temperature of two heat reservoirs. We can see that, 

in terms of improving the steady-state entanglement of the system, it is better to increase the 

number of qubits in the cluster forming the low-temperature heat reservoir separately than to 

increase the size of clusters in both heat reservoirs simultaneously, which is beyond our 

expectations. What's more, the steady-state concurrence decreases monotonically with the number 

2N  of qubits. For a given 1N , when 2N  increases to a certain value, the steady-state 

Fig.2. The contour plot of the steady-state concurrence ( )
SS

C  for different 
1

N  and 
2

N . The parameters 

are 
1

0.01T = , 5T  = , 0.1 =  and 0.1 = . 
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entanglement vanishes completely. For a given 2N , the steady-state concurrence first increases 

and then decreases with the increase of 1N . Therefore, there must be a critical value 
1

QCN  for 

the size of the clusters constituting the low-temperature thermal reservoir, in which case the 

steady-state concurrence of the system reaches the maximum. In other words, in order to obtain 

greater entanglement, the size of the clusters constituting the low-temperature thermal reservoir 

should be 
1

QCN . This shows that it is feasible to enhance the steady-state entanglement by the 

collective interaction between the system of interest and the cluster formed by more than one 

independent and identical qubits. Note that 
1

QCN depends on the ratio /  . According to the 

2 4 6 8 10 12 14 16 18 20

0.00

0.02

0.04

0.06

0.08

0.10

C
(

S
S
)

N1

 /=1.5

 /=1.25

 /=1
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N  for different values of /  . The 
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0.01T = , 5T  =  and 2 1N = . 
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numerical calculation results, we find that 1 7QCN



  when 2 1N = , as shown in Fig.3. In 

order to understand these observations more deeply, we study the effects of 1N  on 
23

SS  and 

populations of the system which are involved in the steady-state concurrence, as shown in Fig.4. 

The increase of 1N  causes 
23

SS and the population 
44

SS  to increase at first and then decrease, 

and leads to the population 
11

SS  rapid attenuation. It can be seen that when the value of 1N  is 

small, 23 11 44

SS SS SS   , so the steady-state concurrence ( ) 0SSC  = . When 1N  is large, the 

population
11 0SS → , so 

23( )SS SSC  → . When 1N → , since 
23 0SS → , the steady-state 

entanglement vanishes (i.e., ( ) 0SSC  → ). As a consequence, the variation of the increment of 

the steady-state concurrence exhibits nonlinear relation with 1N . 

To fully grasp the effect of the size of the clusters in the heat reservoirs on steady-state 

entanglement, in Fig. 5(a), we plot the steady-state concurrence ( )SSC   as a function of the 

temperature difference T  for different 1N  when 2 1N = . For a given T , with the 

chosen parameters, when 1 7N = , ( )SSC  reaches a maximum (namely, 
1 7QCN = ), as shown 

by the green dotted line. This indicates that the critical size 
1

QCN  is independent of the reservoir 

temperature. For a given 1 1N  , ( )SSC   increases with the increase of T , and when 

Fig.5 (a) ( )
SS

C   as a function of T  for different 
1

N  with
1

0.01T = ；(b) ( )
SS

C   as a function of 

T  for different 1T 。The parameters are 2 1N = ， 0.1 = ， 0.1 = 。 
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1 1

QCN N= , ( )SSC   increases fastest with T . In addition, we find that when 1 1N = , as 

shown with the black solid line in Fig.5, ( ) 0SSC  = , which is consistent with the conclusion in 

Ref. [37]. However, when 1 2N  , the steady-state entanglement arises. This indicates that 

increasing the number of qubits forming the clusters in the reservoir with a lower temperature can 

assist the generation of the steady-state entanglement. In Fig.5(b), we show the steady-state 

concurrence ( )SSC   as a function of the temperature difference T  for different 1T . 

Obviously, for a given 1N (e.g., 1 7N = , see the solid line), ( )SSC   decreases with the increase 

of 1T . Only when the temperature of the low-temperature heat reservoir is relatively low and the 

temperature difference is large enough, can the steady-state entanglement occur, which is 

consistent with the conclusion obtained in Ref. [20, 35]. Moreover, by comparing the three red 

curves in Fig.5(b), it can be found that when 
1 1

QCN N= , the temperature difference T  

required to generate steady-state entanglement is the smallest.  

Next, we discuss the steady-state coherence of the system in this cluster scenario. the 

steady-state coherence measured by the 1l -norm can be expressed as  

1

1 2

2 2

1 2 1 2

2
[tanh tanh ]

( )( 4 ) 2 2( )

SS

l

N N
C

N N N N T T T

  

 
= −

+ + +
.            (14)  

Here, we have re-labeled the temperatures of the two heat reservoirs as T  and T T+ , 

respectively. We can see that for any given coupling strength, the sizes of the clusters that 

maximize 
1

SS

lC  should meet 1 2N N= . Therefore, for the case of 1 2N N N= = , the analytical 

expression of the steady-state coherence can be reduced to 

             
1 2 2 2

( , )
4

SS

l

N
C A T T

N



 
= 

+
,                                    (15) 

where ( , ) tanh tanh
2 2( )

A T T
T T T

 
 = −

+
. One can find that when 2N




= , the 

steady-state coherence 
1

SS

lC  reaches its maximum. That is to say, in order to enhance the 

steady-state coherence of the system of interest as much as possible, the chosen value of N  

should be roughly 2



. It should be noted that if 2 1




 , increasing the size of the cluster can 

only weaken the steady-state coherence in the system. In order to display the above conclusions 



more intuitively, the numerical results when 1



=  are given in Fig. 6. It can be seen that by 

increasing the size of the cluster beyond 1N = , e.g., 2N =  and 3 , the steady-state coherence 

is enhanced, and reaches the maximum when 2N = . However, when 3N  , 
1

SS

lC  decreases 

monotonically with N . According to Eq. (15), when 2N



, the steady-state coherence 

1

SS

lC  

is approximately proportional to 
1

N
. This explains why the steady-state coherence decreases 

with N  when N  is large in Fig. 6.  

On the other hand, the effects of temperature T  and temperature difference T  on 

steady-state coherence depend on the function ( , )A T T  in Eq. (15). When 0T = , 

obviously, ( , ) 0A T T = , as a result, the steady-state coherence and the steady-state 

entanglement vanish completely, regardless of the size of the clusters. In other words, if the two 

heat reservoirs have the same temperature, the steady-state coherence and entanglement will not 

occur in the two-coupled qubit system. For 0T , we approximate 
2

( , )
2

T
A T T

T



 → . 

Therefore, for a given T , the steady-state coherence decays in accordance with the 

inverse-square law of temperature in the high temperature limit until it disappears completely. 

This can be seen clearly from the numerical results plotted in Fig.6(a). Moreover, for a 

given 1N  , compared with 1N = , the lower the temperature T , as shown in Fig.6(a), (or the 

greater the temperature difference T , as shown in Fig.6(b)), the larger the increment of 
1

SS

lC . 

4. Heat reservoirs composed of oscillator clusters  
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Fig.6. (a) the dependence of the steady-state coherence 
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lC  on 
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T  with 10T  =  for different N . (b) 

the dependence of the steady-state coherence 
1
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lC on T  with 
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0T = for different N . The other 

parameters are 0.1 =  and 0.1 = . 



In this section, we assume that each cluster in the heat reservoir iR  ( 1,2i = ) is composed 

of iN  independent and identical linear harmonic oscillators in the thermal state. For each linear 

harmonic oscillator forming the clusters in the reservoir iR , there must be 

†

, ,
ˆ ˆ

i i iR j R j R
R

a a n= ,      
†

, ,
ˆ ˆ 1

i i iR j R j R
R

a a n= + ,                        (16) 

where 
/ 1( 1)i i

i

T

Rn e
 −= −  is the average occupation number. Thus, in this case, the explicit form 

of the expectation values ˆ ˆ
i i

R
J J− +

and ˆ ˆ
i i

R
J J+ −

in Eq. (7) can be easily derived as follows  

      ˆ ˆ (coth 1)
2 2

i i
i i

R
i

N
J J

T

− + = + ,                                       (17) 

ˆ ˆ (coth 1)
2 2

i i
i i

R
i

N
J J

T

+ − = − .                                       (18) 

Analogously to the previous section, we can obtain the steady-state properties of the system of 

interest by substituting these results into Eq. (7).  

First, we investigate the effect of the size of the cluster on the steady-state entanglement. In 

Fig. 7, we plot the steady-state concurrence ( )SSC   as a function of the size of the clusters in 

the two reservoirs. Compared with the case of qubit clusters discussed in the previous section, 

here the behavior of the steady-state concurrence exhibits certain variations although the overall 

trends in both cases have similarities (see Fig. 2 and Fig. 7, respectively). It can be seen that the 

maximum value of the steady-state concurrence shown in Fig. 7 is far less than that shown in Fig. 

2. This indicates that to obtain the larger steady-state entanglement, we should select the thermal 

reservoirs composed of qubit clusters. We can also notice that, in Fig. 7, compared with the case of 
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the qubit clusters (see Fig. 2), the steady-state concurrence decreases faster with the increase of 

2N . If 1 2N N , the steady-state entanglement does not arise. Indeed, the steady-state 

entanglement in the system appears only if the value of 1N  is several times larger than the value 

of 2N , as shown in Fig.7. Another difference between the two is that, for the case of harmonic 

oscillator clusters, the critical dimension 
1

OCN  for maximizing the steady-state concurrence also 

depends on the reservoir temperature. With the chosen parameters, we approximate 

1 8 ( )OCN T




  , as shown in Fig. 8, where ( )T   reflects the effect of reservoir 

temperature on 
1

OCN . One can see from Fig. 8(b), the critical size 
1

OCN  increases with the 

increase of T . 

In Fig.9, we show the steady-state concurrence ( )SSC   as a function of the temperature 

difference T  for different 1N . For a small value of 1N , e.g., 1 2N  , no matter what the 

temperature difference is, the steady-state entanglement in the system of interest does not arise. 

For a given 1 3N  , with the increase of temperature difference, the steady-state entanglement 

arises and its variation exhibits the behavior of increasing first and then decreasing and vanishes 

eventually. This indicates that, similar to the case of the qubit clusters, increasing the number of 

harmonic oscillators in each cluster also contributes to the generation of steady-state entanglement. 

Additionally, although the variations of the maximum of ( )SSC   with the number 1N  are 

nonmonotonic, it is obvious that the steady-state entanglement can be greatly enhanced in a 

certain region of T  by increasing the size of each cluster. It is important to mention that the 
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1

N  for different T with / 1  = .  The parameters are 
1

0.01T =  and 2 1N = . 



larger the value of 1N , the 

larger the interval of the 

temperature difference T  

where the ( )SSC   

maintains non-zero. That is, 

increasing the size of the 

harmonic oscillator cluster in 

the low-temperature reservoir 

can lower the decay rate of 

the steady-state entanglement 

and prolong the nonzero 

concurrence to a larger 

region of temperature 

difference. This has a certain 

reference value for the protection and practical application of steady-state entanglement.  

In what follows, we briefly discuss the effect of the size of the cluster on the steady-state 

coherence in this case. The 1l -norm of the steady-state coherence can be formulated as    

1

1 2

2 2

1 2 1 2

[coth coth ]
2( ) 2

[ coth coth ][4 coth coth ]
2 2( ) 2 2( )

SS

l

N N
T T T

C

N N N N
T T T T T T

 


   
 

−
+

=

+ +
+ +

.  (19)  

In the special case of 1 2N N N= = , the above equation can be simplified as 

1

( , )

4
( , )

SS

l

V T T
C

N W T T
N

 

 


=

+ 

,                                    (20) 

where 

coth coth
2( ) 2

( , )

coth coth
2( ) 2

T T T
V T T

T T T

 

 

−
+

 =

+
+

,                             (21) 

and  

( , ) coth coth
2 2( )

W T T
T T T

 
 =

+
.                               (22) 

Consequently, we can easily obtain the specific value of N  which maximizes the steady-state 

coherence 

Fig.9. ( )
SS

C   as a function of T  for different 
1

N . The parameters 

are 
1

0.01T = ,
2

1N = , 0.1 = and 0.1 = . 
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2

( , )
spN

W T T




=


.                                        (23) 

It can be found according to Eq. 

(21) that when 0T = , the 

steady-state coherence completely 

vanishes, which is similar to the 

conclusion in the previous section. 

For a given 0T  , the condition 

2spN   has to be satisfied to 

enhance the steady-state coherence 

by increasing the size of the cluster. 

What needs to be stressed is that, 

different from the previous section, 

the value of 
spN  depends on 

temperature (T ) and temperature 

difference ( T ) in addition to 

coupling strengths   and  . Therefore, according to Eqs. (22) and (23), at relatively low 

temperature and small temperature difference, the steady-state coherence can be improved by 

changing the size of the clusters constituting the heat reservoirs. This observation can be 

visualized in Fig.10. However, in the high temperature limit, we can definitely deduce 

( , ) 1W T T , which lead to 1spN  . That is to say, in the high temperature limit, it is 

impossible to enhance the steady-state coherence in the system by increasing the number of linear 

harmonic oscillators forming each cluster. 

5. Conclusions 

In conclusion, we have studied the steady-state properties of two coupled qubits based on the 

collision model. In our collision model, each reservoir coupled to the system of interest is modeled 

as a set of clusters of qubits (or linear harmonic oscillators), and each qubit (or linear harmonic 

oscillator) forming the clusters is initially prepared in a thermal state. Each system qubit interacts 

collectively with a cluster in the corresponding heat reservoir at a time. Then the clusters in the 

two reservoirs that have collided with the system qubits are discarded, and immediately the next 

round of collision occurs. 

We have investigated the steady-state entanglement between the two coupled qubits. For the 

two cases we considered, we find that increasing the size of the clusters forming the 

low-temperature heat reservoir alone is more conducive to the improvement of the steady-state 

entanglement of the two coupled qubits. In particular, we show that the steady-state entanglement 

of the two qubits can be enhanced to the most extent by choosing the appropriate size of each 

cluster for the given temperatures of the two heat reservoirs. Previous studies [37] have shown that 

if the intracollisions are not considered, the steady-state entanglement will not arise when there is 

only one qubit in each cluster. By contrast, our results show that the collective collision can induce 

Fig.10. the steady-state coherence 
1

SS

l
C  as a function of N for 

different /  , T and T . 
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steady-state entanglement even if intracollisions is not considered. This is exactly the embodiment 

of the advantage of the collision model we considered. Moreover, we also find that increasing the 

size of each cluster in the high-temperature reservoir separately can only reduce the steady-state 

entanglement in the system of interest. Comparing the two cases, under the same conditions, the 

number of elements forming the cluster is different when the steady-state concurrence increases to 

the maximal value, and the maximum value of the steady-state concurrence that the system can 

achieve is higher for the qubits-composed baths. This provides guidance for us to choose a 

reasonable experimental scheme to obtain greater steady-state entanglement. 

We have also studied the steady-state coherence in the system. We have provided explicit 

expressions of the steady-state coherence for these two cases. The conditions for enhancing the 

steady-state coherence by increasing the number of elements forming clusters have been given. 

When the clusters are composed of qubits, as long as the interaction strength in the system of 

interest and the coupling strength between the system and the reservoirs are properly selected, it is 

possible to increase the steady-state coherence by increasing the size of the cluster for any given 

heat reservoir temperature T  and temperature difference T  (except 0T = ). While for the 

linear harmonic oscillator clusters, the steady-state coherence can be improved by increasing the 

size of the cluster only at relatively low temperatures. Furthermore, the harmonic oscillators 

forming the clusters in the thermal reservoir can carry more coherence than qubits. Therefore, 

intuitively, choosing harmonic oscillator clusters might be more conducive to the improvement of 

steady-state coherence. However, the results tell us that this is not the case. Especially at a high 

temperature, increasing the number of harmonic oscillators forming clusters will reduce the 

steady-state coherence. This considerably differs from the case of a single-qubit system [42]. 

In practical application, the collision model can be easily implemented using superconducting 

quantum circuits and linear optical scheme. Hence, our work provides an effective way to enhance 

the steady-steady entanglement and coherence, which will be helpful to the development of 

quantum information processing. 
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