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Abstract: The rational Q-system is an efficient method to solve Bethe ansatz equations

for quantum integrable spin chains. We construct the rational Q-systems for generic Bethe

ansatz equations described by an Aℓ−1 quiver, which include models with multiple momen-

tum carrying nodes, generic inhomogeneities, generic diagonal twists and q-deformation.

The rational Q-system thus constructed is specified by two partitions. Under Bethe/Gauge

correspondence, the rational Q-system is in a one-to-one correspondence with a 3d N = 4

quiver gauge theory of the type Tσ
ρ [SU(n)], which is also specified by the same parti-

tions. This shows that the rational Q-system is a natural language for the Bethe/Gauge

correspondence, because known features of the Tσ
ρ [SU(n)] theories readily translate. For

instance, we show that the Higgs and Coulomb branch Higgsing correspond to modifying

one of the partitions in the rational Q-system while keeping the other untouched. Similarly,

mirror symmetry is realized in terms of the rational Q-system by simply swapping the two

partitions - exactly as for Tσ
ρ [SU(n)]. We exemplify the computational efficiency of the

rational Q-system by evaluating topologically twisted indices for 3d N = 4 U(n) SQCD

theories with n = 1, . . . , 5.
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1 Introduction

Solving Bethe ansatz equations (BAE) is a fundamental and important question in inte-

grability. The solutions of BAE encode the rich structure of the model and are related to

the completeness problem of the Bethe ansatz. Therefore, they are of great mathematical

interest (see for example [1–6]). Equally important, finding all physical solutions of the

BAE is an essential step in computing many physical quantities, either numerically by

solving the BAE by numerical approaches or analytically by exploiting the recently devel-

oped computational algebraic geometry method [7–11]. Due to the wide applicability of

the Bethe ansatz, ranging from statistical mechanics to high energy physics, developing

efficient methods for solving BAE is obviously welcome and of great practical value.

However, working directly with BAE has a number of drawbacks such as the generation

of non-physical solutions and numerical instability. Therefore, alternative formulations of

BAE which are easier to handle have long been sought for. The two most important

formulations are the TQ and the QQ-relations. The TQ-relation stems from Baxter’s

method of solving integrable ice-type lattice models including the famous six- and eight-

vertex models [12]. The idea is to construct an operator Q which commutes with the

quantum transfer matrix T and satisfies a specific finite difference equation, called the TQ-

relation. Working with eigenvalues of both operators, one gets a finite difference equation

for Baxter’s Q-function, whose zeros are the solutions of the BAE. Therefore, one can

first solve the TQ-relation to find the Q-functions and then determine the zeros of the

Q-functions. This turns out to be more efficient then directly solving BAE, and eliminates

part of the non-physical solutions such as the ones with repeated roots.

Baxter’s TQ-relation is a second order difference equation for the Q-function. There-

fore it allows two solutions. In addition, the two Q-functions satisfy the Wronskian con-

dition, which is called the QQ-relation. It turns out that one can solve the QQ-relation

directly and find both Q-functions simultaneously. One then takes the zeros of one of

the Q-functions, which gives the solution of BAE. In [13], Marboe and Volin proposed

an ingenious rewriting of the QQ-relation by defining a Q-system on a Young tableaux.
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This method leads to only physical solutions (i.e. all non-physical solutions are automat-

ically eliminated) and is much more efficient to solve compared to the original BAE or

TQ-relation. It is by far the most efficient approach to find all the physical solutions of the

BAE, at least for the rational spin chains with periodic boundary conditions. In order to

distinguish the Marboe-Volin Q-system, which are defined on a Young tableaux, and the

traditional QQ-system, which are Wronskian conditions for higher rank TQ-relations, we

call the former the rational Q-system. This method is reviewed in Section 2.

In the original work [13], the authors gave the rational Q-system formulation for a

GL(M |N) invariant XXX-type spin chain with periodic boundary conditions. Later it has

been extended to the non-compact GL(M,N |L) invariant XXX-type spin chains in [14].

Generalizations to XXZ-type spin chain with different boundary conditions (open, twisted)

have been investigated in [11, 15–17]. One of the aims of the current work is to take a

further step and generalize the formulation of rational Q-system for the BAE associated

to a generic A-type Dynkin diagram, for both XXX- and XXZ-type models with multiple

momentum carrying nodes, general inhomogeneities and twists.

In addition, we uncover a beautiful relationship between the rational Q-system and

supersymmetric 3d N = 4 quiver gauge theories of type Tσ
ρ [SU(n)]. Via the Bethe/gauge

correspondence [18–20], the supersymmetric vacua of such theories compactified on S1

are precisely the solutions of the Bethe Ansatz equations. This correspondence builds

a one-to-one map between quantities in gauge theory and in the spin chain, which has

been studied extensively in the literature [21–25]. We revisit this correspondence from the

rational Q-system point of view. It turns out that rational Q-system seems to be an even

more natural formulation than BAE for the Bethe/gauge correspondence. For example,

the origin of the Young tableaux, on which the rational Q-system is defined, might seem

a bit mysterious from the spin chain point of view. On the other hand, it is quite natural

in the quiver gauge theory and its brane realisation in Type-IIB superstring theory. The

theories Tσ
ρ [SU(n)] are specified by two partitions ρ and σ [26]. It turns out that one of the

partitions ρ corresponds precisely to the Young tableaux of the rational Q-system. What

about the other partition σ? It also plays an important role in the rational Q-system. As

we shall explain later, to specify a rational Q-system, we need a Young tableaux and also

fix boundary conditions. The boundary conditions are encoded by another partition, given

precisely by σT, the transposition of σ.

Important gauge theory phenomena such as Higgsing and mirror symmetry are also

reflected nicely in the rational Q-system. There are two kinds of partial Higgs mechanisms,

i.e. Higgs branch Higgsing and Coulomb branch Higgsing. The former corresponds to an

operation of the Q-system which maintains the shape of the Young tableaux while changing

the boundary condition while the latter corresponds to the Q-system which preserves the

boundary condition while re-arranging the boxes of Young tableaux. Mirror symmetry

corresponds to exchanging ρ and σ. We can see that the solutions of the two Q-systems
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are indeed in one-to-one correspondence.

The structure of this paper is as follows. In Section 2, we present the construction of

the rational Q-system for a generic A-type quiver. We describe how to solve the rational

Q-systems in Section 3. In Section 4, we review the 3d N = 4 supersymmetric gauge

theories, with an emphasis on brane realization and relations to BAE. In Section 5, we

discuss Higgsings of the supersymmetric gauge theories and their realizations in rational

Q-system. In Section 6, we discuss mirror symmetry in supersymmetric gauge theory and

rational Q-system. We comment on the Bethe/Gauge correspondence for orthosympletic

quivers and the rational Q-system for integrable open spin chains in Section 7. We conclude

in Section 8. Some detailed technical derivations are delegated to the appendices.

2 Rational Q-system

In this section, we present the rational Q-system for generic Bethe ansatz equation of

Aℓ−1-type.

2.1 QQ-relations and BAE

2.1.1 Aℓ−1-type BAE

The Aℓ−1-type BAE can be encoded in an Aℓ−1-type Dynkin diagram as is shown in

Figure 1. We label the nodes from left to right as 1, 2, . . . , ℓ− 1. Each node-s is associated

Figure 1. An Aℓ−1-type Dynkin diagram

with two sets of variables. The one associated with each circle is called Bethe roots, the

number of Bethe roots is denoted by Ns; The other associated with the box on top of the

circle is called inhomogeneities, the number of which is denoted byMs. The inhomogeneities

θj are parameters of the BAE and can be set to any values freely. On the other hand, Bethe

roots are the unknown variables and should be found by solving BAE. At each node-s, the

BAE is a set of Ns algebraic equations P
(s)
a = 1 (a = 1, 2, . . . , Ns), where P

(s)
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where the function φ(x) is given by

φ(x) =

{
sinh(x), XXZ-type;

x, XXX-type.
(2.2)

The parameter η is related to the anisotropy or the quantum deformation parameter of the

XXZ-type spin chain. For the XXX-type spin chain, we take φ(x) = x and η = i1. The

parameters τ (s) denote the twists.

For the XXZ-type BAE, it is sometimes more convenient to work with multiplicative

variables which are defined as

xj ≡ e2uj , yj ≡ e2θj , q ≡ eη . (2.3)

In terms of which (2.1) becomes

P (s)
a = τ̃ (s)

Ns∏
d=1
d̸=a

x
(s)
a q − x

(s)
d q−1

x
(s)
d q − x

(s)
a q−1

Ms∏
j=1

x
(s)
a − y

(s)
j q

y
(s)
j − x

(s)
a q

(2.4)

×
Ns−1∏
b=1

x
(s)
a − x

(s−1)
b q

x
(s−1)
b − x

(s)
a q

Ns+1∏
c=1

x
(s)
a − x

(s+1)
b q

x
(s+1)
b − x

(s)
a q

where

τ̃ (s) = τ (s) × (−1)Ns−1+Ns+Ns+1+Ms−1 . (2.5)

2.1.2 Rational Q-system

The BAE given in the previous subsection can be reformulated in terms of a set of QQ-

relations, equipped with proper boundary conditions. Let us first describe the rational

Q-system for XXX-type model following [13]. A Q-system is defined on a Young tableaux

as is shown in Figure 2. At each point we associate a Q-function, which is a rational or

hyperbolic function in one variable called the spectral parameter2. The four Q-functions

associated to the four corners of each box are related by the QQ-relation given in (2.15).

Therefore, not all Q-functions are independent. By fixing a few Q-functions and imposing

analytic properties for the Q-functions, we can determine all the Q-functions on the Young

tableaux. The Q-functions on the upper boundary are fixed to be 1. We fix the Q-

functions on the left boundary partially. We call the precise form of the Q-functions on the

left boundary the boundary condition of the rational Q-system. As we see later, different

choices of boundary conditions lead to different BAEs. We give more detailed derivations

1The value of η is irrelevant as long as it is non-vanishing, because we can always bring η = i by rescaling
Bethe roots

2The Q-function can have more complicated analytic structures in other models.
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in what follows.

Young tableaux For each Aℓ−1-type BAE, the Young tableaux has ℓ rows

λ⃗ = (λ1, λ2, . . . , λℓ) (2.6)

where λk is the number of boxes of the k-th row. As a convention, we count the rows from

the bottom to the top, as is shown in Figure 2. We require that

Figure 2. Young tableaux associated with an Aℓ−1-type Dynkin diagram.

λ1 ≥ λ2 ≥ . . . ≥ λℓ . (2.7)

For a Aℓ−1 Dynkin diagram specified by

M⃗ = (M1,M2, . . . ,Mℓ−1), N⃗ = (N1, N2, . . . , Nℓ−1) , (2.8)

The number of boxes are given by

λℓ =Nℓ−1 , (2.9)

λa =Na−1 −Na + (Ma +Ma+1 + . . .+Mℓ−1), a = 2, . . . , ℓ− 1 ,

λ1 =M1 +M2 + . . .+Mℓ−1 −N1 .

The total number of boxes is thus

ℓ∑
k=1

λa = M1 + 2M2 + . . .+ (ℓ− 1)Mℓ−1 , (2.10)

which is independent of Na. Two comments are in order. Firstly, for a given set of BAE

with multiple momentum carrying nodes, we propose the corresponding Young tableaux is

given by (2.9). In the special case M⃗ = (M, 0, . . . , 0), we recover the Young tableaux given
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in [13, 17] which correspond to BAE with one momentum carrying node. Secondly, for the

Young tableaux, we impose the requirement

λ1 ≥ λ2 . . . ≥ λℓ . (2.11)

This requirement results in certain constraints on the choices of Mi and Ni. For some

simple cases, the physical meaning of such requirements is clear. Let us explain this with

two examples. In the SU(2) invariant XXX spin chain, we have M1 = M which is the

length of the spin chain and N1 = N is the number of magnons. For BAE with length

M and magnon number N , the corresponding Young tableaux is λ = (M − N,N). The

requirement becomes

M −N ≥ N . (2.12)

In the Bethe state of XXX spin chain, N is the number of down spins and M − N is

the number of up spins. This requirement states that the number of up spins should be

greater or equal than the number of down spins. The reason that one can impose this

restriction is that we can obtain the Bethe states with N > M − N by flipping all the

spins simultaneously. Physically, there is nothing wrong to consider Bethe states with

N > M − N , which corresponds to the solutions of BAE ‘beyond the equator’ [27, 28].

However, this is not necessary because we can construct all the Bethe states first within

the region M −N ≥ N and then obtain the rest of the states by flipping all the spins.

As another example, we can consider the SU(3) invariant XXX spin chain. The Bethe

equations are given by M⃗ = (M, 0) and N⃗ = (N1, N2) where M is the length of the spin

chain. The corresponding Young tableaux reads λ = (M −N1, N1−N2, N2). We have the

requirement

M −N1 ≥ N1 −N2 ≥ N2 . (2.13)

The local Hilbert space of SU(3) invariant spin chain is C3. We can denote the basis states

by |1⟩, |2⟩, |3⟩. In the framework of nested Bethe ansatz, M − N1, N2 − N1, N3 are the

number of polarizations |1⟩, |2⟩, |3⟩ respectively of the Bethe state. The requirement (2.13)

means #1 ≥ #2 ≥ #3. Similar to the SU(2) case, we can first focus on the Bethe states

within this region. The rest of the states can be obtained by permuting the role of |1⟩, |2⟩
and |3⟩ properly.

We expect similar interpretations applies to more general cases. However, since we do

not yet have a clear understanding of the nested Bethe ansatz for spin chains with generic

Aℓ−1-type quiver with multiple momentum carrying nodes, we are not able to complete

such physical interpretations for the generic case. Interestingly, the requirement (2.11)

makes perfect physical sense in quiver gauge theories in Bethe/Gauge correspondence, as
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we discuss later. This is a first hint that rational Q-system is a natural language for the

Bethe/Gauge correspondence.

Q-functions At each point (a, s) of the Young tableaux, we define a Q-function denoted

by Qa,s(u) where u is the spectral parameter. For the XXX-type BAE, the Q-functions

are polynomials of the spectral parameter u. For the XXZ-type BAE, the Q-functions are

rational functions of the multiplicative spectral parameter x. The number of boxes on each

row is related to the asymptotic behavior of the Q-functions at the Southwest corner of

the box at the left boundary. More precisely,

lim
u→∞

QXXX
a,0 (u) = uλa+1+λa+2+...+λℓ

(
1 +O(u−1)

)
, (2.14)

lim
x→∞

QXXZ
a,0 (x) = xλa+1+λa+2+...+λℓ

(
1 +O(x−1)

)
.

QQ-relation The Q-functions defined on the box whose Southwest corner is located at

(a, s) satisfy the following QQ-relation

Qa+1,sQa,s+1 = Q+
a+1,s+1Q

−
a,s − ϵaQ−

a+1,s+1Q
+
a,s (2.15)

where ϵa are constants which are related to the diagonal twists in BAE. Q±
a,s is as followsQ±

a,s(u) ≡ Qa,s(u± i
2) , XXX-type model

Q±
a,s(x) ≡ Qa,s

(
xq±1

)
, XXZ-type model

(2.16)

Among all the Q-functions, the ones at the left boundary (denoted by blue dots in Fig-

ure 2) are the most important because their zeros are related to the Bethe roots and

inhomogeneities.

Boundary condition Since QQ-relations relate the Q-functions at different points, the

Q-functions are not independent. As a result, we can fix certain Q-functions and determine

the rest by QQ-relations. We fix the Q-functions at the boundaries of the Young tableaux.

The Q-functions at the upper boundary are fixed to be 1. We fix the Q-function at the left

boundary partially. In what follows, we discuss the XXX-type and the XXZ-type Q-system

separately.

For the XXX-type Q-system, the Q-functions at the left boundary take the form

Qa,0(u) = fa(u)Qa(u), a = 0, 1, . . . , ℓ− 1 (2.17)

where fa(u) are some fixed functions whose zeros are related to inhomogeneities, we will

discuss these function in more detail shortly. The functions Qa(u) are Baxter’s Q-functions
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whose zeros are the Bethe roots, namely

Qa(u) =

Na∏
k=1

(
u− u

(a)
k

)
, (2.18)

where {u(a)k } are the Bethe roots associated to node-a of the Dynkin diagram. For the

XXZ-type Q-system, we consider the Q-functions with multiplicative spectral parameter.

The Q-functions at the left boundary take the form

Qa,0(x) = fa(x)Qa(x) , (2.19)

where again fa(x) is a fix function whose zeros are related to inhomogeneities and Qa(x)

is Baxter’s Q-function defined by

Qa(x) =

Na∏
j=1

((
x/x

(a)
j

)1/2 − (x(a)j /x
)1/2)

, (2.20)

where x
(a)
j are the Bethe roots in the multiplicative variable. The function fa(x) is a

rational function of x, which is discussed in more detail in the next subsection.

2.2 From QQ-relation to BAE

As a consistency check, we show that the Aℓ−1-type BAE (2.1) can be derived from the

rational Q-system with proper boundary conditions fa(u). The following discussions ap-

ply to both XXX-type and XXZ-type spin chains. For the XXZ-type model, the spectral

parameter of the Q-function should be understood as the multiplicative one with the cor-

responding shifts defined in (2.16). To obtain BAE at the a-th node, we consider the

QQ-relation for node a− 1 and a with s = 0

Qa,0Qa−1,1 =Q+
a,1Q

−
a−1,0 − ϵa−1Q−

a,1Q
+
a−1,0 , (2.21)

Qa+1,0Qa,1 =Q+
a+1,1Q

−
a,0 − ϵaQ−

a+1,0Q
+
a,0 . (2.22)

Taking u = u
(a)
k in (2.21), we obtain

Q+
a,1

(
u
(a)
k

)
Q−

a−1,0

(
u
(a)
k

)
− ϵa−1Q−

a,1

(
u
(a)
k

)
Q+

a−1,0

(
u
(a)
k

)
= 0 . (2.23)

Assuming none of the factors above vanish3, we can rewrite it as

Q−
a−1,0

(
u
(a)
k

)
Q+

a−1,0

(
u
(a)
k

)Q+
a,1

(
u
(a)
k

)
Q−

a,1

(
u
(a)
k

) 1

ϵa−1
= 1 . (2.24)

3This assumption is necessary especially for the higher rank case. Otherwise there can be unwanted
solutions generated by the Q-system.
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Evaluating (2.22) at Bethe roots with proper shifts, we obtain

Q+
a+1,0

(
u
(a)
k

)
Q+

a,1

(
u
(a)
k

)
= −ϵaQa+1,1

(
u
(a)
k

)
Q++

a,0

(
u
(a)
k

)
, (2.25)

Q−
a+1,0

(
u
(a)
k

)
Q−

a,1

(
u
(a)
k

)
= Qa+1,1

(
u
(a)
k

)
Q−−

a,0

(
u
(a)
k

)
.

Assuming none of the factors vanish, we can take the ratio of these equations and obtain

Q+
a,1

(
u
(a)
k

)
Q−

a,1

(
u
(a)
k

) = −ϵa
Q++

a,0

(
u
(a)
k

)
Q−−

a,0

(
u
(a)
k

)Q−
a+1,0

(
u
(a)
k

)
Q+

a+1,0

(
u
(a)
k

) . (2.26)

Inserting this into (2.24), we find

ϵa
ϵa−1

Q−
a−1,0

(
u
(a)
k

)
Q+

a−1,0

(
u
(a)
k

)Q++
a,0

(
u
(a)
k

)
Q−−

a,0

(
u
(a)
k

)Q−
a+1,0

(
u
(a)
k

)
Q+

a+1,0

(
u
(a)
k

) = −1 . (2.27)

The BAE in (2.1) can be written in terms of Baxter’s Q-functions as

τ (a)
Q++

a

(
u
(a)
k

)
Q−−

a

(
u
(a)
k

)B−
a

(
u
(a)
k

)
B+

a

(
u
(a)
k

)Q−
a−1

(
u
(a)
k

)
Q+

a−1

(
u
(a)
k

)Q−
a+1

(
u
(a)
k

)
Q+

a+1

(
u
(a)
k

) = −1 . (2.28)

with Qa defined in (2.18) and (2.20) for the XXX-type and XXZ-type model respectively.

We have also introduced Baxter’s polynomials Ba(u) in (2.28) whose zeros are the inho-

mogeneities. More explicitly,Ba(u) =
∏Ma

j=1

(
u− θ

(a)
j

)
, XXX-type model

Ba(x) =
∏Ma

j=1

((
x/y

(a)
j

)1/2 − (y(a)j /x
)1/2)

, XXZ-type model
(2.29)

The shifts in the spectral parameter are defined in the same way as before. Comparing

(2.27) and (2.28) and using (2.17), we find that if the functions fa satisfy

f−
a−1

(
u
(a)
k

)
f+
a−1

(
u
(a)
k

) f++
a

(
u
(a)
k

)
f−−
a

(
u
(a)
k

) f−
a+1

(
u
(a)
k

)
f+
a+1

(
u
(a)
k

) =
B−

a

(
u
(a)
k

)
B+

a

(
u
(a)
k

) (2.30)

and ϵa satisfy

τ (a) =
ϵa
ϵa−1

, (2.31)

then (2.27) can be identified with (2.28). The functions fa satisfying (2.30) can be con-

structed as

fa(u) =
ℓ−a−1∏
k=1

Fℓ−a−k(u|θℓ−k) = F1(u|θa+1)F2(u|θa+2) . . . Fℓ−a−1(u|θℓ−1) (2.32)
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where the functions Fn(x|θa) satisfy

F−
n−1(u|θa)

F+
n−1(u|θa)

F++
n (u|θa)

F−−
n (u|θa)

F−
n+1(u|θa)

F+
n+1(u|θa)

= 1 , (2.33)

and

F1(u|θa) = Ba(u), F0(u|θa) = 1. (2.34)

The functions Fn(u|θa) can be constructed by Ba defined in (2.29) as

Fn(u|θa) =
n∏

k=1

B[2k−n−1]
a (u|θa) , (2.35)

where B
[m]
a (u|θa) ≡ Ba

(
u+ mi

2 |θa
)
, XXX-type model

B
[m]
a (x|ya) ≡ Ba

(
xqm/2|ya

)
. XXZ-type model

(2.36)

For example, the first few Fn(u|θa) are given by

F1(u|θa) = Ba(u) , (2.37)

F2(u|θa) = B−
a (u)B

+
a (u) ,

F3(u|θa) = B[−2]
a (u)Ba(u)B

[2]
a (u) .

. . .

The condition (2.31) can be solved by taking

ϵ0 = 1, ϵa = τ (1)τ (2) . . . τ (a) , a = 1, . . . , ℓ. (2.38)

To sum up, the general Aℓ−1-type BAE can be obtained from the QQ-relations with the

boundary condition (2.32) and the choice of the parameter ϵa given in (2.38).

Physical meaning of parameters Let us explain the physical meanings of the inho-

mogeneities, twists and q-deformation in the spin chain language with the simplest A1

model.

The XXX-type model with θj = 0 and τ = 1 is the famous Heisenberg XXX spin chain,

which was proposed by W. Heisenberg and solved by H. Bethe himself, whose Hamiltonian

is given by

HXXX =

M∑
n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1 + σz

nσ
z
n+1) (2.39)
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with periodic boundary conditions. Introducing a twist τ means imposing a twisted bound-

ary condition σ±
m+M = ϵ±σ

±
m where σ± = (σx ± iσy)/2 such that τ = ϵ−/ϵ+.

The XXZ-type A1 model corresponds to the Heisenberg XXZ spin chain whose Hamil-

tonian is given by

HXXZ =

M∑
n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1 +∆σz

nσ
z
n+1) (2.40)

where ∆ is the anisotropy. It is related to η and q in BAE as follows:

∆ = cosh η =
1

2
(q + q−1) . (2.41)

Conventionally, the XXZ spin chain is considered as the q-deformation of the XXX spin

chain. We shall adopt the same terminology here and view the XXZ-type model as the

q-deformation of the XXX-type model where the deformation parameter is q = eη.

The inhomogeneities are slightly more difficult to explain at the level of Hamiltonian.

It is most easily introduced in the framework of Algebraic Bethe ansatz where we shift

each Lax operator by different amounts, given by the inhomogeneities, see for example

[29, 30] and references therein. The resulting model is still integrable, but the Hamiltonian

is no longer a nearest neighboring interacting spin chain and is rather complicated to write

down.

Symmetry enhancement The twistless XXX-type models are special because they

preserve extra symmetries. As a result, there are extra degeneracies in the spectrum. For

example, the twistless Heisenberg XXX spin chain preserves the full SU(2) symmetry of the

spin chain. Therefore, the spectrum is organized according to this symmetry. States in the

same multiplet have the same energy. The descendant states are characterized by the same

set of Bethe roots, but with additional roots at infinity. This fact is also reflected in the

rational Q-system. Recall that for the XXX-type model, the Q-functions are polynomials of

the spectral parameter u. If we take ϵa = 1, from the QQ-relation we find that the order of

Q-functions decreases as we move towards the right boundary. In fact, all the Q-functions

at the right boundary are simply constants and can be set to 1. This is imposed as a

boundary condition in the original Marboe-Volin prescription [13]. However, we would like

to point out that it is a consequence of the rational Q-system for the twistless XXX-type

model. Turning on either the twist, or the q-deformation breaks the symmetry. As a result,

the Q-functions at the right boundary are no longer constants in these cases.

The extra degeneracies in the spectrum is also reflected by the number of solutions of

BAE/Q-system. For the SU(2) invariant XXX spin chain with length M and N magnons,

the number of solutions is given by
(
M
N

)
−
(

M
N−1

)
[31]. On the other hand, for the twisted or

q-deformed chain where the symmetry is broken to U(1), the number of solutions is
(
M
N

)
.
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The ‘missing’ solutions are compensated by the descendant states.

3 Solving rational Q-systems

In this section, we discuss how to solve rational Q-systems. As we have seen from the

previous section, the Bethe roots, which we are after, are the zeros of Qa(u). The idea

of rational Q-system is first determining the functions Qa(u) and then finding their zeros.

We first parameterize Qa(u) by Na parameters denoted by {c(a)k }, which are basically the

elementary symmetric polynomials of the Bethe roots {u(a)k }. As discussed before, after

fixing the Q-functions on the left boundary, we can use QQ-relation to determine the rest

of the Q-functions. In general, such a procedure does not guarantee that the resulting

Q-functions are polynomials (or Laurent polynomials in the XXZ case). Imposing this

condition leads to a set of algebraic equations for {c(a)k }, which are called zero remainder

conditions. We then solve the zero remainder conditions, which turns out to be more

advantageous than directly working with original BAE.

3.1 The XXX-type QQ-relation

We first illustrate the basic strategy in detail for the XXX-type Q-system. For a given

Young tableaux, we parameterize theQ-functions on the left boundaryQa,0(u) = fa(u)Qa(u).

The polynomial f(u) is completely fixed by the inhomogeneities and is given in (2.32). We

parameterize Qa(u) as

Qa(u) = uNa +

Na−1∑
k=0

c
(a)
k uk . (3.1)

Using the fact that

Qa(u) =

Na∏
k=1

(
u− u

(a)
k

)
(3.2)

we find that c
(a)
k are essentially elementary symmetric polynomials of {u(a)k }, e.g. c

(a)
0 =

(−1)Nau
(a)
1 u

(a)
2 . . . u

(a)
Na

. After parameterizing Qa(u), we view them as ‘known’ functions

and solve for the rest of the Q-functions on the Young tableaux. We solve the Q-functions

row by row, from top to bottom.

1. The Q-functions on the upper boundary is fixed by the boundary condition, i.e.

Qℓ,s(u) = 1. Therefore we start solving the Q-system from a = ℓ − 1. The QQ-

relation (2.15) becomes

Qℓ−1,s+1 = Q−
ℓ−1,s − ϵℓ−1Q+

ℓ−1,s (3.3)
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This can be seen as a recursion relation and we can use it to compute all Qℓ−1,s from

Qℓ−1,0 as

Qℓ−1,s(u) = Ds
ϵℓ−1

Qℓ−1,0 , (3.4)

where the operator Dϵ is defined by

Dϵg(u) = g(u− i
2)− ϵ g(u+ i

2) . (3.5)

2. We then consider the next row with a = ℓ− 2. The QQ-relation reads

Qℓ−2,s+1Qℓ−1,s = Q+
ℓ−1,s+1Q

−
ℓ−2,s − ϵℓ−2Q−

ℓ−1,s+1Q
+
ℓ−2,s (3.6)

where the blue colored Q-functions are already determined from the previous step.

This equation can be used to determine all Qℓ−2,s from Qℓ−2,0 by writing it as

Qℓ−2,s+1 =
Q+

ℓ−1,s+1Q
−
ℓ−2,s − ϵℓ−2Q−

ℓ−1,s+1Q
+
ℓ−2,s

Qℓ−1,s
. (3.7)

If we do not impose any constraints, the right hand side of (3.7) is in general a

rational function of u instead of a polynomial. The key point of the rational Q-

system is that we require all the Q-functions to be polynomials in u. To impose this

condition, we perform the polynomial division on the right hand side of (3.7), which

gives a quotient and a remainder, both are polynomials in u. We then require the

remainders to be zero, which leads to a set of algebraic equations for {c(ℓ−1)
k }.

3. Repeat the above procedure for all a until we reach a = 0. Collect all the zero

remainder conditions4, which are the equivalence of BAE.

4. Solve the zero remainder conditions or manipulate it by other means such as compu-

tational algebraic geometry methods [7, 8, 11].

3.2 The XXZ-type QQ-relation

For the XXZ-type model, the Q-functions Qa,s(x) are Laurent polynomials in the multi-

plicative variables x. However, it is rather inefficient to work with Laurent polynomials

when solving the QQ-relations. Therefore, we first rewrite the QQ-relation in an equivalent

polynomial form. The main idea of the rewriting is extracting proper global factors from

the Laurent polynomials. After doing so, the QQ-relation

Qa+1,s(x)Qa,s+1(x) = Q+
a+1,s+1(x)Q

−
a,s(x)− ϵaQ−

a+1,s+1(x)Q
+
a,s(x) (3.8)

4We would like to point out that in practice, not all zero remainder conditions are needed. There exists
a set of minimal choices of such relations which allows us to find the solutions of BAE. See [32] for related
discussions.
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can be rewritten as

Q̃a+1,s(x)Q̃a,s+1(x) = Q̃+
a+1,s+1(x)Q̃

−
a,s(x)− κa(q) Q̃

−
a+1,s+1(x)Q̃

+
a,s(x) (3.9)

where Q̃a,s(x) are polynomials in x and the q-deformed twist κ(q) is given by

κa(q) = ϵaq
−λa+1 . (3.10)

Recall that

λa+1 = (Na −Na+1)− (Ma+1 +Ma+2 + . . .+Mℓ−1) . (3.11)

is the number of boxes of the a+ 1-th row. The boundary conditions become

Q̃a,0(x) = f̃a(x)Q̃a(x) (3.12)

where

f̃a(x) =

ℓ−a−1∏
k=1

F̃k(x|ya+k) (3.13)

and

F̃n(x|ya) =
n∏

k=1

B̃[2k−n−1]
a (x|ya), B̃[m]

a (x|ya) =

Ma∏
j=1

(
xqm − y

(a)
j

)
(3.14)

are polynomials in x. We parameterize Q̃a(x) by

Q̃a(x) =

Na∏
j=1

(
x− x

(a)
j

)
= xNa +

Na−1∑
j=0

c
(a)
j xj . (3.15)

As before, we obtain a system of algebraic equations for the variables {c(a)j } by requiring

all Q-functions Q̃a,s to be polynomials in x. The procedure for deriving the zero remainder

conditions are the same as in the XXX case and we shall not repeat it here.

3.3 Examples

In this section, we give three examples for rational Q-systems of A3-type. They corresponds

to the BAE of spin chains which are useful in various contexts. The Dynkin diagrams of

the three A3-type BAEs are given in Figure 3, we denote the three Dynkin diagrams by

A
(1)
3 , A

(2)
3 and A

(3)
3 respectively. We consider the homogeneous XXX-type model with

periodic boundary condition, namely we take θ
(a)
k = 0 and ϵa = 1. In all these models, we

distinguish between two kinds of nodes. The one which is connected to a box, meaning that
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Figure 3. Three different rank-3 Dynkin diagrams.

it has non-zero number of inhomogeneities, are calledmomentum carrying while the rest are

called auxiliary. The reason is that, it turns out the conserved charges such as momentum

and energy of the state only depends on the Bethe roots of the momentum carrying nodes

explicitly, while Bethe roots of auxiliary nodes only enter implicitly through solving BAE.

SU(4) spin chain This is the simplest A3-type spin chain. Let us denote the Bethe

roots by {u(a)k }, a = 1, 2, . . . , Na respectively. The corresponding BAE read

(
u
(1)
k + i

2

u
(1)
k −

i
2

)M

=

N1∏
j ̸=k

u
(1)
k − u

(1)
j + i

u
(1)
k − u

(1)
j − i

N2∏
l=1

u
(1)
k − u

(2)
l −

i
2

u
(1)
k − u

(2)
l + i

2

, (3.16)

1 =

N1∏
l=1

u
(2)
k − u

(1)
l −

i
2

u
(2)
k − u

(1)
l + i

2

N2∏
j ̸=k

u
(2)
k − u

(2)
j + i

u
(1)
k − u

(2)
j − i

N3∏
l=1

u
(2)
k − u

(3)
l −

i
2

u
(2)
k − u

(3)
l + i

2

,

1 =

N3∏
j ̸=k

u
(3)
k − u

(3)
j + i

u
(3)
k − u

(3)
j − i

N2∏
l=1

u
(3)
k − u

(2)
l −

i
2

u
(3)
k − u

(2)
l + i

2

.

Let us briefly explain the origin of Bethe equations. The SU(4) spin chain is a quantum

integrable model. At each site of the spin chain, the local Hilbert space has 4 polarizations.

We can denote the corresponding states by |1⟩, . . . , |4⟩. The Hamiltonian of the spin chain

is given by

HSU(4) =
M∑
n=1

(In,n+1 − Pn,n+1) (3.17)

where In,n+1 and Pn,n+1 are the identity and permutation operators that act on sites n

and n+ 1, i.e.

In,n+1|a⟩n ⊗ |b⟩n+1 = |a⟩n ⊗ |b⟩n+1, Pn,n+1|a⟩n ⊗ |b⟩n+1 = |b⟩n ⊗ |a⟩n+1 . (3.18)
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We impose periodic boundary condition. The Hamiltonian (3.17) can be diagonalized by

nested Bethe ansatz (see for example [33]). In the coordinate Bethe ansatz, the Bethe

equations arise as the quantization conditions for the rapidities at different nesting levels

because we have imposed periodic boundary condition.

The rational Q-system corresponding to the BAE (3.16) has 4 rows λ⃗ = (λ1, λ2, λ3, λ4)

with the number of boxes given by

λ1 = M −N1 , (3.19)

λ2 = N1 −N2 ,

λ3 = N2 −N3 ,

λ4 = N3 .

The boundary conditions are given by

Q0,0(u) = uM , (3.20)

Q1,0(u) = Q1(u) = uN1 +

N1−1∑
k=0

c
(1)
k uk ,

Q2,0(u) = Q2(u) = uN2 +

N2−1∑
k=0

c
(2)
k uk ,

Q3,0(u) = Q3(u) = uN3 +

N3−1∑
k=0

c
(3)
k uk .

SO(6) spin chain The SO(6) spin chain plays an important role in integrability of planar

N = 4 SYM theory. In the seminal paper of Minahan and Zarembo [34], they calculated

the one-loop dilation operator of the scalar sector, which turns out to be identical to the

Hamiltonian of the SO(6) spin chain. The BAE reads

1 =

N1∏
j ̸=k

u
(1)
k − u

(1)
j + i

u
(1)
k − u

(1)
j − i

N2∏
l=1

u
(1)
k − u

(2)
l −

i
2

u
(1)
k − u

(2)
l −

i
2

, (3.21)

(
u
(2)
k + i

2

u
(2)
k −

i
2

)M

=

N1∏
l=1

u
(2)
k − u

(1)
l −

i
2

u
(2)
k − u

(1)
l −

i
2

N2∏
j ̸=k

u
(2)
k − u

(2)
j + i

u
(2)
k − u

(2)
j − i

N3∏
l=1

u
(2)
k − u

(3)
l −

i
2

u
(2)
k − u

(3)
l −

i
2

,

1 =

N2∏
l=1

u
(3)
k − u

(2)
l −

i
2

u
(3)
k − u

(2)
l −

i
2

N3∏
j ̸=k

u
(3)
k − u

(3)
j + i

u
(3)
k − u

(3)
j − i

.
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At each site of the spin chain, there are 6 possible polarizations, denoted by |1⟩, . . . , |6⟩.
The Hamiltonian of the SO(6) spin chain is given by

HSO(6) =
M∑
n=1

(Kn,n+1 + 2In,n+1 − 2Pn,n+1) (3.22)

where periodic boundary condition has been imposed and the operator Kn,n+1 acts on sites

n and n+ 1 as

Kn,n+1|a⟩n ⊗ |b⟩n+1 = δa,b

6∑
c=1

|c⟩n ⊗ |c⟩n+1 . (3.23)

The Young tableaux has four rows λ⃗ = (λ1, . . . , λ4) with the number of boxes given by

λ1 = M −N1 , (3.24)

λ2 = M +N1 −N2 ,

λ3 = N2 −N3 ,

λ4 = N3 .

The boundary condition is given by

Q0,0(u) =
(
u− i

2

)M(
u+ i

2

)M
, (3.25)

Q1,0(u) = uM Q1(u) = uM
(
uN1 +

N1−1∑
k=0

c
(1)
k uk

)
,

Q2,0(u) = Q2(u) = uN2 +

N2−1∑
k=0

c
(2)
k uk ,

Q3,0(u) = Q3(u) = uN3 +

N3−1∑
k=0

c
(2)
k uk .

Alternating SU(4) spin chain The last example has two momentum carrying nodes.

It plays an important role in the study of integrability of ABJM theory [35] where it was

identified with the planar two-loop dilatation operator of ABJM theory in the scalar sector.

The BAE reads(
u
(3)
k + i

2

u
(3)
k −

i
2

)M

=

N3∏
j ̸=k

u
(3)
k − u

(3)
j + i

u
(3)
k − u

(3)
j + i

N2∏
l=1

u
(3)
k − u

(2)
j −

i
2

u
(3)
k − u

(2)
j + i

2

, (3.26)

1 =

N3∏
l=1

u
(2)
k − u

(3)
j −

i
2

u
(2)
k − u

(3)
j + i

2

N2∏
j ̸=k

u
(2)
k − u

(2)
j + i

u
(2)
k − u

(2)
j + i

N1∏
l=1

u
(2)
k − u

(1)
j −

i
2

u
(2)
k − u

(1)
j + i

2

,
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(
u
(1)
k + i

2

u
(1)
k −

i
2

)M

=

N2∏
l=1

u
(1)
k − u

(2)
j −

i
2

u
(1)
k − u

(2)
j + i

2

N1∏
j ̸=k

u
(1)
k − u

(1)
j + i

u
(1)
k − u

(1)
j + i

.

The Hamiltonian of the alternating SU(4) spin chain is given by

HABJM =
2M∑
n=1

(
2In,n+1 − 2Pn,n+2 + Pn,n+2Kn,n+1 +Kn,n+1Pn,n+2

)
(3.27)

where we impose the periodic boundary condition as before. It is called alternating spin

chain because we distinguish even and odd sites of the spin chain. At each site, there are

4 possible polarizations |1⟩, . . . , |4⟩.
The rational Q-system has 4 rows λ⃗ = (λ1, . . . , λ4) with

λ1 = 2M −N1 , (3.28)

λ2 = M +N1 −N2 ,

λ3 = M +N2 −N3 ,

λ4 = N3 .

The boundary condition is given by

Q0,0(u) = (u− i)Mu2M (u+ i)M , (3.29)

Q1,0(u) =
(
u− i

2

)M(
u+ i

2

)M
Q1(u) ,

Q2,0(u) = uM Q2(u) ,

Q3,0(u) = Q3(u) ,

where

Qa(u) = uNa +

Na−1∑
k=0

c
(a)
k uk a = 1, 2, 3 . (3.30)

3.4 Efficiency in solving Q-systems

It is far more efficient to use rational Q-systems instead of Bethe ansatz equations to solve

for the Bethe roots. First of all, although both are algebraic equations, Q-systems are

simpler and faster to solve. In Table 1, we compare the time required to solve numerically

with working precision 100 digits for the Bethe roots of an array of spin chains with generic

inhomogeneities and twists using Bethe ansatz equations and Q-systems, respectively. In

each example, the Q-systems take much less time to solve, and the discrepancy in time

consumption becomes even greater when the spin chain is longer.

Secondly, Bethe equations can be plagued with various problems, for instance, there
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(L,N) BAE Q-system

(4, 2) 0.238 0.105
(5, 2) 0.512 0.155
(6, 3) 199.7 0.385
(7, 3) 1803 2.092
(8, 4) − 6.322
(9, 4) − 29.85
(10, 5) − 1145

Table 1. Time (in seconds) required to solve for the Bethe roots using either BAEs or rational
Q-systems, on a computer with Intel Xeon Gold 6248R CPU. We set inhomogeneities and twists
to arbitrary natural numbers and set anisotropy q to 1/3. L,N are respectively the length of spin
chain and the number of magnons. “−” means not solvable in reasonable time (more than four
hours).

are non-physical solutions which need to be discarded. This problem is most pronounced in

the special cases where inhomogeneities and twists are trivial. On the other hand, rational

Q-systems solve both problems automatically: the unphysical solutions are automatically

avoided and the singular solutions are automatically included. In other words, Q-systems

know how to pick all the physical solutions. We illustrate these features in Section 4.4

for the evaluation of the topologically indices for 3d N = 4 U(N) SQCD theories with L

fundamental hypermultiplets.

4 3d N = 4 theories

3-dimensional supersymmetric gauge theories with N = 4 supersymmetry which flow to

an interacting conformal theory in the IR have allowed to gain insights in dualities like 3d

mirror symmetry [36]. In this Section, the field theory properties and the brane realisation

in Type IIB superstring theory are recalled. Thereafter, the relation to Bethe Ansatz

equations is reviewed by considering the equations for the supersymmetric vacua of the

theory compactified to 2d. The connection between 3d N = 4 theories and spin chain

BAE has been discussed in [20, 21].

4.1 Brane realisations

The relevant class of 3d N = 4 theories can be constructed via a D5-D3-NS5 brane system

in Type IIB superstring theory [37]. Suppose the branes are arranged as in Figure 4 and

occupy space-time directions as in Table 2. The 3d low-energy world-volume theory on the

D3s is an A-type quiver gauge theory. Given ℓ NS5 branes which are separated along x6,

there are Ni D3 branes suspended between the i-th and (i+1)-th NS5 brane. In addition,

there are Mi D5 branes with x6 position in between the i-th and (i+1)-th NS5 brane. The
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0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×

Table 2. Space-time occupation of branes. Each brane individually breaks half of the original
supercharges. However, the three different types of branes are arranged such that any subset of two
branes allows to include the third type of branes without reducing supersymmetry further. Thus,
the D5-D3-NS5 system has 8 supercharges. The branes break the SO(1, 9) space-time symmetry to
SO(1, 2)× SO(3)3,4,5 × SO(3)7,8,9.

⋯
M1 D5

M2 D5
Mℓ−2 D5

Mℓ−1 D5

N1 D3
N2 D3

Nℓ−2 D3
Nℓ−1 D3

x6

x3,4,5

Figure 4. D5-D3-NS5 brane configuration. The vertical lines denote NS5 branes, the horizontal
lines denote D3 branes, and the crosses are D5 branes.

resulting 3d N = 4 gauge theory is conveniently encoded in the following quiver diagram

N1 N2

. . .

Nℓ−2 Nℓ−1

M1 M2 Mℓ−2 Mℓ−1
(4.1)

where round nodes denote dynamical U(Ni) vector multiplets and square nodes are back-

ground U(Mi) vector multiplets. A solid line between two nodes encodes a hypermultiplet

which transforms in the bifundamental representation of the two groups associated to the

nodes.

Next, some fundamental properties of the 3d N = 4 theory are recalled. The quiver

gauge theory (4.1) flows to an interacting 3d N = 4 SCFT in the IR if each U(Ni) gauge

node satisfies

ei = Ni−1 +Ni+1 +Mi − 2Ni ≥ 0 (4.2)

for all i = 1, 2, . . . , ℓ − 1. Then (4.1) is referred to as good in the sense of [26]. The

N = 4 R-symmetry SO(4)R ∼= SU(2)H×SU(2)C is geometrically realised as rotation groups

SO(3)7,8,9 ⊂ SU(2)H and SO(3)3,4,5 ⊂ SU(2)C in the brane system. The global (non-R)

symmetry is a product of the form GH ×GC . The flavour symmetry GH is explicit in the
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UV Lagrangian description of (4.1)

GH = S

ℓ−1∏
j=1

U(Mj)

 =

ℓ−1∏
j=1

U(Mj)

 /U(1)diag . (4.3)

In contrast, GC is less obvious. The UV description accounts for U(1)ℓ−1, because each

U(Ni) gauge group can be used to construct a conserved current. In the IR, the Coulomb

branch symmetry might be enhanced to a non-abelian group GC ⊃ U(1)ℓ−1. A criterion for

symmetry enhancement is given by the notion of balance, i.e. the node U(Ni) is balanced if

ei = 0. Then certain monopole operators act as ladder operators for the Coulomb branch

symmetry, which becomes non-abelian. The reader is referred to [26, 38–41] for details on

monopole operators and their role in symmetry enhancement. For linear quiver theories

(4.1) the subset of balanced gauge nodes yields the Dynkin diagram of the non-abelian

part of GC in the IR.

The 3d N = 4 SCFT has two types of deformation parameters: (i) a triplet of

masses m⃗ which correspond to Cartan elements of GH and transform as [0] ⊗ [2] under

SU(2)H × SU(2)C ; and (ii) a triplet of FI parameters w⃗ which are Cartan elements of GC

and transform as [2]⊗ [0] under SU(2)H × SU(2)C . In the brane setup, the masses m⃗ are

realised by the D5 positions in x3,4,5, which are acted on by SO(3)3,4,5. Similarly, the FI

parameter for the gauge group between two adjacent NS5 branes is realised by the relative

position along x7,8,9, being acted on by SO(3)7,8,9.

Repacking into partitions. The linear quiver (4.1) falls into the well-known class of

Tσ
ρ [SU(n)] theories [26], which are labelled by two partitions ρ, σ of n:

ρ = (ρ1, . . . , ρℓ) with ρ1 ≥ . . . ≥ ρℓ > 0 ,
ℓ′∑
i=1

ρi = n , (4.4a)

σ = (σ1, . . . , σℓ′) with σ1 ≥ . . . ≥ σℓ′ > 0 ,
ℓ∑

i=1

σi = n . (4.4b)

The two sets of integers (N1, . . . , Nℓ−1), (M1, . . . ,Mℓ−1) are defined in terms of the parti-

tions as follows:

Mj = σ̂j − σ̂j+1 with σ̂i = 0 , i ≥ l̂′ + 1 (4.5a)

Nj =
ℓ∑

k=j+1

ρk −
ℓ̂′∑

i=j+1

σ̂i with ℓ̂′ = ℓ− 1, (4.5b)
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wherein the transposed partition σT = (σ̂1, . . . , σ̂ℓ̂′) appears. For convenience, one can

obtain partitions ρ,σ from the integers Nj and Mj as follows:

σ̂j =
ℓ−1∑
i=j

Mi , ρi =


σ̂1 −N1 i = 1 ,

Ni−1 −Ni + σ̂i 1 < i ≤ ℓ− 1 ,

Nℓ−1 i = ℓ .

(4.6)

In terms of the brane system of Figure 4, the partition data appears naturally after a

sequence of brane moves, including brane creation and annihilation [37], such that all D5

branes are on one side of all of the NS5 branes. The brane realisation of Tσ
ρ [SU(n)] is

then given by n D3 branes suspended between ℓ NS5 and ℓ′ D5 branes. The parts of ρ

are the net number of D3s ending in the NS5 branes going from the interior to exterior;

likewise, the parts of σ are the net number of D3s ending on D5 branes going from interior

to exterior.

4.2 3d N = 2∗ theories on R2 × S1

Consider a 3d N = 4 linear quiver gauge theory T on R2×S1. To be more precise, consider

the 3d N = 2∗ theory on R2 × S1 that results from the 3d N = 4 theory by turning on a

mass for the adjoint chiral multiplet in the N = 4 vector multiplet. To proceed, two steps

are required: (i) the SUSY breaking to N = 2∗ and (ii) the compactification to the 2d KK

theory. The reader is referred to [18, 21] for references and details.

In terms of the supersymmetry algebra, one selects a N = 2 subalgebra of the N = 4

algebra. Denote the Cartan generators of the SU(2)H×SU(2)C R-symmetry by j3H and j3C ,

respectively. Without loss of generality, the R-symmetry generator of theN = 2 subalgebra

can be chosen to be proportional to j3H +j3C . However, the orthogonal combination j3H−j3C
generates a global (non-R) symmetry U(1)η from the N = 2 perspective. Therefore, the 3d

theory T has an GH ×GC ×U(1)η global symmetry, viewed as N = 2 theory. Turning on

a real mass term U(1)η, via coupling a N = 2 background U(1)η vector multiplet, leads to

the desired SUSY breaking N = 4→ N = 2∗. The deformation parameters split naturally

into real and complex: denote the third components of the triplets m⃗ and w⃗ simply by

m ≡ m3 and w ≡ w3, respectively. The remaining components, which could be arranged

in a complex linear combination like m1 + im2 , are not relevant as they do not affect the

low-energy effective 2d theory. Besides the real parameters m and w, there is also the real

mass η̃
2 for the U(1)η symmetry.

Next, compactifying the 3d N = 2∗ theory T on a circle of radius R, allows to combine

the real deformation parameters (m,w, η̃2 ) with arising flavour Wilson lines aF0 for GH , GC ,

and U(1)η, respectively, into complex deformation parameters

θj = iR
(
mj + iaH0,j

)
, ts = iR

(
ws + iaC0,s

)
, η = iR (η̃ + iaη0) . (4.7)
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From the 2d N = (2, 2) perspective, these correspond to twisted masses. As the flavour

Wilson lines aF0 = 1
2πR

∫
S1 A

F
µ dz

µ are periodic, it is more convenient to consider the expo-

nentiated variables

yj = e2πiθj , ϵs = e2πts , q = eπη . (4.8)

Similarly, the 3d N = 2 vector multiplet contains a real scalar field σa ≡ ϕ3,a with a =

1, . . . , rk(G), which combines with a flat connection a0,a for the gauge field along S1 into a

complex scalar field ua and the single valued fugacity is obtained by exponentiation

xa = e2πiua ua = iR(σa + ia0,a) . (4.9)

The 2d KK theory is best described by a low-energy effective description, wherein all mas-

sive fields have been integrated out. Assuming that the twisted masses are sufficiently

generic, the 2d theory at low energies becomes effectively abelian. The field strength mul-

tiplet of the N = (2, 2) vector multiplets are twisted chiral multiplets, whose dynamics is

governed by the twisted superpotential W̃. The low-energy effective action is then deter-

mined by the low-energy effective twisted superpotential W̃eff , which receives corrections

from integrating out massive fields. Crucially, W̃eff is independent of the superpotential

and the gauge coupling of the original 3d N = 2∗ theory. This is the reason why the

complex deformation parameters of the 3d theory can be neglected from the start, because

they are superpotential deformations.

The contribution to W̃eff of a 3d N = 2 chiral multiplet with twisted mass u is given

by [18, 42]

W̃chiral
eff =

1

(2πi)2
Li2
(
e2πiu

)
+

1

4
u2 ≡ ℓ(u) (4.10)

and it follows that a 3d hypermultiplet contributes as

W̃hyper
eff = ℓ

(
u+ 1

2η
)
+ ℓ

(
−u+ 1

2η
)
. (4.11)

From the 3d N = 4 vector multiplet, only the adjoint chiral contributes to the effective

twisted superpotential

W̃vector
eff = ℓ(u− η) . (4.12)

Besides the contributions from the supermultiplets, the twisted superpotential may receive

contributions from Chern-Simons interactions. As the origin is a 3d N = 4 theory, pure

gauge Chern-Simons term are not relevant; however, mixed gauge-flavour Chern-Simons

interactions appear. For instance, the FI coupling is understood as such a mixed CS term
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between the gauge symmetry and the topological symmetry. One finds

W̃FI
eff = t

k∑
a=1

ua (4.13)

for G = U(k) which has a single U(1) topological symmetry.

Finally, the supersymmetric vacua of the compactified theory T with generic twisted

masses are determined by the critical points

e2πi
∂W̃eff
∂ua = 1 for a = 1, . . . , rk(G) . (4.14)

For theories T with sufficiently many flavours (and generic twisted masses) the set of

supersymmetric vacua are a finite number of discrete points.

Example. To exemplify, consider U(k) SQCD with N fundamental hypermultiplets. The

low-energy effective twisted superpotential is given by

W̃eff =
k∑

a=1

N∑
j=1

[
ℓ(ua − θj +

1
2η) + ℓ(−ua + θj +

1
2η)
]

(4.15)

+
k∑

a,b=1

ℓ(ua − ub − η) + (t2 − t1)
k∑

a=1

ua

wherein the first line encodes the hypermultiplet in the bifundamental of U(k)×SU(N) with

gauge parameter ua and twisted flavour masses θj . The second line entails the contribution

of the adjoint chiral and the FI coupling. The physical FI parameter is parametrised by

t2 − t1, as motivated by the brane realisation.

The massive supersymmetric vacua can be evaluated by using

−2πi∂uℓ(u) = log [2 sinh (−iπu)] ⇐⇒ ∂uℓ(u) =
i

2π
log
[
x−

1
2 − x

1
2

]
(4.16)

for x = e2πiu, as in (4.9). One verifies straightforwardly

e2πi∂uaW̃eff = (−1)δ ϵ2
ϵ1

k∏
d=1
d ̸=a

xaq − xdq
−1

xdq − xaq−1

N∏
j=1

xa − yjq

yj − xaq
(4.17)

using the complex fugacities (4.8). Here, the additional sign (−1)δ can introduced by

shifting the fugacities ϵ2
ϵ1
→ (−1)δ ϵ2ϵ1 for the U(1) topological symmetry. This sign ambiguity

was noted in [21, 42, 43]. Here, δ = k +N − 1 is used.
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A-type quiver. For the general class of A-type quivers (4.1), the Bethe Ansatz equations

for the s-th node

. . .

Ns−1 Ns Ns+1
. . .

Ms−1 Ms Ms+1
(4.18)

are given by (a = 1, . . . , Ns)

P (s)
a = (−1)δs ϵs+1

ϵs

Ns∏
d=1
d̸=a

x
(s)
a q − x

(s)
d q−1

x
(s)
d q − x

(s)
a q−1

·
Ms∏
i=1

x
(s)
a − y

(s)
i q

y
(s)
i − x

(s)
a q

(4.19a)

·
Ns−1∏
b=1

x
(s)
a − x

(s−1)
b q

x
(s−1)
b − x

(s)
a q
·
Ns+1∏
c=1

x
(s)
a − x

(s+1)
c q

x
(s+1)
c − x

(s)
a q

δs = Ns +Ns−1 +Ns+1 +Ms − 1 . (4.19b)

where the blue parts originate from the U(Ns) vector multiplet, red parts denote the Ms

fundamental hypermultiplets, and green parts are due to the bifundamental hypermultiplets

between the U(Ns) gauge node and the adjacent gauge nodes. The black terms are the

classical contributions from the FI-parameter and the associated sign-shift.

4.3 3d N = 2∗ theories on Σg × S1

As a next step, one can place the resulting 2d N = (2, 2)∗ KK theory on a curved back-

ground, i.e. a Riemann surface Σg of genus g. The curved background does not preserve

all supersymmetries, but topological twisting [44] renders the situation manageable. There

are two well-known possibilities: the N = (2, 2) R-symmetry contains a vector and an axial

U(1) symmetry. The SO(2)L Lorentz symmetry of Σg can be topologically twisted with

either the axial or the vector U(1) R-symmetry. The A-twist denotes the twist of SO(2)L

with the axial U(1) R-symmetry such that the vector part is preserved. Conversely, the

B-twist locks SO(2)L and vector U(1) R-symmetry rotations such that the axial U(1) is

preserved. As a result from the four original supercharges, only two become scalar su-

percharges after the twisting procedure. These scalar supercharges can be preserved on

the curved background and are subsequently used for supersymmetric localisation of the

partition functions, see for example [45–54].

From the 3d perspective, the Lorentz group of a Riemannian manifold is SO(3)L ∼=
SU(2)L, while the N = 4 R-symmetry is SO(4)R ∼= SU(2)H × SU(2)C . Then there exist

two distinct choices for topological twisting [55–57]:

• A-twist: The novel A-twisted symmetry group is SU(2)A × SU(2)C with SU(2)A =

diag (SU(2)L, SU(2)H), which is the new Lorentz group after the twist. From the
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original 8 supercharges, four become scalar supercharges with respect to SU(2)A.

The preserved R-symmetry is U(1)H × SU(2)C , while the U(1)R symmetry of the

N = 2 subalgebra is generated by RA = 2j3H [56], see also [42] for example.

• B-twist: The symmetry group SU(2)B × SU(2)H defined by the new Lorentz group

after twist SU(2)B = diag (SU(2)L,SU(2)C) leads to four scalar supercharges, with

respect to SU(2)B. The preserved R-symmetry is SU(2)H × U(1)C , while the U(1)R

symmetry of the N = 2 subalgebra is generated by RB = 2j3C . This is also known as

Rozansky-Witten twist [55].

Both, A and B-twist, preserve 4 supercharges each, but not necessarily the same four.

One can show that 2 supercharges are same in each set of four, such that these su-

percharges, preserved by both A and B-twist, are used for the localisation of the parti-

tion functions. Most importantly, these supercharges commute with the global symmetry

U(1)η = 2 [U(1)H −U(1)C ] with charge Qη = RA−RB = 2j3H −2j3C . The A and B-twisted

index is defined as [42, 43, 58, 59]

Ig,A/B(q, zi) = Tr
Σ

A/B
g

(
(−1)F qQη

∏
i

zQi
i

)
with U(1)R charge R = RA/B (4.20)

where zi are fugacities for all global symmetries. Via supersymmetric localisation, the

twisted indices reduce to a contour integral over the complexified Cartan subalgebra of the

gauge group. This formulation is summarised in Appendix B. Remarkably, the integral

expression is equivalent to evaluating a certain function on the set of Bethe roots, cf.

(B.7)–(B.8).

4.4 Examples of twisted index computations

Having introduced the topologically twisted indices, written as sum over Bethe vacua, it is

time to demonstrate the efficiency of rational Q-systems. From the gauge theory point of

view [42], the A and B-twisted indices should agree with the Coulomb and Higgs branch

Hilbert series, respectively. We use this as a consistency check for the rational Q-system.

To be specific, consider U(k) SQCD with Nf fundamental hypermultiplets. The Coulomb

branch Hilbert series is known from [60], while the Higgs branch Hilbert series are, for

example, given in [61]. We have verified the index results derived from solving the rational

Q-system in the following cases: k = 2, Nf = 4; k = 3, Nf = 6, 7, 8; k = 4, Nf = 8, 9, 10;

k = 5, Nf = 10. Some of the results are illustrated in Tables 4, 5, 6. Here we have set

twisted masses yi and FI parameters ϵs to 1, corresponding to trivial inhomogeneities and

twists in the language of spin chains, to emphasise the usefulness of rational Q-systems in

these special situations5. The relation between A/B-twisted indices and Coulomb/Higgs

5Even though the rational Q-system can produce all the correct and physical Bethe roots when all
the inhomogeneities and twists are trivial, some of the summands in the commputation of twisted indices
become the 0/0 indefinite type. We regularise these summands by giving a very small deformation to one
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branch Hilbert series is given by

Ig=0,A(q, zi) = q− dimH C ·HSC(q−2, zi)

Ig=0,B(q, zi) = q− dimH H ·HSH(q−2, zi)
(4.21)

assuming that HSC/H(t, zi) is Hilbert series graded with respect to the half-integer spins

of the third component of SU(2)C/H using the formal variable t. The zi are the fugac-

ities of the Coulomb/Higgs branch isometries, and dimH C, dimHH are the quaternionic

Coulomb/Higgs branch dimensions, respectively.

We comment that the Bethe roots here are solved numerically from the rational Q-

systems, and consequently the A/B-twisted indices of the gauge theories are also computed

numerically. Even at this numerical stage, it is clear that the rational Q-systems outper-

forms BAE, as evident from Table 1. In a separate publication, we will use the algebraic

geometrical methods to compute the twisted indices analytically, and the comparison with

Hilbert series can be made exactly.

precision A-twisted index

30 0.00028752156405593176836345220967823465172827015575421844275664857
40 0.00028752156405593176836345131844233744482144652553274873509198510
50 0.00028752156405593176836345131844233744482132967788438091343167921
60 0.00028752156405593176836345131844233744482132986556929710052909568

HSC 0.00028752156405593176836345131844233744482132986556929710052909428

(a)

precision B-twisted index (/10−8)

30 8.2882543532206551380929369696182636127698867347809477
40 8.2882543532199696376393769549620971697496512058973677
50 8.2882543532199696376393769548731493242132365317167792
60 8.2882543532199696376393769548732936836186920889942863

HSH (/10−8) 8.2882543532199696376393769548732936836186920889932196

(b)

Table 3. A and B-twisted index of 3d N = 4 U(2) SQCD with Nf = 4 hypermultiplet computed
by summing up Bethe roots solved from the Q-systems, compared with Coulomb and Higgs branch
Hilbert series HSC/H , respectively. Both twisted masses yj and FI parameters ϵs are set to 1,
and we choose the real mass q = 59. “precision” is the working precision to solve numerically the
Q-systems. Underlined are matching digits with the Hilbert series.

of the twists.
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precision twisted A-index (/10−6)

30 4.8732468488677554916247345325593390724774052367581890
40 4.8732468488677554918004120386636296497335115841627159
50 4.8732468488677554918004120386112808487038322399706690
60 4.8732468488677554918004120386112808485997596123091081

HSC (/10−6) 4.8732468488677554918004120386112808485997596123108992

(a)

precision twisted B-index (/10−16)

50 1.165998205778084361309991293068787204114245898
60 1.165998205776650423208769416179277651494749179
70 1.165998205776650423208791534175664790279749969
80 1.165998205776650423208791534175653736637506939

HSH (/10−16) 1.165998205776650423208791534175653736637508233

(b)

Table 4. A and B-twisted index of 3d N = 4 U(3) SQCD with Nf = 6 hypermultiplet computed
by summing up Bethe roots solved from the Q-systems, compared with the Coulomb and Higgs
branch Hilbert series HSC/H , respectively. Twisted masses yj and FI parameters ϵs are set to 1,
and the real mass is chosen q = 59.

precision twisted A-index (/10−8)

40 8.25974042180998008521519041680333816527586923302771508588658730740
50 8.25974042180998008524045048323036601313681874582066764115606148669
60 8.25974042180998008524045048323036602897411127211414195745562099877
70 8.25974042180998008524045048323036602897411127211414166716521788332

HSC (/10−8) 8.25974042180998008524045048323036602897411127211414166716521640553

(a)

precision twisted B-index (/10−29)

110 4.72309432369418082795980614642322534514725146259698584707378
120 4.72309432369418082795980614642345173009901180522579894966300
130 4.72309432369418082795980614642345170554658122805183521899109
140 4.72309432369418082795980614642345170554658122805183423510308

HSH (/10−29) 4.72309432369418082795980614642345170554658122805183423542825

(b)

Table 5. A and B-twisted index of 3d N = 4 U(4) SQCD with Nf = 8 hypermultiplets computed
by summing up Bethe roots solved from the Q-systems, compared with the Coulomb and Higgs
branch Hilbert series HSC/H , respectively. Twisted masses yj and FI parameters ϵs are set to 1,
and the real mass is chosen q = 59.
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precision twisted A-index (/10−9)

70 1.399956003696606805064627094774962093795222260217177154001376055190611684
80 1.399956003696606805064607405233564620737311230205966971820395423437900816
90 1.399956003696606805064607405233564620737308834239577625822368024377227217
100 1.399956003696606805064607405233564620737308834239577625822367817060847432

HSC (/10−9) 1.399956003696606805064607405233564620737308834239577625822367817060847231

(a)

precision twisted B-index (/10−45)

100 5.508702012796516014599502581222778244609494537771432902
110 5.508702012870832356223407551611793967094776375601633373
120 5.508702012870832356223407551608849319846744863214767287
130 5.508702012870832356223407551608849319846744736454359912

HSH (/10−45) 5.508702012870832356223407551608849319846744736454251468

(b)

Table 6. A and B-twisted index of 3d N = 4 U(5) SQCD with Nf = 10 hypermultiplets computed
by summing up Bethe roots solved from the Q-systems, compared with the Coulomb and Higgs
branch Hilbert series HSC/H , respectively. Twisted masses yj and FI parameters ϵs are set to 1,
and the real mass is chosen q = 59.

5 Higgsing Q-systems

Under Bethe/Gauge correspondence, 3d N = 4 quiver gauge theories are in one-to-one

correspondence to BAE/Q-system labelled by the same quiver. Supersymmetric gauge

theories have rich structures and different theories can be related to each other by various

mechanisms. Due to the correspondence between quiver gauge theories and rational Q-

systems, operations on one side should be reflected on the other.

One important class of relations comes from the Higgs mechanism. Given a 3d N = 4

linear quiver gauge theory Tσ
ρ [SU(n)] as in (4.1), the Higgs mechanism allows for a rich

phase structure. As it is well-known, the moduli space of vacua splits into roughly three

distinct types of branches: (i) the Higgs branch, where only hypermultiplet scalars acquire

a non-trivial VEV, (ii) the Coulomb branch, parametrised by VEVs of the vector multiplets

scalars, and (iii) mixed branches. Consequently, there exist the corresponding three types

of Higgs transitions.

In the language of BAE, Higgsing is an operation which reduces the number of Bethe

roots, either by fixing some of the Bethe roots at values related to the inhomogeneities, or

by taking them to infinity. As we will see, in the Q-system, Higgsing corresponds to the

operations which reduces the number of Bethe roots while keeping the the number of boxes

fixed. There are two ways to achieve this, one is changing boundary conditions and the

other is moving boxes around. Intriguingly, they correspond to Higgs branch and Coulomb
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branch Higgsing respectively.

5.1 Higgs branch Higgsing: gauge theory

A generic gauge-invariant Higgs branch operator can be constructed from any path that

starts and ends in some flavour node. For example, Figure 5a shows a typical case in

the brane system. Suppose one has chosen flavour nodes s and r, in order to open up a

Higgs branch direction between a D5 brane in the s-th interval and a D5 brane in the r-th

interval, one needs to align the x3,4,5 positions of the following branes:

• The D5 labelled by θ
(s)
a ∼ m

(s)
a needs to align with a D3 brane, i.e. one tunes the

vector multiplet scalar u
(s)
Ns
∼ σ

(s)
Ns

.

• In the adjacent interval on the right-hand side, a single D3 brane needs to align with

the adjusted D3 brane in the s-th interval, i.e. u
(s+1)
Ns+1

has to be tuned.

• This alignment of a single D3 brane continues for all intervals j ∈ {s+ 1, . . . , r}.
• Lastly, the position of the D5 brane, labelled by θ

(r)
b ∼ m

(r)
b , needs to align with the

position of the D3, which corresponds to the vector multiplet scalar σ
(r)
Nr
⊂ u

(r)
Nr

.

Once all these branes are aligned, the D3 ending on the NS5s can join to form a single D3

that spans from the left NS5 in the s-th interval to the right NS5 in the r-th interval. Since

this single D3 intersects the two D5 branes, the D3 can split on the D5 and the resulting

D3 segment is free to move along the D5 branes. This realises the Higgs branch Higgsing of

the gauge invariant displayed in the quiver in Figure 5b, because the motion of D3 branes

suspended between D5 precisely are the Higgs branch directions. The residual D3 brane

segments, which are suspended between an NS5 and a D5, have no dynamical degrees of

freedom and can be eliminated moving the D5 through the NS5, due to brane annihilation.

The resulting theory is shown in Figure 5c.

While the 3d N = 4 brane systems provides a natural intuition for which parameter

need to be adjusted, the precise choices need to take the N = 2∗ deformation η into

account. One finds [21]

θ(s)a = u
(s)
Ns

+
η

2
, u

(s)
Ns

= u
(s+1)
Ns+1

+
η

2
, . . . , u

(r−1)
Nr−1

= u
(r)
Nr

+
η

2
, u

(r)
Nr

= θ
(r)
b +

η

2
(5.1)

and the Bethe Ansatz equation of the theory in Figure 5b reduce to the BAE of the

Higgsed theory in Figure 5c upon this tuning of variables, due to telescopic cancellation.

See Appendix A.1 for details.

Strictly speaking, it is not necessary to consider such a general Higgs branch Higgsing,

as it is sufficient to consider the two minimal Higgsing transitions [62, 63]:

1. AM−1 transitions: for a gauge node with (Ni ≥ 1,Mi ≥ 2) one specialises the transi-

tion in Figure 4 to r = s = i. After the transition, the gauge label Ni and the flavour

labels Mi−1,Mi,Mi+1 are changed respectively to Ni− 1,Mi−1+1,Mi− 2,Mi+1+1,

while the other gauge/flavour labels are not changed.
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This is called AM−1 transition with M = Mi.

2. ak transition: Suppose there exists a sequence of nodes such that (Ns ≥ 1,Ms = 1),

(Nr ≥ 1,Mr = 1) with s < r, and (Ni ≥ 1,Mi = 0) for all s < i < r. A VEV

to the gauge invariant stretched from Ms to Mr leads to a Higgs mechanism that is

known as Ak transition with k = r − s + 1. After the transition, the gauge labels

Ns, Ns+1, . . . , Nr as well as the flavor labels Ms,Mr are reduced by one, and the

flavour labels Ms−1,Mr+1 are increased by one. The remaining gauge/flavour labels

are unchanged.

These minimal transitions, also known as Kraft-Procesi transitions [62], are sufficient to

describe any Higgsing via a sequence of elementary steps. We note that the balancing

conditions ei as well as the partition ρ are not affected by the Higgs branching Higgsing.

5.2 Higgs branch Higgsing: Q-system

In the previous sections, we have seen Higgs branch Higgsing from gauge theory and at the

level of BAE. Now let us see the correspondence in the rational Q-system. We consider

a Higgs branch Higgsing along a path from flavor node Ms to Mr with r > s. Under

this operation, the Dynkin diagram labelled by M⃗ = (M1, . . . ,Mℓ−1), N⃗ = (N1, . . . , Nℓ−1)

becomes

M⃗ ′ = (M1, . . . ,Ms−2,Ms−1 + 1,Ms − 1,Ms+1, . . . ,Mr−1,Mr − 1,Mr+1 + 1,Mr+2, . . . ,Mℓ−1) ,

N⃗ ′ = (N1, . . . , Ns−1, Ns − 1, Ns−1 − 1, . . . , Nr − 1, Nr+1, . . . , Nℓ−1) .

From M⃗, N⃗ and M⃗ ′, N⃗ ′, we can compute the corresponding Young tableaux by

λa = (Na−1 −Na) + (Ma +Ma+1 + . . .+Mℓ−1) (5.2)

with N0 = 0 and Nℓ = 0. Let us denote the Young tableaux by λ and λ′. It is clear that

λa = λ′
a for a = 1, 2, . . . , s− 2. For a = s− 1, we have

λ′
s−1 =(N ′

s−2 −N ′
s−1) + (M ′

s−1 +M ′
s + . . .+M ′

ℓ−1) (5.3)

= (Ns−2 −Ns−1) + (Ms−1 + 1 +Ms − 1 + . . .+Mℓ−1) = λs−1 .

Similarly, we can check that λ′
a = λa for all a = 1, 2, . . . , ℓ − 1. Therefore, we see that

although M⃗ ′, N⃗ ′ and M⃗, N⃗ are different, the corresponding Young tableaux is the same.

The case r = ℓ− 1 is special. In this case, naively we have

M⃗ ′ =(M1, . . . ,Ms−2,Ms−1 + 1,Ms − 1,Ms+1, . . . ,Mℓ−1 − 1) , (5.4)

N⃗ ′ =(N1, . . . , Ns−1, Ns − 1, Ns−1 − 1, . . . , Nℓ−1 − 1)
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⋯ ⋯ ⋯

Ms−1 Ms Ms+1 Mr−1 Mr Mr+1

Ns−1 Ns Ns+1 Nr−1 Nr Nr+1

θ
(s)
a θ

(r)
b

u
(s)
Ns

u
(s+1)
Ns+1 u

(r−1)
Nr−1 u

(r)
Nr

(a)

N1 N2

. . .
Ns−1 Ns Ns+1

. . .
Nr−1 Nr Nr+1

. . .
Nℓ−2 Nℓ−1

M1 M2 Ms−1 Ms Ms+1 Mr−1 Mr Mr+1 Mℓ−2 Mℓ−1

(b)

N1 N2

. . .
Ns−1 Ns−1 Ns+1−1

. . .
Nr−1−1 Nr−1 Nr+1

. . .
Nℓ−2 Nℓ−1

M1 M2 Ms−1+1 Ms−1 Ms+1 Mr−1 Mr−1 Mr+1+1 Mℓ−2 Mℓ−1

(c)

Figure 5. Higgs branch Higgsing. (a) displays which branes need to align with each other to open
up a Higgs branch direction. (b) shows the corresponding gauge invariant operator in the quiver as
path from flavour node Ms to Mr. The resulting theory after the Higgs transition is shown in (c).

which leads to

λ′
a = λa − 1 , a = 1, . . . , ℓ. (5.5)

Notice that in (5.4), the total number of inhomogeneities is reduced by 1. Taking into

account this missing inhomogeneity, we consider

M⃗ ′′ =(M1, . . . ,Ms−2,Ms−1 + 1,Ms − 1,Ms+1, . . . ,Mℓ−1 − 1, 1), (5.6)

N⃗ ′′ =(N1, . . . , Ns−1, Ns − 1, Ns−1 − 1, . . . , Nℓ−1 − 1, 0) .

This corresponds to adding a floating flavor node attached to the ℓ-th empty gauge node.

The corresponding Young tableaux is

λ′′
a = λa, a = 1, . . . , ℓ, and λ′′

ℓ+1 = 0 (5.7)

which is the same Young tableaux before Higgsing. This again confirms that the Higgs

branch Higgsing does not change the Young tableaux of the rational Q-system.

Another way to see the Young tableaux does not change is to notice that the numbers
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of boxes are related to the balancing conditions

λs = es + es+1 + . . . eℓ−1 + eℓ, (5.8)

where we have taken into account the ℓ-th empty gauge node, and the latter are not changed

under Higgs branch Higgsing.

5.2.1 Examples

In this subsection, we consider examples of Higgsing for A3-type rational Q-system, as

is shown in Figure 6 For simplicity, we consider the XXX-type model. All the Dynkin

Figure 6. Higgs branch Higgsing for A3-type rational Q-system. All quivers correspond to the
Young tableaux λ = (1, 1, 1, 1)

diagrams in Figure 6 corresponds to the Young tableaux λ = (1, 1, 1, 1). We see that from

left to right, the numbers of Bethe roots are reducing. This is due to the different boundary

conditions of the rational Q-systems. The corresponding boundary conditions for the four

Dynkin diagrams Qa,0 = fa(u)Qa(u) are given by

1. For M⃗ = (4, 0, 0) and N⃗ = (3, 2, 1), we have

f0(u) =
4∏

j=1

(
u− θ

(1)
j

)
, f1(u) = 1, f2(u) = 1, f3(u) = 1 (5.9)

and

Q0(u) = 1 , (5.10)

Q1(u) = u3 + c
(1)
2 u2 + c

(1)
1 u+ c

(1)
0 ,

Q2(u) = u2 + c
(2)
1 u+ c

(2)
0 ,

Q3(u) = u+ c
(3)
0 .

The zero remainder conditions have 6 variables.

2. For M⃗ = (2, 1, 0) and N⃗ = (2, 2, 1), we have

f0(u) =
(
u− θ

(1)
1

)(
u− θ

(1)
2

)(
u− θ

(2)
1 − i

2

)(
u− θ

(2)
1 + i

2

)
, (5.11)
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f1(u) =
(
u− θ

(2)
1

)
, f2(u) = f3(u) = 1 ,

and

Q0(u) = 1 , (5.12)

Q1(u) = u2 + c
(1)
1 u+ c

(1)
0 ,

Q2(u) = u2 + c
(2)
1 u+ c

(2)
0 ,

Q3(u) = u+ c
(3)
0 .

The zero remainder conditions now have 5 variables, and we have 1 less Bethe root.

3. For M⃗ = (0, 2, 0) and N⃗ = (1, 2, 1), we have

f0(u) =
(
u− θ

(2)
1 − i

2

)(
u− θ

(2)
2 − i

2

)(
u− θ

(2)
1 + i

2

)(
u− θ

(2)
2 + i

2

)
, (5.13)

f1(u) =
(
u− θ

(2)
1

)(
u− θ

(2)
2

)
, f2(u) = f3(u) = 1 .

and

Q0(u) = 1 , (5.14)

Q1(u) = u+ c
(1)
0 ,

Q2(u) = u2 + c
(2)
1 u+ c

(2)
0 ,

Q3(u) = u+ c
(3)
0 .

The zero remainder conditions have 4 variables now.

4. For M⃗ = (1, 0, 1) and N⃗ = (1, 1, 1), we have

f0(u) =
(
u− θ

(3)
1 − i

)(
u− θ

(3)
1

)(
u− θ

(3)
1 + i

)(
u− θ

(1)
1

)
, (5.15)

f1(u) =
(
u− θ

(3)
1 − i

2

)(
u− θ

(3)
1 + i

2

)
,

f2(u) =
(
u− θ

(3)
1

)
, f3(u) = 1 .

and

Q0(u) = 1 , (5.16)

Q1(u) = u+ c
(1)
0 ,

Q2(u) = u+ c
(2)
0 ,

Q3(u) = u+ c
(3)
0 .

The zero remainder condition has 3 variables.
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5.2.2 A heuristic explanation

To have a better intuition about Higgs branch Higgsing in the spin chain language, let us

give a heuristic explanation using periodic rank-1 XXX spin chain. The Bethe roots enter

the spin chain via the Bethe ansatz. For a length-M spin chain with N magnons whose

rapidities are given by the N Bethe roots, we have inhomogeneities {θa} and Bethe roots

{uj}. The BAE reads

M∏
a=1

uj − θa +
i
2

uj − θa − i
2

=

N∏
k ̸=j

uj − uk + i

uj − uk − i
, j = 1, 2, . . . , N. (5.17)

The Higgs branch Higgsing in the spin chain language corresponds to fixing one of the

Bethe root, say u1, to a value corresponding to one of the inhomogeneities, say θ1. We set

u1 = θ1 − i
2 . (5.18)

At the same time, to avoid divergences, we need to set another inhomogeneity, say θ2 to

be

θ2 = θ1 − i . (5.19)

Making this choice, the BAE for u1 trivializes because it is already fixed. For the rest of

the rapidities uj , j = 2, . . . , N , the BAE becomes

uj − θ1 +
i
2

uj − θ1 − i
2

uj − θ1 +
3i
2

uj − θ1 +
i
2

M∏
a=3

uj − θa +
i
2

uj − θa − i
2

=
uj − θ1 +

3i
2

uj − θ1 +
i
2

N∏
k ̸=1,j

uj − uk + i

uj − uk − i
. (5.20)

Cancelling common factors from both sides leads to

M∏
a=3

uj − θa +
i
2

uj − θa − i
2

=
N∏

k ̸=1,j

uj − uk + i

uj − uk − i
, (5.21)

which is the BAE of a spin chain of length M − 2 with N − 1 magnons.

Heuristically, the physical picture is as follow. In coordinate Bethe ansatz, Bethe roots

are rapidities of a kind of particles called magnons. Each time a magnon with rapidity uj

passes site-a with inhomogeneity θa, it picks up a phase

ei∆pa(uj) =
uj − θa +

i
2

uj − θa − i
2

. (5.22)

Making the choice (5.18), (5.19), we have

ei∆p1(u1) = 0, ei∆p2(u1) =∞ . (5.23)
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Effectively, the first and second sites become infinite high barrier and the magnon with

rapidity u1 is trapped between them and can no longer move freely. For magnons with

other rapidities, the combined effect of the choice (5.18), (5.19) is trivial

ei∆p1(uj)ei∆p2(uj)S(uj , u1) =
uj − θ1 +

i
2

uj − θ1 − i
2

uj − θ1 +
3i
2

uj − θ1 +
i
2

uj − θ1 − i
2

uj − θ1 +
3i
2

= 1 , (5.24)

where S(uj , u1) is the scattering phase between two magnons with rapidities uj and u1,

which for the XXX chain is given by

S(uj , u1) =
uj − u1 − i

uj − u1 + i
. (5.25)

5.3 Coulomb branch Higgsing: gauge theory

Besides turning on VEVs for scalar in the hypermultiplet, also vector multiplet scalars can

acquire a non-trivial VEV. The simplest Coulomb branch Higgsing is realised by partial

break U(Ns)→ U(Ns − 1) realised by a VEV to, say, σ
(s)
Ns

, which is then taken to infinity.

In the brane system, a single D3 brane from the stack of Ns D3s in between the s-th and

(s+ 1)-th NS5 is moved off to infinity.

For later purposes, it is necessary to consider a more fundamental Coulomb branch

Higgs transition, displayed in Figure 7. The significance of this transition stems from the

fact that there exist two fundamental Coulomb branch Higgsing transitions for the A-type

quiver considered here. To approach the Coulomb branch deformations, one can follow

the minimal Higgs branch transitions and revert the logic. That means: The signal for

minimal Higgs branch transitions are the presence of flavour nodes (in general non-abelian

factors in GH), while the balance of the gauge nodes is preserved in any Higgs branch

transitions. Thus, for the Coulomb branch Higgsing the “smoking gun” is the presence

of balanced gauge nodes (as these lead to enhance non-abelian factors on GC), while the

flavour symmetry is preserved. Consequently, the minimal Coulomb branch transitions are

given by:

1. Dual of AM−1 transition: Recall that in the AM−1 transition, a single gauge node

had a M flavour node attached. In the brane system, this translates to M D5

branes in the same NS5 brane interval, and these D5s have identical linking number

Li = #D3LHS −#D3RHS + #NS5LHS. Upon S-duality, the D5s become NS5s. The

NS5 linking number are related to balance of gauge nodes in the mirror theory (see

for instance [21, 37]), i.e. Li−Li+1 = e∨i = M∨
i +N∨

i−1+N∨
i+1−2N∨

i . Here (M
∨
i , N

∨
i )

are the integers defining the mirror theory. It follows that M consecutive NS5 branes

with identical linking numbers imply M −1 consecutive gauge groups with vanishing

balance e∨i = 0. Hence, the mirror should have a connected set of M − 1 balanced

nodes.
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Suppose there exists a connected sequence of M − 1 balanced gauge nodes U(Ns)

for s = r, . . . , r + M − 2. Then, the Coulomb branch minimal transition leads to

a breaking U(Ns) → U(Ns − 1) for all s = r, . . . , r + M − 2, while all other gauge

and flavour nodes are unaffected. As far as the balances are concerned, er and eM−2

increase by one, and er−1 and eM−1 of the connected nodes reduce by one.

2. Dual of ak transition: recall that the ak transition appeared between two single

flavours at different gauge nodes. Hence, non-abelian flavour node are not required.

Without loss of generality, the flavours are at node s and r such that r > s and

k = r − s + 1. The two D5 branes differ in their linking numbers as follows:

Ls = #NS5LHS(at s), Lr = #NS5LHS(at r), but #NS5LHS(at r) = #NS5LHS(at s) +

r − s + 1. This is because the D5 in the r-th interval perceives r − s + 1 more NS5

branes to its left-hand side compared to the D5 in the s-th interval. Upon S-duality,

the D5s becomes N5s and their difference in linking number translates to the balance

of the gauge theory living on the world-volume of the D3s stretched between them.

One finds e∨ = Lr − Ls = r − s+ 1 = k. Therefore, in the mirror, this transition is

not associated with balanced nodes, but with a node of balance k.

Consider a gauge node U(Ns) that is good, but not balanced, i.e. es > 0 and the

connected adjacent nodes also have strictly positive balance ei > 0. Then, a minimal

Coulomb branch transitions is simply a breaking of a U(Ns)→ U(Ns−1), where any

s that satisfies the assumptions. This implies that the balance ei of the connected

nodes is reduced by 1, while the balance es of node s is increased by 2.

Note that neither of the two scenarios can change the partition σ, while the partition ρ

related to the balancing conditions ei is changed.

Returning to the scenario of Figure 7, this Higgsing can be realised in the BAE by the

following procedure: Firstly, for each partially broken gauge group U(Nj), a single complex

. . .
Ns−1 Ns Ns+1

. . .
Nr Nr+1

. . .

Ms−1 Ms Ms+1 Mr Mr+1

(a) Before Higgsing.

. . .
Ns−1 Ns−1 Ns+1−1

. . .
Nr−1 Nr+1

. . .

Ms−1 Ms Ms+1 Mr Mr+1

(b) After Higgsing.

Figure 7. Coulomb branch Higgsing.
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gauge fugacity, say, x
(j)
Nj

is selected. These need to be aligned

x
(s)
Ns

= . . . = x
(j)
Nj

= . . . = x
(r)
Nr
≡ χ→∞ (5.26a)

and send to infinity simultaneously. In addition, the transition is only meaningful if the ϵj

parameter of the affected gauge nodes take specific values

ϵs+1 = −qϵs , ϵj+1 = ϵj for s < j < r , ϵr+1 = −qϵr . (5.26b)

Upon this tuning of parameters, the BAE for the theory in Figure 7a reduce to the BAE

of the theory in Figure 7b. The detailed analysis is delegated to Appendix A.2.

5.4 Coulomb branch Higgsing: Q-system

Now we consider the Coulomb branch Higgsing. After the Coulomb branch Higgsing, the

Dynkin diagram M⃗ = (M1, . . . ,Mℓ−1), N⃗ = (N1, . . . , Nℓ−1) becomes M⃗ = (M1, . . . ,Mℓ−1),

N⃗ ′ = (N ′
1, . . . , N

′
ℓ−1) where the numbers M⃗ do not change. If we choose the path of the

Higgsing along a path from flavor node s to r, the numbers N⃗ ′ become

N ′
a =

{
Na − 1, s ≤ a ≤ r

Na, others
(5.27)

Recalling that

λa = (Na−1 −Na) + (Ma +Ma+1 + . . .+ML−1) , (5.28)

we find that the Young tableaux λ⃗′ = (λ′
1, . . . , λ

′
ℓ) becomes

λ′
s = λs + 1, λ′

r+1 = λr+1 − 1 (5.29)

where λ′
a = λa for the rest a. This amounts to moving a box from the r + 1-th row to

the s-th row. The total number of boxes is the same. At the same time, the boundary

condition fa(u) is not changed.

5.4.1 Examples

Let us now consider examples of the Coulomb branch Higgsing. More concretely, we

consider the examples in Figure 8. We present the rational Q-systems from left to right.

1. For M⃗ = (4, 0, 0) and N⃗ = (3, 2, 1), we have

f0(u) =
4∏

j=1

(u− θj), f1(u) = f2(u) = f3(u) = 1 . (5.30)
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Figure 8. Coulomb branch Higgsing for A3-type rational Q-system.

and

Q0(u) = 1 , (5.31)

Q1(u) = u3 + c
(1)
2 u2 + c

(1)
1 u+ c

(1)
0 ,

Q2(u) = u2 + c
(2)
1 u+ c

(2)
0

Q3(u) = u+ c
(3)
0 .

2. For M⃗ = (4, 0) and N⃗ = (2, 1), we have

f0(u) =

4∏
j=1

(u− θj), f1(u) = f2(u) = 1 , (5.32)

and

Q0(u) = 1 , (5.33)

Q1(u) = u2 + c
(1)
1 u+ c

(1)
0 ,

Q2(u) = u+ c
(2)
0 .

3. For M⃗ = (4) and N⃗ = (2), we have

f0(u) =
4∏

j=1

(u− θj), f1(u) = 1 , (5.34)
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and

Q0(u) = 1 , (5.35)

Q1(u) = u2 + c
(1)
1 u+ c

(1)
0 .

4. For M⃗ = (4) and N⃗ = (1),

f0(u) =
4∏

j=1

(u− θj), f1(u) = 1 , (5.36)

and

Q0(u) = 1 , (5.37)

Q1(u) = u+ c
(1)
0 .

We see that from left to right, the total numbers of Bethe roots are reducing, while the

number of boxes are fixed. At the same time, the boundary conditions are not modified.

6 Mirror symmetry

As we have discussed before, there is deep connection between gauge theories and Bethe

ansatz. 3d N = 4 has been crucial in understanding dualities in supersymmetric gauge

theories. Most notably, they provide the first examples of 3D mirror symmetry. The

incarnation of mirror symmetry at the level of Bethe ansatz equation has been discussed

in the literature [21] under the name of bispectral duality. In this section, we discuss the

meaning of mirror symmetry for rational Q-system. In addition, we give explicit examples

for the duality. We shall see that mirror symmetry is more naturally described in the

Q-system language.

Partitions To start with, the origin of the Young tableaux of Q-system might seem a

bit mysterious from the spin chain point of view. However, it emerges very naturally from

quiver gauge theories. To see this, let us consider quiver gauge theories Tσ
ρ [SU(n)]. These

theories are labelled by two partitions ρ and σ. Both ρ and σ are partitions of the integer

n given in (6.1). The partition ρ (represented by a Young tableaux) is identified with the

Young tableaux of the rational Q-system. The total number of boxes is

n =

ℓ∑
a=1

ρa =

ℓ−1∑
a=1

aMa . (6.1)

– 40 –



recall that ρa is given by

ρa = (Na−1 −Na) + (Ma +Ma+1 + . . .+Mℓ−1) . (6.2)

We have seen in the previous sections that the Young tableaux alone is not sufficient to

specify the theory labelled by M⃗, N⃗ . We still have the freedom to choose different boundary

conditions, which can be fixed by the other partition σ. Let us denote the transpose of σ

by

σT = (σ̂1, σ̂2, . . . , σ̂ℓ) (6.3)

The elements σ̂j are related to M⃗ by

Mj = σ̂j − σ̂j+1 . (6.4)

With the additional constraint

ℓ∑
j=1

σ̂j = n =
ℓ−1∑
a=1

aMa , (6.5)

we find that

σ̂a = Ma +Ma+1 + . . .+Mℓ−1, a = 1, . . . , ℓ− 1, (6.6)

σ̂ℓ = 0 .

The partition σT is related to the boundary conditions fa(u) by

σ̂a = deg(fa−1)− deg(fa), deg(fℓ) = 0 . (6.7)

Together with ρ, we see that the correspondence between M⃗, N⃗ and ρ,σ is one-to-one.

Brane construction Recall from Section 4.1, the brane realisation of Tσ
ρ [SU(n)] is given

by n D3 branes suspended between ℓ NS5 and ℓ′ D5 branes. The parts of ρ are the net

number of D3s ending in the NS5 branes going from the interior to exterior; likewise,

the parts of σ are the net number of D3s ending on D5 branes going from interior to

exterior. As demonstrated in [37], mirror symmetry for 3d N = 4 quiver gauge theories is

realised in the brane system by a combination of S-duality transformation and space-time

rotation. The S-transformation exchanges D5s with NS5s, F1s with D1s, while D3 branes

are invariant. Thus, S-duality acting on the brane configuration for Tσ
ρ [SU(n)] produces

the brane configuration for Tρ
σ [SU(n)]. By a series of standard brane moves, one transitions

the brane system into a phase resembling that of Figure 4.

The brane system gives clear explanations for the mapping of parameters. Coulomb
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branch moduli, captured by D3s suspended between NS5 branes, are mapped to Higgs

branch degrees of freedom, represented by D3s suspended between D5 branes, and vice

versa. Likewise, D5 brane positions transverse to D3 and NS5 branes give rise to mass

parameters, which are mapped to NS5 brane positions transverse to D3 and D5 branes

defining FI parameters.

Mirror symmetry Mirror symmetry states that the following two theories are the same

Tσ
ρ [SU(n)] ←→ Tρ

σ [SU(n)] . (6.8)

At the level of Bethe ansatz, mirror symmetry can be seen in different ways

• There is a one-to-one correspondence of the solutions of the two sets of seemingly

quite different sets of BAE;

• The handle-gluing operator, evaluated at the dual solutions yield the same result.

• The Higgs branch Higgsing in one theory corresponds to the Coulomb branch Higgsing

in the mirror symmetry.

To make such identifications, we also need to identify the corresponding parameters in-

cluding inhomogeneities and twists.

In the gauge theory setup, mirror symmetry relates parameters as follows: let yi be

the mass and ϵa the FI parameter of Tσ
ρ [SU(n)], and denote by q the N = 2∗ deformation

parameter. Likewise y∨a and ϵ∨i are the mass and FI parameter of Tρ
σ [SU(n)], and the SUSY

breaking parameter q∨. Then the mirror map is simply

yi ↔ ϵ∨i , ϵa ↔ y∨a , q ↔ 1

q∨
(6.9)

i.e. FI and mass parameters are exchange, while the N = 2∗ parameter is inverted.

6.1 Explicit examples

Suppose two theories are mirror dual to each other, then partition functions and super-

symmetric indices of these two theories need to agree upon using the mirror map between

the parameters. Thus, starting from topologically twisted indices written as sum over

Bethe vacua, there is also a one-to-one correspondence between Bethe roots of two utterly

different set of Bethe ansatz equations.

Example 1 Consider SQED with Nf = 3 and its mirror U(1)×U(1) quiver gauge theory.
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1

x

η2
η1

3
y1, y2, y3

↔
1

x(1)
ϵ2
ϵ1

1

x(2)
ϵ3
ϵ2

1
z1

1
z2

(6.10)

The N = 2∗ parameter is denoted by q for the SQED theory and by p for the mirror quiver.

Suppose one solves the BAE for the quiver theory with ϵi = 1, such that the mass

parameters relate to the physical mass via z1 =
√
z, z2 = 1/

√
z. One finds

SquiverBE =

{{
x(1)→ 6√z

x(2)→ 1
6√z

}
,

{
x(1)→− 3√−1 6√z

x(2)→ (−1)2/3

6√z

}
,

{
x(1)→(−1)2/3 6√z

x(2)→−
3√−1
6√z

}}
(6.11)

Likewise, solving the BAE for the SQED theory with yi = 1 yields

SSQED
BE =

{{
x→

3√εq−1
3√ε−q

}
,

{
x→

2ε2/3q+ 3√ε((1−i
√
3)q2+i

√
3+1)+2q

2(ε2/3+ 3√εq+t2)

}
, (6.12){

x→
2ε2/3q+ 3√ε((1+i

√
3)q2−i

√
3+1)+2q

2(ε2/3+ 3√εq+q2)

}}
where the FI parameter is denoted with ε, i.e. η2 =

√
ε, η1 =

1√
ε
.

Now, one can identify the mirror pairs of corresponding Bethe roots by evaluating

the A or B-twist handle-gluing operator HA/B. For the A-twist of the quiver theory, one

computes

1

Hquiver
A (x1)

=
p2 ( 3
√
z − p)

2
(p 3
√
z − 1)

2

3 (p2 − 1)4 z2/3
(6.13a)

1

Hquiver
A (x2)

=
1

3 (p2 − 1)4 z2/3
(
−p+ 3

√
−1pz2/3 + (−1)2/3 (p2 + 1) 3

√
z
) · (6.13b)

p2
(
− (−1)2/3p3 − 3

(
p5 + 3p3 + p

)
z2/3 + 3 3

√
−1p

(
p4 + 3p2 + 1

)
z4/3

+ 3
(
p4 + p2

)
z5/3 − (−1)2/3p3z2 − 3 3

√
−1p2

(
p2 + 1

)
3
√
z

+ (−1)2/3
(
p6 + 9p4 + 9p2 + 1

)
z

)
1

Hquiver
A (x3)

= − 1

3 (p2 − 1)4 z2/3
(
− 3
√
−1p+ pz2/3 − (−1)2/3 (p2 + 1) 3

√
z
) · (6.13c)

p2
(
− (−1)2/3p3 − 3 3

√
−1p2

(
p2 + 1

)
z5/3 − 3

(
p5 + 3p3 + p

)
z4/3

+ 3 3
√
−1p

(
p4 + 3p2 + 1

)
z2/3 − (−1)2/3p3z2 + 3

(
p4 + p2

)
3
√
z
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+ (−1)2/3
(
p6 + 9p4 + 9p2 + 1

)
z

)
while the B-twist in SQED yields

1

HSQED
B (x1)

=
q2 ( 3
√
ε− q)

2
( 3
√
εq − 1)

2

3ε2/3 (q2 − 1)4
(6.14a)

1

HSQED
B (x2)

=
−1(

−12iε2/3q2 +
(√

3 + i
)
ε4/3 − 4

(√
3 + i

)
3
√
εq3 + 4

(√
3− i

)
εq −

(√
3− i

)
q4
)

·
q2
(
ε2/3 + 3

√
εq + q2

)2
3ε2/3 (q2 − 1)4

·
(
2iε4/3q2 + ε2/3

((√
3− i

)
q4 + 8iq2 − i−

√
3
)
(6.14b)

+ 2 3
√
εq
((√

3 + i
)
q2 + i−

√
3
)
+ 2εq

((√
3 + i

)
q2 + i−

√
3
)
+ 2iq2

)
1

HSQED
B (x3)

=
1(

12iε2/3q2 +
(√

3− i
)
ε4/3 − 4

(√
3− i

)
3
√
εq3 + 4

(√
3 + i

)
εq −

(√
3 + i

)
q4
)

·
q2
(
ε2/3 + 3

√
εq + q2

)2
3ε2/3 (q2 − 1)4

·
(
2iε4/3q2 + ε2/3

(
−
(√

3 + i
)
q4 + 8iq2 − i+

√
3
)

(6.14c)

+ 2 3
√
εq
(
−
(√

3− i
)
q2 + i+

√
3
)
+ 2εq

(
−
(√

3− i
)
q2 + i+

√
3
)
+ 2iq2

)
Next, one compares the expression using the mirror map of the parameters. This results

in

1

Hquiver
A (xa)

=
1

HSQED
B (xa)

∣∣∣∣ε→z
q→ 1

p

∀a = 1, 2, 3 (6.15)

∑
a

1

Hquiver
A (xa)

= p2
1 + 4p2 + p4

(1− p2)4
=
∑
a

1

HSQED
B (xa)

∣∣∣∣ε→z
q→ 1

p

= q2
1 + 4q2 + q4

(1− q2)4

∣∣∣∣
q→ 1

p

(6.16)

and, therefore, the Bethe roots are in one-to-one correspondence. Also, the genus-0 index

(6.16) agrees precisely with the known Coulomb/Higgs branch Hilbert series [60, 61].

For completeness, one evaluates the B-twist for the quiver theory

1

Hquiver
B (x1)

= − p 3
√
z

3 ( 3
√
z − p) (p 3

√
z − 1)

(6.17a)

1

Hquiver
B (x2)

= − p 3
√
z

3
(
− 3
√
−1p+ (−1)2/3pz2/3 − p2 3

√
z − 3
√
z
) (6.17b)

1

Hquiver
B (x3)

=
p 3
√
z

3
(
−(−1)2/3p+ 3

√
−1pz2/3 + p2 3

√
z + 3
√
z
) (6.17c)
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as well as the A-twist of the SQED theory

1

HSQED
A (x1)

= −
3
√
εq

3 ( 3
√
ε− q) ( 3

√
εq − 1)

(6.18a)

1

HSQED
A (x2)

=
4ε2/3q2 +

(
1− i

√
3
)

3
√
εq3 + ε

(
q + i

√
3q
)

3
(
ε2/3 + 3

√
εq + q2

) (
2ε2/3q + 3

√
ε
((
1− i

√
3
)
q2 + i

√
3 + 1

)
+ 2q

) (6.18b)

1

HSQED
A (x3)

=
4ε2/3q2 +

(
1 + i

√
3
)

3
√
εq3 + ε

(
q − i

√
3q
)

3
(
ε2/3 + 3

√
εq + q2

) (
2ε2/3q + 3

√
ε
((
1 + i

√
3
)
q2 − i

√
3 + 1

)
+ 2q

) (6.18c)

Again, explicitly comparing the expressions using the mirror map yields

(Hquiver
B )−1(xa) = (HSQED

A )−1(xa)

∣∣∣∣ε→z
q→ 1

p

∀a = 1, 2, 3 (6.19)

∑
a

(Hquiver
B )−1(xa) =

p
(
1− p6

)
(1− p2)

(
1− p3

z

)
(1− p3z)

(6.20)

=
∑
a

(HSQED
A )−1(xa)

∣∣∣∣ε→z
q→ 1

p

=
q
(
1− q6

)
(1− q2)

(
1− q3

ε

)
(1− εq3)

∣∣∣∣
q→ 1

p

which confirms the one-to-one correspondence. Again, the computed genus-0 index (6.20)

agrees with known Hilbert series [60, 61].

Example 2. Consider U(2) SQCD with 4 fundamentals and its mirror quiver.

2

x1,2

η2
η1

N
y1, . . . , y4

↔
1

x(1)
ϵ2
ϵ1

2

x
(2)
1,2

ϵ3
ϵ2

1

x(3)
ϵ4
ϵ3

2
z1, z2

(6.21)

and the N = 2∗ parameter for SQCD is denoted with q, while it is called p in the mirror

quiver. Due to the complexity of BAE, one needs to specify the fugacities. The parameter

of the mirror quiver are chosen as{
ϵ1 → 2, ϵ2 → 3, ϵ3 → 5, ϵ4 → 7, p→ 1

29
, z1 →

1

11
, z2 → 13

}
(6.22)

and the corresponding mirror parameter in the SQCD theory are obtained via

yi ↔ ϵi , for i = 1, . . . , 4 , ηa ↔ z3−a , for a = 1, 2 , q ↔ 1

p
. (6.23)
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For the quiver theory one finds the Bethe roots as displayed in Table 7, while the Bethe

roots for SQCD are summarised in Table 8. By evaluating the valued of H−1
A/B one can

establish a one-to-one correspondence between the Bethe roots in the two theories.

x(1) x
(2)
1 x

(2)
1 x(3)

x1 0.29214 −13.264 −0.014713 0.31343
x2 −0.30412 12.872 0.016048 −0.32564
x3 −0.56070 0.27390 + 0.63429i 0.27390− 0.63429i −0.58099
x4 0.58302 0.35993 + 0.61120i 0.35993− 0.61120i 0.60279
x5 0.00158 + 0.57019i 0.84342 + 0.00011i −0.57878 + 0.00019i 0.00124− 0.59025i
x6 0.00158− 0.57019i 0.84342− 0.00011i −0.57878− 0.00019i 0.00124 + 0.59025i

(a) Bethe roots

H−1
A H−1

B

x1 3.7916 · 10−7 2.9932 · 10−7

x2 3.4321 · 10−7 4.0216 · 10−7

x3 2.1491 · 10−10 1.7344 · 10−4

x4 1.3796 · 10−10 1.8503 · 10−4

x5 1.7649 · 10−10 1.7909 · 10−4 − 7.5453 · 10−9i
x6 1.7649 · 10−10 1.7909 · 10−4 + 7.5453 · 10−9i

(b) HA/B evaluate on Bethe roots

Table 7. Bethe roots and value of A/B-twisted handle-glue operator for quiver gauge theory (6.21)
mirror to U(2) SQCD.

x1 x2 H−1
A H−1

B

0.31175− 1.08299i 0.31175 + 1.08299i 2.9932 · 10−7 3.7916 · 10−7

1.3780 −0.83561 4.0216 · 10−7 3.4321 · 10−7

9.2615 0.00969 1.7344 · 10−4 2.1491 · 10−10

−9.2651 −0.00854 1.8503 · 10−4 1.3796 · 10−10

0.2917 + 9.1954i −0.00029 + 0.00914i 1.7909 · 10−4 − 7.5453 · 10−9i 1.7649 · 10−10

0.2917− 9.1954i −0.00029− 0.00914i 1.7909 · 10−4 + 7.5453 · 10−9i 1.7649 · 10−10

Table 8. Bethe roots and value of the A/B-twisted handle-glue operator for the U(2) SQCD theory
(6.21) with 4 fundamentals.

6.2 Higgsing and mirror symmetry

One incarnation of mirror symmetry is the exchange of Higgs and Coulomb branch in two

mirror dual theories. As such, one needs to verify that the minimal Higgs branch transitions

in T are properly mapped to the minimal Coulomb branch transitions in T ∨. As both type

of transitions have been detailed in terms of BAE, one verifies that the prescriptions are

mapped into each other, see also [21].
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AM−1 transition. To begin with, consider a AM−1 Higgs branch transition of T on a

gauge node U(N) with M ≥ 2 fundamental flavours. Denote the two adjusted flavour

masses as y1,M such that (5.1) implies

y1 = yMq2 . (6.24)

In the mirror T ∨, there has to exist a connected sub-graph of M −1 balanced gauge nodes.

Denote the ϵ-parameter by ϵ1, . . . , ϵM such that (5.26) implies

ϵ1 = ϵMq2 (6.25)

These transitions are mirror dual to each other, provided the parameters are mapped as

follows:

q → q−1 , y1 ↔ ϵM , yM ↔ ϵ1 . (6.26)

ak transition. Thereafter, consider a ak Higgs branch transition of T between a chain

of gauge node U(Nj) with s ≤ j ≤ r such that all Mj = 0 for s < j < r and Ms,r = 1.

For k = r − s+ 1 > 1, the two adjusted flavour masses, say y1 ≡ y
(s)
1 and y2 ≡ y

(r)
1 satisfy

(5.1), i.e.

y1 = y2q
k+2 . (6.27)

In the mirror T ∨, there has to exist an unbalanced gauge nodes U(N) with balance e = k.

Denote the ϵ-parameter by ϵ1,2 such that (A.35) implies

ϵ1 = ϵ2q
e+2 . (6.28)

This is consistent, provided the mirror map is

q → q−1 , y1 ↔ ϵ2 , y2 ↔ ϵ1 . (6.29)

6.3 Mirror symmetry and quiver subtraction

After discussing the minimal Higgs and Coulomb branch transitions, we have the following

observation: It is known that the minimal Higgs branch transitions AM−1 and ak can be

realised on the level of the quiver by quiver subtraction [64]. Given that we understand

also the mirror dual configurations, it follows that we can propose the quiver subtraction

for Coulomb branch Higgsing building on the discussion in Section 5.3.

Consider the AM−1 transition in Figure 9a. The Higgs branch subtraction is realised

by subtracting SQED with M flavours. The Coulomb branch thereof is the AM−1 ALE

space C2/ZM ; hence, the name. After subtracting the rank of the gauge nodes, one needs
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to preserve the original balance by adjusting the flavour nodes. The result is precisely the

quiver theory we read off from the corresponding partial Higgsing in the brane system.

Consider the mirror configuration in Figure 9b. From the brane system we know that

a non-abelian U(M) flavour node leads in the S-dual to M consecutive NS5 brane with

identical linking numbers. In other words, there are M − 1 consecutive gauge nodes with

vanishing balance e∨i = 0. We propose that the Coulomb branch subtraction is then realised

subtracting a finite AM−1 Dynkin quiver. While the balance is not preserved in Coulomb

branch Higgsing, the flavour groups are. Thus, we do obtain the correct quiver after the

transition.

Consider the ak transition in Figure 10a. The Higgs branch quiver subtraction is

realised by the U(1)k quiver gauge theory whose Coulomb branch is the closure of the

minimal nilpotent orbit of su(k + 1); hence the name ak. After reducing the gauge ranks

appropriately and “rebalancing” to preserve the ei, one obtains the correct quiver. Giving

that the two relevant D5 flavour branes are separated by k NS5 branes, on the mirror side,

there exists a gauge node with balance e = k, see Figure 10b. This node is surrounded

by node of positive balance. We propose that the Coulomb branch subtraction is simply

realised by subtracting a U(1) node. Since balance does not need to be preserved, this

subtraction immediately generates the correct quiver.

. . .
Nl N Nr

. . .

el e er

Ml M Mr

1

M

−

. . .
Nl N−1 Nr

. . .

=

el e er

Ml+1 M−2 Mr+1

(a)

. . .
N∨s−1 N∨s N∨s+1

. . .
N∨r−1 N∨r N∨r+1

. . .

e∨
s−1 > 0 e∨s = 0 e∨

s+1 = 0 e∨
r−1 = 0 e∨r = 0 e∨

r+1 > 0

M∨
s−1 M∨

s
M∨

s+1 M∨
r−1 M∨

r
M∨

r+1

1 1

. . .
1 1

−
r − s + 1 =M − 1 nodes

. . .
N∨s−1 N∨s −1 N∨s+1−1

. . .
Nr−1−1 N∨r −1 N∨r+1

. . .

M∨
s−1 M∨

s
M∨

s+1 M∨
r M∨

r
M∨

r+1

e∨
s−1 − 1 e∨s + 1 e∨

s+1 = 0 e∨
r−1 = 0 e∨r + 1 e∨

r+1 − 1

=

(b)

Figure 9. a: The AM−1 transition on the Higgs branch is realised by subtracting the quiver of
U(1) SQED with M flavours and adjusting the flavour nodes such that the balance ei is preserved.
b: In the mirror, the exists a sequence of M − 1 balance nodes and the Coulomb branch transition
is realised by subtracting a finite AM−1 Dynkin diagram.
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. . .
Ns−1 Ns Ns+1

. . .
Nr−1 Nr Nr+1

. . .

es−1 es es+1 er−1 er er+1

Ms−1 1 1 Mr+1

1 1

. . .
1 1

1 1−

r − s + 1 = k nodes

. . .
Ns−1 Ns−1 Ns+1−1

. . .
Nr−1−1 Nr−1 Nr+1

. . .

Ms−1 + 1 Mr+1 + 1

es−1 es es+1 er−1 er er+1

=

(a)

. . .
N∨

l
N∨ N∨r

. . .

e∨
l
> 0 e∨ = k > 0 e∨r > 0

M∨
l M∨ M∨

r

1

−

. . .
N∨

l
N∨−1 N∨r

. . .

=

e∨
l
− 1 e∨ + 2 e∨r − 1

M∨
l M∨ M∨

r

(b)

Figure 10. a: The ak transition on the Higgs branch is realised by subtracting the quiver of
[1] − (1) − . . . − (1) − [1] with k U(1) gauge factors and adjusting the flavour nodes such that the
balance ei is preserved. b: In the mirror, the exists a node with balance e∨ = k surrounded by node
with strictly positive balance. The Coulomb branch transition is realised by subtracting a finite A1

Dynkin diagram.

One notes that this subtraction is different from the know algorithm [63–65], wherein

the subtracted diagrams are of affine Dynkin type. The Coulomb branch quiver subtraction

is significant for the magnetic quiver programme, see [66–71] and later works. For example,

given a 3dN = 4 A-type quiver theory T and suppose one knows the mirror T ∨. One might

ask: what is the mirror after a minimal Higgs branch transition X : T → T ′? Using the

corresponding Coulomb branch quiver subtraction for X, one straightforwardly obtains

X : T ∨ → (T ′)∨ such that (T ′)∨ is the 3d mirror of T ′. The significance of Coulomb

branch quiver subtraction is that the same logic applies to magnetic quivers6: given a

higher-dimensional theory (8 supercharges) with known magnetic quiver, one is interested

in the magnetic quiver after a partial Higgs mechanism. Applying Coulomb branch quiver

subtraction (and suitable future generalisations [72]) allows to answer this.

An immediate corollary of this discussion is the following: 3d N = 4 Sp(k) SQCD

with N fundamentals admits a unitary D-type Dynkin quiver as mirror dual theory. The

partial Higgs branch Higgsing of Sp(k) SQCD with N fundamentals to Sp(k − 1) SQCD

with N − 2 fundamentals is known as dN transition. By the same reasoning as above,

we find that the corresponding Coulomb branch Higgsing on the D-type mirror quiver is

realised by subtracting a finite DN Dynkin quiver, wherein the gauge ranks are precisely

6M.S. thanks Antoine Bourget and Zhenghao Zhong for discussion and collaboration on related projects.
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the Coxeter labels.

7 Comments on open spin chains and orthosymplectic quivers

The setup considered so far can be naturally generalised by inclusion of O3 orientifold planes

in the Type IIB brane systems. The O3 planes are parallel to the D3 branes and the low-

energy world-volume theory is modified into a linear quiver gauge theory with alternating

orthogonal and symplectic gauge nodes. In short, this is referred to as orthosymplectic

quiver. The Bethe/Gauge correspondence relates such 3d N = 4 theories to open spin

chains [19]. In this Section, the formulation in terms of the Q-system is briefly discussed.

7.1 Brane system and 3d theory

The inclusion of an O3 plane comes with different choices, as there are four types of

orientifold planes. Analogous to above, consider a stack of n D3 brane parallel to an O3

plane, ending on a system of half D5 branes and half NS5 branes [26, 73]. Two partitions

σ, ρ determine how the D3 branes end on the half D5 and half NS5 branes respectively.

The brane setup gives rise to the 3d N = 4 superconformal field theories Tσ
ρ [G] that are

the IR fixed points of the D3 world-volume theories. Table 9 summarises the choice of

orientifold, which determines G and the two partitions. By construction, mirror symmetry

is realised by

Tσ
ρ [G] ←→ Tρ

σ [G
∨] , (7.1)

where G∨ is the GNO-dual group of G [74].

In contrast to the linear unitary quivers, the IR global symmetry GH × GC is only

partially visible in the UV description. The Cartan elements of GH are still realised by

explicit mass parameters in the orthosymplectic quiver. However, the Coulomb branch

global symmetry is not manifest in the UV, simply because SO(n) and Sp(k) gauge theories

do not admit FI-parameter.

7.2 Q-system

The Bethe/Gauge correspondence for SO(n) and Sp(k) gauge theories have been investi-

gated in [25]. It has been shown that the vacuum equations of these theories correspond to

BAEs of integrable open spin chains with diagonal boundary conditions. Such BAEs can

also been recast in terms of the rational Q-system. This was first done for a special case

for the XXZ spin chain in [15], later it was generalized to the situation with more general

diagonal boundary conditions in [16].

The rational Q-systems for open chain have a number of new features. First, the QQ-

relation is modified; second, the boundary conditions are such that the Q-functions at the

left boundary are even functions of the spectral parameter, namely Qa,0(−u) = Qa,0(u).
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O3 theory σ partition ρ partition

O3− Tσ
ρ [SO(2n)] SO(2n) partition SO(2n) partition

Õ3
−

Tσ
ρ [SO(2n+ 1)] SO(2n+ 1) partition Sp(n) partition

O3+ Tσ
ρ [Sp(n)] Sp(n) partition SO(2n+ 1) partition

Õ3
+

Tσ
ρ [Sp′(n)] Sp(n) partition Sp(n) partition

Table 9. The Tσ
ρ [G] theories are defined by a G-partition σ and a G∨-partition ρ, with G∨ the

GNO-dual group of G.

In addition, it was shown in [16] that the corresponding Q-system is not unique. These

observations were made by investigating rank 1 open spin chains, namely the integrable

open XXX and XXZ spin chains. We expect that these features hold for higher rank models

in general.

8 Conclusions

In this paper, we constructed the rational Q-system for generic BAE described by an Aℓ−1

quiver and revisit the Bethe/Gauge correspondence from the rational Q-system point of

view. We obtained a number of new results in this study.

For integrable models, the rational Q-systems for Aℓ−1 BAE have been constructed for

models with one momentum carrying node first for the XXX model in [13] and then for

the XXZ model in [17]. Building on these works, we took one further step and generalized

the framework to cases with multiple momentum carrying nodes and generic twists. Such

a generalization is helpful for applications in integrability in AdS/CFT. For example, the

scalar sector of ABJM theory is described by a BAE with two momentum carrying nodes

[35, 75], the rational Q-system is expected to be more efficient to solve than the BAE. The

generalization to multiple momentum carrying nodes is also necessary for applications in

Bethe/Gauge correspondence where these type of BAE emerge naturally from quiver gauge

theories.

For 3d N = 4 quiver gauge theories, most of the content we discussed in the paper

are known in the literature. We clarified that generic Higgs/Coulomb branch Higgs transi-

tions are composed of elementary Kraft-Procesi transitions, for which we demonstrate the

suitable reduction on the level of the BAE and verified mirror symmetry. As a corollary,

we formalised Coulomb branch Higgsing in terms of quiver subtraction using finite A-type

Dynkin quivers. These preliminaries enabled us to naturally transfer the minimal partial

Higgs mechanisms into the rational Q-system language. As a proof of concept, we evaluated

topologically twisted indices via BAE and rational Q-system for selected examples. The

rational Q-system outperforms solving BAE. In this work, we demonstrated this feature
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for numerical calculations of U(n) SQCD with n = 1, . . . , 5 and confirmed the validity of

the results by comparing genus-0 twisted indices to known Hilbert series.

Probably the most important message of the current work is that rational Q-system,

which is not yet well appreciated beyond integrability community, provides a natural lan-

guage for the Bethe/Gauge correspondence. The first evidence is that the rationalQ-system

is naturally specified by two partitions, which can be identified nicely with the two par-

titions of Tσ
ρ [SU(n)]. Moreover, the correspondence of Higgsings on both branches are

realized in a more transparent way in the rational Q-system than the original BAE. Fi-

nally, mirror symmetry is realized in an extremely neat way by simply swapping the role

of the two partitions of the Q-system, which specify the Young tableaux and boundary

conditions. It might be possible that the Q-functions on the Young tableaux have more

direct physical meanings in terms of quiver gauge theories.

There are several directions to pursue based on the current work. The original mo-

tivation for developing rational Q-system for the more general Aℓ−1 is to combine the

efficiency of the Q-system and computational algebraic geometrical methods to compute

physical quantities like the topologically twisted indices analytically. Such a strategy has

already been applied in the computation of various non-trivial quantities such as partition

functions of 6-vertex models [7, 9, 11] and Loschmidt echo of the integrable quantum spin

chains [10]. However, these applications only involve A1 model. Rational Q-systems of

higher rank Aℓ−1 are more complicated to handle. To further improve the efficiency, we

need to exploit various techniques and tricks. We will report these results in a separated

publication.

It would be interesting to generalize the rational Q-systems even further. One imme-

diate task is considering the cases of generic Aℓ−1 open chains, building on the comments

and observations given in Section 7. An even more general case is considering higher spin

representations.

Mirror symmetry is a highly non-trivial and intriguing statement from the spin chain

point of view. It states that two seemingly very different BAEs/Q-systems are dual to

each other and have the same number of solutions. It would be interesting to further

understand the bispectral dualities and find potential applications in statistical mechanics

and/or condensed matter physics.
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A Higgsing in BAE

A.1 Higgs branch

For completeness, the reduction of the BAE (4.19) under Higgs branch Higgsing is sketched.

Consider the transition detailed in Figure 5 and recall that the parameter choice (5.1)

becomes

y(s)a = x
(s)
Ns
· q , x

(s)
Ns

= x
(s+1)
Ns+1

· q , . . . , x
(r−1)
Nr−1

= x
(r)
Nr
· q , x

(r)
Nr

= y
(r)
b · q (A.1)

in terms of the complex fugacities (4.8), (4.9).

Node s. To begin with, consider the a ̸= Ns BAE (4.19). The terms affected by (5.1)

are:

P (s)
a ⊃

x
(s)
a q − x

(s)
Ns

q−1

x
(s)
Ns

q − x
(s)
a q−1

·
x
(s)
a − y

(s)
Ms

q

y
(s)
Ms
− x

(s)
a q
·
x
(s)
a − x

(s+1)
Ns+1

q

x
(s+1)
Ns+1

− x
(s)
a q

∣∣∣
(A.1)

= (−1)3 (A.2)

and the sign prefactor changes as

δs = δ′s + 3 ⇒ (−1)δs = (−1) · (−1)δ′s (A.3)

such that the appearing sign factors cancel. As a consequence, the remainder of P
(s)
a

reduces to the BAE for U(Ns − 1) with the matter content as in Figure 5c.

Next, consider the a = Ns BAE, the terms affected by (5.1) are:

P
(s)
Ns
⊃

Ns−1∏
d=1

x
(s)
Ns

q − x
(s)
d q−1

x
(s)
d q − x

(s)
Ns

q−1
·
Ms∏
i=1

x
(s)
Ns
− y

(s)
i q

y
(s)
i − x

(s)
Ns

q
·
Ns+1∏
c=1

x
(s)
Ns
− x

(s+1)
c q

x
(s+1)
c − x

(s)
Ns

q
(A.4)

which implies that this BAE becomes trivial once it is written as polynomial equation. To

see this note that y
(s)
i − x

(s)
Ns

t = 0 for i = Ms and x
(s)
Ns
− x

(s+1)
c t for c = Ns+1 = 0 due to

(A.1); hence, both sides of the polynomial BAE are trivial.

Node j, s < j < r. For a U(Nj) node with s ≤ j ≤ r, the argument is exactly the same.

Node s − 1. Next, consider the node U(Ns−1) and verify that the additional flavour is

accommodated.

P (s−1)
a = (−1)δs−1

ϵs
ϵs−1

Ns−1∏
d=1
d̸=a

x
(s−1)
a q − x

(s−1)
d q−1

x
(s−1)
d q − x

(s−1)
a q−1

·
Ms−1∏
i=1

x
(s−1)
a − y

(s−1)
i q

y
(s−1)
i − x

(s−1)
a q

(A.5)

·
Ns−2∏
b=1

x
(s−1)
a − x

(s−2)
b q

x
(s−2)
b − x

(s−1)
a q

·
Ns−1∏
c=1

x
(s−1)
a − x

(s)
c q

x
(s)
c − x

(s−1)
a q

·
x
(s−1)
a − x

(s)
Ns

q

x
(s)
Ns
− x

(s−1)
a q
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and the sign factor remains invariant

δs−1 = δ′s−1 . (A.6)

Therefore, the flavour contribution for the (s − 1)-th gauge node U(Ns−1) Figure 5c are

identified with

P̃ (s−1)
a ⊃

Ms−1∏
i=1

x
(s−1)
a − y

(s−1)
i q

y
(s−1)
i − x

(s−1)
a q

·
x
(s−1)
a − x

(s)
Ns

q

x
(s)
Ns
− x

(s−1)
a q

≡
Ms−1+1∏

i=1

x
(s−1)
a − ỹ

(s−1)
i q

ỹ
(s−1)
i − x

(s−1)
a q

. (A.7)

Using y
(s)
a = x

(s)
Ns

q, the additional flavour is given by

{
ỹ
(s−1)
i

}Ms−1+1

i=1
=

{{
y
(s−1)
i

}Ms−1

i=1
, y(s)a q−1

}
. (A.8)

Node r+1. Similarly, the additional flavour in the (r+1)-th gauge node U(Nr+1) should

be identified as coming from x
(r)
Nr

. More precisely, the flavour parameter after Higgsing are

given by {
ỹ
(r+1)
j

}Mr+1+1

j=1
=

{{
y
(r+1)
j

}Mr+1

j=1
, y

(r)
b q

}
(A.9)

using x
(r)
Nr

= y
(r)
b q, see (A.1).

A.2 Coulomb branch

Without loss of generality, one may consider an A-type quiver with a balanced Ar−s+1

subgraph (and r ≥ s), as in Figure 7a. This means that the nodes Nj for j ∈ {s, s+1, . . . , r}
are balanced, i.e.

ej = Nj−1 +Nj+1 +Mj − 2Nj = 0 for all j ∈ {s, s+ 1, . . . , r} . (A.10)

After turning on a Coulomb branch VEV, all the balanced node are partially broken

U(Nj) → U(Nj − 1) for j ∈ {s, s + 1, . . . , r} and the resulting theory is shown in Fig-

ure 7b. On the level of BAE, the Higgsing can be realised as follows: for each affected

gauge node, selected a single complex fugacity, say, x
(j)
Nj

. Firstly, these need to be aligned

and, secondly, a limit is required

x
(s)
Ns

= . . . = x
(j)
Nj

= . . . = x
(r)
Nr
≡ χ→∞ . (A.11)

It is instructive to examine the behaviour of different nodes.
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Node s − 1. The first node that is indirectly affected is s − 1, and in the limit χ → ∞,

the relevant terms in (4.19) are

lim
x
(s)
Ns

=χ→∞

x
(s−1)
a − x

(s)
Ns

q

x
(s)
Ns
− x

(s−1)
a q

= −q . (A.12)

In addition, the sign prefactor can be recast as

δs−1 = δ′s−1 + 1 ⇒ (−1)δs−1 = (−1) · (−1)δ′s−1 . (A.13)

Consequently, the BAE for this node become

P (s−1)
a → q(−1)δ′s−1

ϵs
ϵs−1

Ns−1∏
d=1
d̸=a

x
(s−1)
a q − x

(s−1)
d q−1

x
(s−1)
d q − x

(s−1)
a q−1

·
Ms−1∏
i=1

x
(s−1)
a − y

(s−1)
i q

y
(s−1)
i − x

(s−1)
a q

(A.14)

·
Ns−2∏
b=1

x
(s−1)
a − x

(s−2)
b q

x
(s−2)
b − x

(s−1)
a q

·
Ns−1∏
c=1

x
(s−1)
a − x

(s)
c q

x
(s)
c − x

(s−1)
a q

which is the BAE for the (s − 1)-st node of the theory after Higgsing (with δ′s−1), up to

the choice of FI (see below).

Node s. Next, consider the left-most node that experience partial breaking. In the limit

χ→∞, the relevant terms in the a ̸= Ns BAE (4.19) of node s are

lim
x
(s+1)
Ns+1

=χ→∞

x
(s)
a − x

(s+1)
Ns+1

q

x
(s+1)
Ns+1

− x
(s)
a q

= −q (A.15)

lim
x
(s)
Ns

=χ→∞

x
(s)
a q − x

(s)
Ns

q−1

x
(s)
Ns

q − x
(s)
a q−1

=
−1
q2

(A.16)

and the sign prefactor behaves as

δs = δ′s + 2 ⇒ (−1)δs = (−1)δ′s . (A.17)

Hence, one arrives at

P
(s)
a̸=Ns

→ 1

q
(−1)δ′s ϵs+1

ϵs

Ns−1∏
d=1
d ̸=a

x
(s)
a q − x

(s)
d q−1

x
(s)
d q − x

(s)
a q−1

·
Ms∏
i=1

x
(s)
a − y

(s)
i q

y
(s)
i − x

(s)
a q

(A.18)

·
Ns−1∏
b=1

x
(s)
a − x

(s−1)
b q

x
(s−1)
b − x

(s)
a q
·
Ns+1−1∏

c=1

x
(s)
a − x

(s+1)
c q

x
(s+1)
c − x

(s)
a q

which is the BAE of node s for the theory after Higgsing (with δ′s), up to the choice of FI.
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Similarly, the BAE for a = Ns becomes

lim
x
(s)
Ns

=x
(s+1)
Ns+1

=χ→∞
P

(s)
a=Ns

=
ϵs+1

ϵs
(−1)−es−1q−es−1 = (−1)ϵs+1

ϵs
q−1 (A.19)

using that the node is balanced, i.e. es = 0.

Node j, s < j < r Next, consider an intermediate node. Again, focus on the affected

parts in the x
(j−1)
Nj−1

= x
(j)
Nj

= x
(j+1)
Nj+1

= χ → ∞ limit. In the BAE (4.19) for a ̸= Nj , the

relevant pieces are

lim
x
(j−1)
Nj−1

=χ→∞

x
(j)
a − x

(j−1)
Nj−1

q

x
(j−1)
Nj−1

− x
(j)
a q

= −q (A.20a)

lim
x
(j+1)
Nj+1

=χ→∞

x
(j)
a − x

(j+1)
Nj+1

q

x
(j+1)
Nj+1

− x
(j)
a q

= −q (A.20b)

lim
x
(j)
Nj

=χ→∞

x
(j)
a t− x

(j)
Nj

q−1

x
(j)
Nj

q − x
(j)
a q−1

=
−1
q2

(A.20c)

and the sign factor is changes as follows:

δj = δ′j + 3 ⇒ (−1)δj = (−1) · (−1)δ
′
j . (A.21)

Therefore, the limit of the BAE becomes

P
(j)
a̸=Nj

→ (−1)δ
′
j · ϵj+1

ϵj

Nj−1∏
d=1
d̸=a

x
(j)
a q − x

(j)
d q−1

x
(j)
d q − x

(j)
a q−1

·
Mj∏
i=1

x
(j)
a − y

(j)
i q

y
(j)
i − x

(j)
a q

(A.22)

·
Nj−1−1∏

b=1

x
(j)
a − x

(j−1)
b q

x
(j−1)
b − x

(j)
a q
·
Nj+1−1∏

c=1

x
(j)
a − x

(j+1)
c q

x
(j+1)
c − x

(j)
a q

which are the BAE for the node j of the theory after Higgsing (with δ′j), up to the choice

of FI (see below). Analogous arguments for a = Nj lead to

lim
x
(j−1)
Nj−1

=x
(j)
Nj

=x
(j+1)
Nj+1

=χ→∞
P

(j)
a=Nj

=
ϵj+1

ϵj
q−ej =

ϵj+1

ϵj
(A.23)

using that the node is balanced, i.e. ej = 0
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Node r. The behaviour at node r is analogous to that of node s. By the same reasoning

as above, the limit of the a ̸= Nr BAE becomes

P
(r)
a̸=Nr

→ 1

q
(−1)δ′r ϵr+1

ϵr

Nr−1∏
d=1
d̸=a

x
(r)
a q − x

(r)
d q−1

x
(r)
d q − x

(r)
a q−1

·
Mr∏
i=1

x
(r)
a − y

(r)
i q

y
(r)
i − x

(r)
a q

(A.24)

·
Nr−1−1∏

b=1

x
(r)
a − x

(r−1)
b q

x
(r−1)
b − x

(r)
a q
·
Nr+1∏
c=1

x
(r)
a − x

(r+1)
c q

x
(r+1)
c − x

(r)
a q

which are the BAE for the r-th node of the theory after Higgsing (with δ′r), up to the choice

of FI (see below). In contrast, the limit of the a = Nr BAE reads

P
(r)
a=Nr

→ (−1)ϵr+1

ϵr
q−er−1 = (−1)ϵr+1

ϵr
q−1 (A.25)

using that the node is balanced, i.e. er = 0.

Node r+1. Similarly, the effects on node (r+1) resembles that of node (s− 1). The by

now familiar analysis leads to

P (r+1)
a → q(−1)δ′r+1

ϵr+2

ϵr+1

Nr+1∏
d=1
d̸=a

x
(r+1)
a q − x

(r+1)
d q−1

x
(r+1)
d q − x

(r+1)
a q−1

·
Mr+1∏
i=1

x
(r+1)
a − y

(r+1)
i q

y
(r+1)
i − x

(r+1)
a q

(A.26)

·
Nr−1∏
b=1

x
(r+1)
a − x

(r)
b q

x
(r)
b − x

(r+1)
a q

·
Nr+2∏
c=1

x
(r+1)
a − x

(r+2)
c q

x
(r+2)
c − x

(r+1)
a q

(A.27)

which are the BAE of node (r+1) of the theory after Higgsing (with δ′5), up to the choice

of FI (see below).

Fixing the FI parameter. The above (A.14), (A.18), (A.22), (A.24), and (A.26) show

that one should identify the FI parameter after Higgsing as follows:

ϵ̃s
ϵ̃s−1

= q
ϵs
ϵs−1

,
ϵ̃s+1

ϵ̃s
=

1

q

ϵs+1

ϵs
, (A.28a)

ϵ̃j+1

ϵ̃j
=

ϵj+1

ϵj
, for s+ 1 < j < r − 1 , (A.28b)

ϵ̃r+1

ϵ̃r
=

1

q

ϵr+1

ϵr
,

ϵ̃r+2

ϵ̃r+1
= q

ϵr+2

ϵr+1
, (A.28c)
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such that the ϵ̃a parameters after Higgsing are identified as

ϵ̃a =



ϵa a < s

qϵs a = s

ϵa s < a < r + 1

q−1ϵr+1 a = r + 1

ϵa r < a

(A.29)

Moreover, (A.19), (A.23), and (A.25) imply a remaining type of constraints:

(−1)ϵs+1

ϵs
q−1 = 1 ,

ϵj+1

ϵj
= 1 for s < j < r , (−1)ϵr+1

ϵr
q−1 = 1 . (A.30)

Remark. With these general considerations, one can immediately understand the mirror

of the Ak Higgs branch transition

. . .

Ns−1 Ns Ns+1
. . .

Ms−1 Ms Ms+1
−→

. . .

Ns−1 Ns−1 Ns+1
. . .

Ms−1 Ms Ms+1
(A.31)

Focus on the BAE of the U(Ns) node. For a ̸= Ns, For a ̸= N2, the relevant pieces are

lim
x
(s)
Ns

→∞

x
(s)
a q − x

(s)
Ns

q−1

x
(s)
Ns

q − x
(s)
a q−1

=
−1
q2

(A.32a)

δs = δ′s + 1 ⇒ (−1)δs = (−1) · (−1)δ′s (A.32b)

and therefore

P
(s)
a̸=Ns

→ 1

q2
(−1)δ′s ϵs+1

ϵs

Ns−1∏
d=1
d ̸=a

x
(s)
a q − x

(s)
d q−1

x
(s)
d q − x

(s)
a q−1

·
Ms∏
i=1

x
(s)
a − y

(s)
i q

y
(s)
i − x

(s)
a q

(A.33)

·
Ns−1∏
b=1

x
(s)
a − x

(s−1)
b q

x
(s−1)
b − x

(s)
a q
·
Ns+1∏
c=1

x
(s)
a − x

(s+1)
c q

x
(s+1)
c − x

(s)
a q

which is the BAE for the theory after Higgsing (with δ′s), up to the choice of new FI

parameter

ϵ̃a =


qϵs a = s ,

q−1ϵs+1 a = s+ 1 ,

ϵa else .

(A.34)
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For a = Ns, analogous reasoning leads to

P
(s)
a=Ns

→ ϵs+1

ϵs
q−es−2 such that ϵs+1 = ϵsq

es+2 . (A.35)

B Topologically twisted indices

A versatile tool for probing dualities of 3d supersymmetric theories with at least 4 super-

charges (i.e. N ≥ 2) are topologically twisted partition functions on Σg×S1 [20, 42, 43, 58,

59, 76–79]. Focusing on 3d N = 4, two distinct choices exist: Performing the topological

twist with a Cartan subgroup of SU(2)H leads to an A-twisted index, while the twist by a

Cartan subgroup of SU(2)C yields the so-called B-twisted index.

In this appendix, the relevant formulae for the twisted indices are summarised. The

conventions follow those of [42]. For instance, the real scalar in the N = 2 vector multiplet

is σ = diag(σa) for a = 1, . . . , rk(G). When compactified on S1 with radius R, the flat

connections a0 for the gauge field along S1 along to define a natural complexification (4.9)

and the exponentiated variable xa define the complex fugacities used below. Similarly,

for any global U(1)F symmetry, one can turn on a background flat connection and a

background real scalar σF such that the combination (4.7) allows to define corresponding

complex fugacity (4.8).

Supersymmetric localisation reduces the partition function on Σg × S1 to

Ig,A/B =
1

|WG|
∑

m∈Γ∗
G∨

∮
JK

[
dx

2πi

]rk(G)

Z
A/B
cl+1−loop(m,x) (B.1)

where WG denotes the Weyl group of the gauge group G and Γ∗
G∨ is the weight lattice of

the GNO-dual group G∨ [74]. The integrand Zcl+1−loop is composed of a classical part

Z
A/B
cl = τm ≡

∏
I

τmI
I , (B.2)

which is determined by FI parameters for the free subgroup
∏

I U(1)I of G, and 1-loop

determinants of the different supermultiplets.

• The 1-loop determinant for a hypermultiplet in the bifundamental representation of

G×G′, with variables x and y, respectively, reads

ZA
hyper =

∏
γ∈F ′

∏
ρ∈F

(
xρyγ − q

1− xρyγq

)ρ(m)+γ(n)

(B.3)

ZB
hyper =

∏
γ∈F ′

∏
ρ∈F

(
xρyγ − q

1− xρyγq

)ρ(m)+γ(n) [ xρyγq

(1− xρyγq)(xρyγ − q)

]1−g

(B.4)

if G′ is non-dynamical, then the background flux n is chosen trivial.
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• A vector multiplet of a gauge group G contributes with the 1-loop determinant

ZA
vector =

(
q − q−1

)(g−1)rk(G)∏
α∈g

(
1− xα

q − xαq−1

)α(m)−g+1

(B.5)

ZB
vector =

1

(q − q−1)(g−1)rk(G)

∏
α∈g

(
1− xα

q − xαq−1

)α(m) [ 1

(1− xα)(q − xαq−1)

]g−1

(B.6)

The contour integral can be rewritten as sum over residues at the roots of the Bethe Ansatz

equations. In detail, one finds [43, 58]

Ig,A/B =
(−1)rk(G)

|WG|
∑

x̂∈SBE

Z
A/B
cl+1−loop

∣∣∣∣
m=0

(
det
ab

∂Ba

∂ub

)g−1

iBa =
∂ logZ

A/B
cl+1−loop

∂ma

(B.7)

and, equivalently, the expression can be interpreted as [42, 59, 77]

Ig,A/B =
1

|WG|
∑

x̂∈SBE

HA/B(x̂)
g−1

HA/B(x) = e2πiΩ(x) det
a,b

∂2W̃eff

∂ua∂ub

(B.8)

Both formulae are insightful. The first allows a direct relation to the JK-residue expression,

while the second makes contact with the effective 2d KK theory. Here, W̃eff denotes the

effective twisted superpotential and Ω is known as effective dilaton, which accounts for the

coupling of the theory to the curved 3-manifold. HA/B is referred to as the 3d handle-gluing

operator. In both, the sum is over the Bethe roots

SBE =
{
x
∣∣ Pa(x) = 1 a = 1, . . . , rk(G) , w(u) ̸= u,w ∈ WG

}
/WG

Pa(x) = eiBa = e2πi
∂W
∂ua

(B.9)

For the cases relevant here, the condition that no Weyl reflection is leaving a Bethe root

invariant can be recast into the condition that the Vandermonde is non-vanishing∏
α∈G

(1− xα) ̸= 0 . (B.10)
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