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Since the discovery of superconductive twisted bilayer graphene which initiated the field of9

twistronics, moiré systems have not ceased to exhibit fascinating properties. We demonstrate that10

in boron nitride twisted bilayers, for a given moiré periodicity, there are five different stackings11

which preserve the monolayer hexagonal symmetry (i.e. the invariance upon rotations of 120◦) and12

not only two as always discussed in literature. We introduce some definitions and a nomenclature13

that identify unambiguously the twist angle and the stacking sequence of any hexagonal bilayer with14

order-3 rotation symmetry. Moreover, we employ density functional theory to study the evolution15

of the band structure as a function of the twist angle for each of the five stacking sequences of boron16

nitride bilayers. We show that the gap is indirect at any angle and in any stacking, and identify17

features that are conserved within the same stacking sequence irrespective of the angle of twist.18

Initiated by twisted bilayer graphene, moiré systems19

formed of 2D atomic layers have recently been established20

as a unique playground for highlighting novel and fasci-21

nating properties [1]. A tiny twist between the two van22

der Waals atomic layers can modify deeply their elec-23

tronic properties as a consequence of the flattening of24

the band dispersion. In graphene, a flat moiré mini-band25

appears at specific “magic angles” [2, 3] whose occupa-26

tion drives superconductive/insulating transitions which27

open new perspectives on the investigation of strong cor-28

relation in 2D systems [4–6]. In gapped twisted bilayers29

(e.g. semiconducting transition metal dichalcogenides)30

the moiré bands have an impact on the optical proper-31

ties. For instance, by varying the twist angle it is pos-32

sible to modulate the exciton lifetime [7], or the energy33

and intensity of emitted light [8–11]. In these systems,34

flat bands give rise to intriguing phenomena without the35

need of being twisted by specific “magic” angles [12–14].36

Hexagonal boron nitride (hBN) is a cardinal compound37

in 2D materials research. Used mostly as incapsulat-38

ing layer, it has nonetheless attracting properties on39

its own respect, mainly because of its large band gap40

(> 6 eV) [15, 16] which is at the origin of a strong UV41

emission [17, 18], single photon emission [19–24] and its42

application as gating layer in 2D electronics [25–28]. Re-43

cently ferroelectricity has been enabled in twisted hBN44

bilayers, thus expanding further its range of applica-45

tions [29, 30]. In the bulk phase and in thin layers its46

optical properties are driven by excitons [31]. In hBN47

moiré systems, Lee and coworkers [32] observed an in-48

crease of the luminescence intensity and a decrease of49

the sub-band gapwidth for increasing twist angles. From50

the standpoint of atomistic simulations, geometries with51

small rotation angles require very large periodic cells52

(order of thousands of atoms) which are out of reach53

for most self-consistent numerical approaches [33]. As54

for graphene [2, 34], tight-binding or continuous models55

based on the k · p approximation are more adapted to56

deal with very large systems and have therefore been de-57

veloped [6, 14, 35, 36]. However these studies are incom-58

plete on two aspects. First, the very nature of the band59

gap is still not elucidated while it obviously rules the60

optical and excitonic properties of monolayer and bulk61

hBN [15, 16, 37]. Second, the stacking sequence in bi-62

layers is seldom considered and, when it has been, only63

two geometries were taken into account [33, 36]. Yet, it64

has been shown that the stacking sequence strongly in-65

fluences the character of the gap [31, 38, 39] through long66

range interplanar interactions.67

In this Letter, we investigate the electronic structure of68

twisted hBN bilayers by taking into account fully and on69

the same footing its dependence on the twist angle and70

the stacking sequence. As a first step, we demonstrate71

the existence of five and only five different stacking possi-72

bilities to construct hBN bilayers with hexagonal symme-73

try and provide a non-ambiguous nomenclature applica-74

ble to untwisted configurations as well and to any other75

homobilayer formed of hexagonal 2D materials. Stem-76

ming from this symmetry analysis, we employed density77

functional theory (DFT) to investigate the evolution of78

the band structure as a function of the twist angle for79

each of the five stackings.80

To construct a tiling of rotated bilayers preserving long81

range translational symmetries, we first define coincident82

supercells [40]. Let us take a honeycomb lattice with83

primitive vectors a1 and a2 forming an angle of 60◦ and84

with the two atoms of the cell separated by τ . Then85

we define the (q, p) hexagonal supercell as resulting from86

the vectors A
(q,p)
i =

∑
jM

(q,p)
ij aj defined by means of87

the matrix88

M(q,p) =

[
q p
−p p+ q

]
. (1)
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FIG. 1. a) Graphical representation of θ and θ′ angles according to the {p, q} integers. b) The lower layer supercell is (q, p)B.
c) d) and e) The supercells of the upper layer (p, q)X with X = B, N or H respectively are drawn in blue, and the corresponding
(−q, p+ q)X supercells in yellow. High symmetry points are reported as red dots. In the examples p = 2 and q = 1.

Similarly we use equation (1) to introduce the (p, q) and
the (−q, p+ q) supercells. The resulting twist angles are
given respectively by the formulae:

tan θ =

√
3(p2 − q2)

p2 + q2 + 4pq
or tan θ′ =

√
3(q2 + 2pq)

2p2 − q2 + 2pq
.

The supercells defined above and the resulting twist an-89

gles are sketched in Figure 1.a.90

The p and q integers obey to some constraints: they91

must be different and non zero, otherwise they lead to92

twist angles of 0◦ or 60◦, they must have no common93

divisor, and the case p − q multiple of 3 has to be ex-94

cluded as it corresponds to non-primitive moiré super-95

cells. Moreover, since twist angles are defined modulo96

60◦, the definition of the M(α,β) matrices are not unique.97

We will then restrict ourselves arbitrarily to cases p > q98

which imply that angles are positive and θ + θ′ = 60◦.99

Note finally that the notation introduced here for twisted100

bilayers can be employed also for untwisted structures101

taking q = 0 and p = 1.102

Stacking the correct supercells is not enough to con-103

struct moiré hexagonal bilayers because the respective104

alignment is also crucial. Let us introduce a subscript105

labelling the origin of the supercell (B = boron, N = ni-106

trogen, H = hexagon center). Without loss of generality107

we will always consider the supercell of the lower layer108

as being (q, p)B (cfr. Figure 1b) while that of the upper109

layer can be any of (p, q)B,N,H or (−q, p + q)B,N,H. As a110

consequence, one ends up with six bilayers listed in Ta-111

ble I and sketched in panels c), d) and e) of Figure 1 for112

the case p = 2, q = 1. In each supercell there are three113

direct-space high-symmetry points (red bullets in Fig-114

ure 1): the points (0 0), (1/3 1/3) and (2/3 2/3) in the115

supercell reduced coordinates. Depending on the coinci-116

dent atoms in these points, one can distinguish between117

(i) two geometries with a double sublattice coincidence118

per cell, the (p, q)N and the (−q, p + q)B ones, with a119

twist angle −θ′, and (ii) the remaining four geometries120

with a single sublattice coincidence per cell and an an-121

upper twist symm. stacking double

layer angle group sequence coincidence

(p, q)B +θ p321 BB no

(p, q)N −θ′ p321 BNNB yes

(p, q)H +θ p321 NN no

(−q, p+ q)B −θ′ p312 BBNN yes

(−q, p+ q)N +θ p3 BN no

(−q, p+ q)H +θ p3 BN no

TABLE I. The geometry of the five stackings of hBN twisted
bilayers. The lower layer is based on the (q, p)B supercell.

gle of twist θ. However it is trivial to demonstrate that122

the bilayers resulting from the stacking of (−q, p+ q)N,H123

on the (q, p)B are related by a simple inversion and are124

therefore identical. All this boils down to five hexago-125

nal stackings for the generic twisted hBN bilayer. As a126

consequence, we will designate univocally a twisted bi-127

layer by the notation STACK (q, p) where the {p, q} pair128

relates to the supercell and hence the moiré periodicity129

and angles, and STACK = BBNN, BNNB, BB, BN or130

NN relates to the atoms in the coincident sites. Images131

of these stackings, their layer symmetry group and the132

transformations to be applied to the upper layer to switch133

from one stacking to another (swapping of B/N atoms or134

translation by ±τ ) are summarized in Figure 2 and Ta-135

ble I. It is worth recalling that with our conventions the136

angles are positive. Their sign comes from the chirality137

of twisted bilayers and is defined according to the screw138

angle separating B-N bonds at the atom-on-atom coinci-139

dence sites of the supercell, as depicted in the insets of140

the Figure 2.141

For comparison, in the case of graphene bilayers both B142

and N labels become C, so the possible stackings are only143

two, but they have higher symmetry. The first belongs144

to the p321 layer group and to the odd bilayer graphene145

(BLG) set [34, 41–43], has a single sublattice vertical co-146

incidence per cell and the twist angle is θ. The second147
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FIG. 2. The five stackings of hBN moiré structures, with
p = 2 and q = 1. The sublattice coincidences are highlighted
with red circles.

belongs to the p622 layer group and to the even BLG148

set with hexagon-on-hexagon or double sublattice coinci-149

dence. Its rotation angle is −θ′. Finally, if we swap the150

values of p and q, we will obtain five new stackings which151

are the mirror images of the pristine structures. They152

will have the same electronic structure, and the twist an-153

gles will be +θ′ for the BNNB and BBNN and −θ for154

the BB, BN and NN stackings. Complete definitions and155

demonstrations are given in Appendix.156

Based on our robust symmetry analysis, we clearly157

identify five different stackings of hBN bilayers. Zhao and158

coworkers [33] studied two of them (the NN and the BN159

one) with a DFT method based on a tight-binding Hamil-160

tonian and demonstrated that the stacking sequence has161

an impact on the spatial localization of the top valence162

and bottom conduction states. On the other hand, in163

a previous work [38] we proved that interlayer coupling,164

and so the stacking, is crucial in the formation of the indi-165

rect band gap of the bulk phase. These elements clearly166

indicate that a complete investigation involving all the167

stackings is mandatory. As a consequence, we have per-168

formed first-principle simulations with density functional169

theory (DFT) to investigate the impact of the stacking170

sequence on the band gap. We scrutinized thirty bilay-171

ers: six {p, q} pairs per each stacking. All the pertinent172

calculation parameters can be found in Appendix F.173

As a first step, we investigated the structural stabil-174

FIG. 3. Bottom conduction and top valence of the five princi-
pal stackings in the (1, 2) supercell. Red vertical dashed lines
highlight the notable splittings at M and K reported also in
Table II.

ity of the five principal untwisted bilayers and identified175

two main groups (see Figure 11 in Appendix G). In the176

three most stable structures (BN(0,1), BNNB(0,1) and177

BB(0,1)) the layers are separated by about 3.1 Å. The178

two least stable bilayers (BBNN(0,1) and NN(0,1)) are179

around 20 meV per formula unit at higher energy with180

larger equilibrium interlayer distances (around 3.4 Å).181

Regarding the electronic properties, untwisted bilay-182

ers with a boron-on-boron conicidence (BBNN(0,1) and183

BB(0,1)) have an indirect band gap whereas the other184

structures have a direct gap. More details about the un-185

twisted bilayers can be found in Appendix G.186

We now discuss twisted bilayers. We focus on the (1, 2)187

configuration for all stackings because notable effects are188

more distinguishable. The DFT results are reported in189

Figure 3 inside the Brillouin zone of the supercell. It is190

important to recall that the preservation of the hexag-191

onal symmetry of the supercell implies the conservation192

of their order-3 rotation axes without which the equiva-193

lence between the K points of the Brillouin zone would194

be lost. Interestingly, our calculations reveal that the195

Structure
Top valence Bottom conduction

@M @K @M @K

BNNB(1,2) 83 - 25 -

BN(1,2) 61 - 104 -

NN(1,2) 148 20 178 -

BB(1,2) 38 - 232 110

BBNN(1,2) 163 20 273 110

TABLE II. The band splitting (meV) at M and K in the
top valence and bottom conduction of the (1,2) supercells.
The symbol ‘-’ indicates a band crossing. These features are
highlighted with red vertical lines in Figure 3.
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family (q, p) cell BNNB BN NN BB BBNN

δ = 1

(1,2) 4.325 (71) 4.318 (76) 4.296 (88) 4.299 ( 55) 4.284 (60)

(2,3) 4.221 (30) 4.217 (34) 4.211 (38) 4.203 ( 41) 4.202 (42)

(3,4) 4.153 (15) 4.153 (16) 4.151 (17) 4.145 ( 18) 4.146 (19)

(4,5) 4.102 ( 5) 4.103 ( 5) 4.101 ( 5) 4.098 ( 5) 4.099 ( 5)

δ = 2
(1,3) 4.284 (137) 4.284 (137) 4.284 (137) 4.284 (136) 4.284 (136)

(3,5) 4.240 ( 72) 4.241 ( 72) 4.240 ( 72) 4.240 ( 72) 4.241 ( 72)

TABLE III. The DFT energy (eV) of the indirect band gap at different twist angles and stacking sequences. In parenthesis:
energy difference between the direct and the indirect band gap in meV.

gap is always indirect irrespective of the stacking with196

values around 4.3 eV (see first row of Table III). By an-197

alyzing in details the electronic structure, we can distin-198

guish the stackings according to characteristics at the K199

and M points. In the valence region we observe that200

when N atoms are on top of each other (the NN and the201

BBNN stackings), a band crossing is avoided in the top202

valence at K while the splitting between the HOMO and203

HOMO-1 at M is the largest. On the conduction band,204

the splitting between the LUMO and the LUMO+1 at205

M is reduced along the sequence BBNN, BB, NN, BN206

and BNNB while the presence of B atoms on top of each207

other (BB and BBNN stackings) prevents a band cross-208

ing at K. All the features discussed here are highlighted209

with dashed vertical red lines in Figure 3 and reported210

in Table II. We expect these effects to be less important211

at extremal twist angles (i.e. close to 0◦ and 60◦) be-212

cause the immediate surroundings of each atom change213

progressively.214

Let us now discuss the evolution of the band gap as a215

function of the twist angle. In Table III and in Figure 4216

we summarize our DFT results on the indirect band gap217

and the difference between direct and indirect gap. First,218

we observe that the gapwidth gets smaller (higher) for219

smaller θ (θ′), demonstrating a trend opposite to what220

predicted by continuous models [32]. Typically, for θ221

varying from 21.79◦ to 7.34◦, the gap decreases by about222

5%. Secondly we observe that in each stacking the gap223

remains indirect at all angles. This finding contrasts with224

density-functional tight-binding results where direct gaps225

at all twist angles are obtained instead [33]. A more de-226

tailed analysis reported in Appendix H allows us to affirm227

that it is not an artifact coming from σ or nearly-free-228

electron states located at higher energies [15, 44–49]. We229

should stress that these results are reliable as long as one230

considers energy differences and trends, absolute gap en-231

ergies being systematically underestimated by DFT. In-232

deed, we expect quasiparticle corrections, included for in-233

stance via the GW approximation, to be almost identical234

form one system to the other and to have minor effect235

on the dispersion of s and p states [15, 31], as demon-236

strated by the successful use of the scissor operator in237

BN compounds [16, 38, 39].238

We can now pass to the investigation of the evolution239

of the full band structure as a function of the twist angle.240

In the main text we discuss two paradigmatic stackings,241

the BN and the NN and we report the corresponding242

twelve band structure plots in Figure 5. We refer the243

reader to the Appendix J for the other bandplots. We244

observe that conduction and valence bands get flatter at245

smaller θ (and larger θ′) as highlighted in Figure 5. This246

implies the progressive creation of localized valence and247

conduction states in agreement with what shown by Zhao248

and coworkers [33]. For example, in the BN stacking at249

θ =7.34◦, the HOMO and LUMO states are characterized250

by bandwidths around 0.09 eV and 0.16 eV, respectively.251

Flatter bands are not observed since this would demand252

much smaller angles which are inaccessible with our nu-253

merical resources. Because of the flattening of the bands,254

it is possible to tune the difference between indirect and255

direct gap through the twist angle, and so possibly to256

convert progressively the radiative decay pathway from a257

phonon-assisted emission to a direct recombination. This258

may have strong impact on the intensity of emitted light259

ind
ire

ct 
ga

p

di
re

ct
 g

ap

indirect gap

direct gap

single coincidence double coincidence

FIG. 4. Indirect gap (solid lines) and direct gap (dashed lines)
of the five stackings as a function of the twist angle (θ or θ′

depending on the stacking) within the δ = 1 family.
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(probability of recombination), its temperature depen-260

dence (through the coupling with phonons) and finally261

the life time of excitations.262

In addition we observe that {p, q} pairs can be grouped263

into families defined by the parameter δ = |p − q| that264

characterizes the interplay between crystalline structure265

(twist angle) and electronic structure (bands). In fact,266

the bands around the gap within the same family look267

similar but shrunk and flattened at small θ (or larger θ′).268

Once more, the case δ multiple of 3 shall be excluded.269

Consider the family δ = 1, corresponding to the first270

four plots from the left in the band plots of Figure 5.271

Here the valence bands present a maximum in K and are272

formed of two bands dispersing almost parabolically, up273

to M where one of the two deviates with a small bump.274

In conduction, two valleys are well discernible between K275

and Γ and around M , the latter forming the conduction276

band minimum. The last two plots from the left in the277

band plots of Figure 5 belong to the δ = 2 family. These278

bandplots look very different from those of the other fam-279

ily, even though the gap remains indirect with the top280

valence at K. As before, one can see common features281

within this family despite the band shrinking. The va-282

lence band has a characteristic double-dome shape (with283

a dome on top of another) and a maximum in K. In the284

conduction band, the two bottom bands almost coincide285

in the M−K path and present two minima close to or at286

Γ. We verified that the bottom conduction in the δ = 2287

family does fall in the Γ −M high symmetry line (see288

Appendix I).289

To conclude, we have demonstrated that in hBN bilay-290

ers there are five stackings that are invariant under rota-291

tions of 120◦ like the pristine hBN monolayers. We have292

listed the symmetry groups of these stackings, shown how293

to construct them and how to transform one into another294

and we have introduced a physically informative nomen-295

clature allowing to identify them unambiguously. We also296

have provided a precise definition of the twist angle (θ or297

θ′ depending on the stacking). All this contrasts with298

graphene bilayers, where only two stackings can be de-299

fined. Our nomenclature is completely general and can300

be applied to any homobilayer formed of hexagonal 2D301

materials (twisted as well as untwisted). Even though302

corrugation and domain relaxation have to be expected303

in experimental realization of these systems [30, 50, 51],304

these structural modifications will still be constrained by305

the stacking sequence. By performing DFT simulations,306

we have done a thorough study of the electronic struc-307

ture of hBN bilayers taking into account both its de-308

pendence on the stacking sequence and the twist angle.309

In the first case, we have traced a correlation between310

the atom-on-atom coincidences and some characteristics311

of the states which form the gap. In the second case,312

we have shown that the gapwidth is always indirect irre-313

spective of the twist angle and it decreases for decreasing314

θ or for increasing θ′, differently from what previously315

FIG. 5. Bottom conduction and top valence of the BN (top
panel) and NN (bottom panel) stackings at different twist
angles.

predicted on the basis of less sophisticated simulation316

schemes [32]. Finally we have identified the structural317

parameter δ = |p − q| which allows to classify bilayers318

into families with similar band structures. The stacking-319

and angle-dependent properties discussed in this letter320

have special importance in possible twistronic applica-321

tions. In fact these mechanisms are expected to have a322

strong impact on the optical properties of these bilayers323

and in particular on the direct manipulation of interlayer324

excitons which can be stabilized through the application325

of an external field.326
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APPENDICES336

A: Asymetric honeycomb supercells337

As presented in the main article, we choose the two338

primitive vectors of the boron nitride monolayer a1 and339

a2 forming an angle of 60◦ and define the three vectors340

separating the nitrogen and the boron sublattices like:341

τ1 = +a1/3 + a2/3 τ2 = τ1 − a1 τ3 = τ1 − a2

A boron atom is located at the origin of the honeycomb342

and nitrogen is located at τ1. A new periodic super-343

lattice is constructed with the new translational vectors344

A1 and A2 written on the basis {a1,a2} like345

Ai =
∑
j

Mijaj . (2)

In the bilayer system, the hexagonal supercell for the346

lower layer has been arbitrarily chosen as the one pro-347

duced by the matrix348

M(q,p) =

[
q p

−p p+ q

]
(3)

and the upper layer is developed either with349

M(p,q) =

[
p q

−q p+ q

]
(4)

or with350

M(−q,p+q) =

[
−q p+ q

−p− q p

]
. (5)

In all these cases, p and q are integers. The vertical351

mirror planes along the [1 1] and [1 0] directions of the352

supercell are lost only if353

p 6= 0, q 6= 0 and p 6= q

then, we call such supercell asymmetric. These are the354

supercells considered in this work because they lead to355

twisted bilayers.356

Lastly, the {p, q} integers define also the parameter
length, the surface Ω and the numer of atoms Nat of the
three supercells

|Ai| = a
√
p2 + q2 + pq (6)

Ω = Ω0

(
p2 + q2 + pq

)
(7)

Nat = 2
(
p2 + q2 + pq

)
(8)

where Ω0 = a2
√
3

2 is the surface, and a is the cell param-357

eter of the honeycomb primitive cell.358

As we mention in the main article, the origin of a
generic (k, s) supercell can be set either on an atom or

on the center of a hexagon of the underlying honeycomb
lattice. We want to analyze what happens at the direct-
space high-symmetry points (0 0), ( 1

3
1
3 ) and ( 2

3
2
3 ) of the

supercell where the axes of order-3 rotation symmetry
pass (cfr. below). These points are highlighted with red
dots in Figure 1 of the main article. Using (4) we write(

X

3

X

3

)
=
X

3
A1 +

X

3
A2 (9)

=
X

3
(k − s)a1 +

X

3
(k + 2s)a2 (10)

where the integer X = 1 or 2 selects the supercell high359

symmetry point. Let us introduce now the integer pa-360

rameter α defined as361

k − s = 3t+ α

with t ∈ Z, so only −1, 0 and 1 are meaningful values of
α. Using it in equation (10), we get(

X

3

X

3

)
=
X

3
(3t+ α)a1 +

X

3
(3t+ 3s+ α)a2 (11)

= Xta1 +X(t+ s)a2︸ ︷︷ ︸
=R

+
Xα

3
(a1 + a2) (12)

where R is a honeycomb lattice vector. Therefore, if α =362

−1 and X = 1, the site located in ( 1
3

1
3 ) of the supercell363

will coincide with the site located at (− 1
3 − 1

3 ) = ( 2
3

2
3 )364

of the primitive cell of the honeycomb lattice, and vice-365

versa if X = 2. But if α = +1, the site in ( 1
3

1
3 ) will366

coincide with the site in ( 1
3

1
3 ) of the primitive cell, and367

the same for X = 2. Actually, we demonstrate below368

in the Supplementary Materials that the case α = 0 is369

irrelevant.370

Lastly, it is easy to demonstrate that if a given super-371

cell (p, q) has a α = +1 parameter, then the supercells372

(q, p) and (−q, p + q) have a α = −1 parameter (and373

inversely).374

B: Stacking geometries375

As we mentioned in the main article, our construction376

of the moiré geometries requires two integers {p, q} and377

follows the rules: (i) the lower layer is always defined by378

the (q, p)B supercell (origin at boron) and (ii) the upper379

layer is either defined by the (p, q)X cell or the (−q, p +380

q)X cell, where X labels the origin of the supercell (B =381

boron, N = nitrogen, H = hexagon center). As shown in382

the previous section, the (p, q)-on-(q, p) constructions will383

always be made of supercells with opposite α parameters,384

whereas the (−q, p+q)-on-(q, p) constructions will always385

result from supercells with the same α. The Table IV lists386

the kind of sublattice (boron, nitrogen atom, or hexagon387

center) that occurs at the high symmetry points for both388

values of α of the lower layer (q, p)B.389
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supercell α (0 0) ( 1
3

1
3
) ( 2

3
2
3
) α (0 0) ( 1

3
1
3
) ( 2

3
2
3
) name of the bilayer obtained

(q, p)B -1 B H N +1 B N H by stacking on the (q, p)B

(p, q)B B N H B H N BB(q, p)

(p, q)N +1 N H B -1 N B H BNNB(q, p)

(p, q)H H B N H N B NN(q, p)

(−q, p+ q)B B H N B N H BBNN(q, p)

(−q, p+ q)N -1 N B H +1 N H B BN(q, p)

(−q, p+ q)H H N B H B N BN(q, p)

TABLE IV. Determination of the kind of the sublattices located at the high symmetry points used in our construction of
bilayers for a generic {p, q} pair, and the name of the resulting bilayer.

For any choice of p and q, the six possible stackings390

are:391

1. The (p, q)B-on-(q, p)B is a single coincidence struc-392

ture, with B on B at the origin, N on hexagon at393

one of the two high-symmetry points and a hexagon394

on N at the other one. There is no hexagon-395

on-hexagon vertical alignment for the single co-396

incidence structures. We call this structure the397

BB(q, p) bilayer.398

2. The (p, q)N-on-(q, p)B is a double coincidence struc-399

ture, with N on B at the origin, B on N at one400

of the two high-symmetry points and an hexagon-401

on-hexagon at the other one. We call it the402

BNNB(q, p) bilayer.403

3. The (p, q)H-on-(q, p)B is again a single coincidence404

structure, with a hexagon on B at the origin, B on405

hexagon at one of the two high-symmetry points406

and an N on N at the other one. We call it the407

NN(q, p) bilayer.408

4. The (−q, p+ q)B-on-(q, p)B is another double coin-409

cidence structure, with B on B at the origin, N on410

N at one of the two high-symmetry points and an411

hexagon-on-hexagon at the other one. We call it412

the BBNN(q, p) bilayer.413

5. The (−q, p + q)N-on-(q, p)B is a single coincidence414

structure, with N on B at the origin, N-on-hexagon415

at one of the two high-symmetry points and an416

B-on-hexagon at the other one. We call it the417

BN(q, p) bilayer.418

6. The (−q, p + q)H-on-(q, p)B is a single coincidence419

structure, with a hexagon on B at the origin, N on420

hexagon at one of the two high-symmetry points421

and an B on N at the other one. It is the same422

geometry than the BN(q, p) above.423

Finally, since the stacking 6 leads actually to the same424

structure as stacking 5, for each {p, q} pair of integer425

we construct five and only five different structures that426

preserve the atom-on-atom vertical alignments.427

C: Moiré stacking angles428

The easiest way to derive the twist angle between two
bilayers is by representing the vectors of the honeycomb
lattice with discrete complex numbers. Here, we adopt
the notation [41, 43] Z(m,n) = mz1 + nz2 with z1 = 1

and z2 = 1
2 +

√
3
2 i. The angles are just the arguments

calculated like

exp(iθ) =
Z(q, p)

Z(p, q)
(13)

exp(iθ′) =
Z(−q, p+ q)

Z(q, p)
(14)

and depend only on the {p, q} pair of integers. This leads
to

tan θ{p,q} =
√

3
p2 − q2

p2 + q2 + 4pq
(15)

tan θ′{p,q} =
√

3
q2 + 2pq

2p2 − q2 + 2pq
(16)

which are given in the main article. Since the p and q429

indices can take any integer value, the angles are always430

defined modulo 60◦. The constructed supercells and the431

resulting angles θ and θ′ are drawn in Figure 6.a.432

So far, the vectors defined by (2) have been developed
on the {a1,a2} honeycomb lattice basis, but we could
have chosen either to develop them on the {a2−a1,−a1}
basis and then work with the {−p − q, p} pair, or on
the {−a2,a1 − a2} basis, and work with the {q,−p− q}
pair. So, definitions (15) and (16) are not unique and the
angles could have also been defined as

tan θ{−p−q,p} =
√

3
q2 + 2pq

−2p2 + q2 − 2pq
(17)

tan θ′{−p−q,p} =
√

3
−p2 − 2pq

−p2 + 2q2 + 2pq
(18)

or

tan θ{q,−p−q} =
√

3
p2 + 2pq

−p2 + 2q2 + 2pq
(19)

tan θ′{q,−p−q} =
√

3
−p2 + q2

p2 + q2 + 4pq
(20)
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FIG. 6. a) The angles θ and θ′, based on the (q, p) geometries

(that are used in the main article). b) The angles θ̃ and θ̃′

corresponding to the mirror images of the previous ones. They
are based on the (p, q) geometries.

which are also valid formulations. It is trivial to show433

that for any θ of equations (15), (17), or (19) and for any434

θ′ of equations (16), (18), or (20), the following equality435

θ′ = −θ +
nπ

3

holds for an integer n ∈ Z. In order to avoid confu-436

sion and give a non ambiguous definitions of our moiré437

structures, we decide arbitrarily to adopt definitions (15)438

and (16), and to impose439

p > q > 0.

In this situation, the vectors pa1 + qa2 and qa1 + pa2440

lie in the {a1,a2} angular sector, and the vector −qa1 +441

(p + q)a2 lie in the {a2,a2 − a1} angular sector. As a442

consequence443

θ, θ′ ∈
]
0,
π

3

[
and θ + θ′ =

π

3

implying that BB(q, p), BN(q, p) et NN(q, p) have an an-444

gle +θ > 0 and BBNN(q, p), BNNB(q, p) have an angle445

−θ′ < 0. These five stackings are chiral structures, that446

we decide to name “right” moiré bilayers.447

To construct the enantiomers of the “right” moiré bi-
layers above, we have to transform the vectors A1 defin-
ing the hexagonal supercells (2). They are mirrored re-
spect the [1 1] crystallographic direction of the primitive
honeycomb lattice cell, as shown in the Figure 6.b. The
lower layer of a “left” moiré is now carried by the super-
cell M(p,q) and the upper layer is developed either on the
M(q,p) or the M(p+q,−q) one, still within the constraint
p > q > 0. The corresponding twist angles are now

exp(iθ̃) =
Z(p, q)

Z(q, p)
(21)

exp(iθ̃′) =
Z(p+ q,−q)
Z(p, q)

(22)

leading to θ̃ = −θ and θ̃′ = −θ′ then448

θ̃, θ̃′ ∈
]
−π

3
, 0
[

and θ̃ + θ̃′ = −π
3
.

As a result, the “left” BB(p, q), BN(p, q) and NN(p, q)449

have an angle −θ < 0, and the “left” BBNN(p, q) and450

BNNB(p, q) have an angle +θ′ > 0.451

In absence of any magnetic field, the “right” and “left”452

corresponding stackings exhibit exactly the same elec-453

tronic properties. That is why we restricted our study to454

the “right” ones.455

D: Redundancy of the case (p− q = 3t)456

The case α = 0 corresponds to moiré (p, q) supercells457

where p− q = 3t and t is an integer. So458 [
q + 3t q

−q 2q + 3t

]
= (q + 3t, q) supercell. (23)

As we sketched in figure 7, starting from the vectors
A1 and A2, we can define new shorter vectors

v1 =
2

3
A1 −

1

3
A2 = (q + 2t)a1 − ta2 (24)

v2 =
1

3
A1 +

1

3
A2 = ta1 + (q + t)a2 (25)

v3 = −1

3
A1 +

2

3
A2 = (−q − t)a1 + (q + 2t)a2 (26)

and since q and t are integers, the vectors vi are honey-459

comb bravais lattice vectors. In this situation, the super-460

cell defined by the indices of the vector v3 (for example)461

is462 [
−q − t q + 2t

−q − 2t t

]
= (−q − t, q + 2t) supercell (27)

which is also an asymetric hexagonal supercell, three463

times smaller than the original (q + 3t, q) one.464

Moreover, the twist angles (15) calculated with p and465

q indices (when p = q + 3t) are466

tan θ{q+3t,q} =
√

3
3t2 + 2qt

2q2 + 3t2 + 6qt

tan θ′{q+3t,q} =
√

3
q2 + 2qt

q2 + 6t2 + 6qt

and it is staightforward to verify than these two tangents467

are exactly the same if we calculate them with the −q− t468

and q + 2t indices.469

To summarize, (i) the {q+3t, q} set leads to non prim-470

itive moiré supercells, and (ii) it is always possible to use471

the {−q−t, q+2t} pair which gives the same twist angles472

but in three times smaller supercells. As an illustration473

of it, in Figure 8 we have drawn the example of the con-474

struction of the (−1, 5)-on-(1, 4) moiré and its reduction475

to the (1, 2)-on-(2, 1) “left” moiré bilayer.476
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v1 =
2
3
A1 − 1

3
A2

A1 = p a1 + q a1

A2 = −q a1 + (p + q)a1

v2 =
1
3
A1 +

1
3
A2

v3 = −1
3
A1 +

2
3
A2

FIG. 7. The upper layer asymmetric supercell (p, q) with
p = q+3t. It is always possible to construct a smaller supercell
since v1, v2 and v3 are vectors of the honeycomb lattice. In
other words, the twisted bilayer geometries constructed from
the (q, q + 3t) supercell are not primitive cells of the moiré.

E: Layer groups of moiré structures477

In Figure 9, we report graphical representations of the478

symmetries of the layer group used in this Appendix. The479

layer group of a graphene monolayer asymmetric super-480

cell is the p6/m, neglecting translations occurring inside481

the defined cell. For a boron nitride (or a transition metal482

dichalcogenide) supercell, the layer group is p6 [52]. Both483

groups contain order-3 or order-6 rotations axis along z,484

located at the high symmetry points of the cell: (0 0),485 (
1
3

1
3

)
and

(
2
3

2
3

)
. When stacking two supercells like de-486

scribed in the previous sections, these axes are coinci-487

dent, and the rotations are always preserved. Thus the488

2D crystal systems remain hexagonal.489

By looking at Table IV and by replacing all occurrences490

of B and N by C, it is easy to derive all the stackings of491

graphene bilayers, however the result is highly redundant.492

Actually, by taking the origin of all the supercells only493

on the site corresponding to B atoms in hBN, it is possi-494

ble to sort out identical geometries from the beginning.495

In this case, the (−q, p+ q)-on-(q, p) structure geometry496

always shows one “hexagon-on-hexagon” vertical align-497

ment with an order-6 rotation axis, and two atom-on-498

atom vertical alignments with order-3 rotation axes (dou-499

ble sublattice coincidence). The resulting layer group500

is the hexagonal p622, that also contains many in-plane501

order-2 rotations, oriented along [1 0] and [1 1] crystallo-502

graphic directions as well as many 21 screw axes. Note503

that to comply with the definitions of layer group as de-504

fined in Figure 9, the supercell must have the “hexagon-505

on-hexagon” axis is located at the origin. This means506

that supercells constructed as we have done in our work507

must be translated accordingly. Differently, the case of508

(p, q)-on-(q, p) structure exhibits two “hexagon-on-atom”509

alignments and one “atom-on-atom” alignment (single510

sublattice coincidence) in the points where order-3 rota-511

tion axes pass. If the structure is constructed like pro-512

posed above in this Supplementary Material, this “atom-513

on-atom” coincidence is correctly located at the origin. It514

is worth noticing that there are in-plane order-2 rotations515

axes, oriented along the [1 0] crystallographic directions,516

passing through the origin. The symmetry group is p321517

for this case.518

Let now analyze the symmetry of the hBN moiré bi-519

layers. As explained in the previous sections, the three520

stackings BB(q, p), NN(q, p), and BN(q, p) correspond ge-521

ometrically to the graphene bilayer with single sublattice522

coincidence. Note that, as previously, the NN stacking523

must be translated in such a way that the “atom-on-524

atom” vertical coincidence is placed at the origin, while525

this is not needed for the other two stackings that result526

constructed consistently. The BB and the NN stacking527

geometries keep the in-plane order-2 rotations axes along528

[1 0]. Therefore their layer group is also the p321. How-529

ever, in the BN stacking case, the coincident atoms are530

now chemically different and the order-2 rotations are531

lost. The group is the simplest hexagonal p3.532

The last two hBN moiré stackings are the BBNN(q, p)533

and the BNNB(q, p) which correspond geometrically to534

the graphene double sublattice coincidence moiré. Again,535

we translate the structures to locate the “hexagon-on-536

hexagon” vertical axis at the origin. A careful obser-537

vation of the BNNB(q, p) moiré geometry allows us to538

notice that the in-plane order-2 rotation axes along [1 0]539

and passing through the origin are conserved. The layer540

group of the BNNB moiré stacking is then again the541

p321. Differently, in the BBNN(q, p) structure, the in-542

plane order-2 rotation axes that are preserved are ori-543

ented along the [1 1] crystallographic directions. The544

layer group of symmetry of BBNN stacking is then the545

p312.546

In this work, we have built structures paying attention547

to preserve the vertical atomic coincidence, and conse-548

quently the order-3 rotation axes. However, we can ask549

ourselves what happens if we stack a (p, q) or a (−q, p+q)550

supercell on a (q, p) cell with a totally random translation551

between the layers. In this scenario, all the point sym-552

metry operations are lost, and only the translations are553

preserved by construction. This implies that, although554

the supercell vectors have the same length and span an555

angle of 60◦, the crystal system is no longer hexagonal.556

It is oblique and the layer group is the simplest p1. In557

the reciprocal plane, only the +k/− k symmetry is con-558

served, and consequently the high-symmetry points K are559

no longer equivalent.560

F: Computational details561

Calculations have been done with the free simulation562

packages Quantum ESPRESSO [53, 54] (band structure563
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a1

a2

(1, 4)

(−1, 5)
(1, 4)

(−1, 5)

(1, 2)

(2, 1)

a) d)c)b)

θ̃

θ′

FIG. 8. a) Construction of the moiré bilayer based on the (1, 4) supercell for the lower layer and the (−1, 5) for the upper
layer. b) The lower supercell can be tessellated by the (2, 1) smaller supercell. c) The upper one is also a tessellation of the

(1, 2) supercell. d) The angle of the “left” small moiré is the same as that of the large non-primitive moiré θ̃{2,1} = −θ′{1,4}.

p3 p321

p622

mz

p6

mz

p6/m

p312

Imp. rotation 6

Rotation 6/m

Rotation 3

Rotation 2

Rotation 2/m

Screw axis 21

Rotation 2

Rotation 6

Key:

FIG. 9. The graphene and hBN moiré bilayers belong to one of these layer groups (adapted from [52]). The trivial group p1
is not shown.

of twisted bilayers) and ABINIT [55, 56] (stability of564

twisted and untwisted bilayers).565

In both cases norm-conserving pseudopotentials have566

been used. We checked that switching from one software567

to the other was not introducing major errors in the main568

characteristics discussed in the paper. In both groups of569

calculations, the cutoff energy was 30 Ha and we sampled570

the Brillouin zone with a Monkorst-Pack grid of 5× 5×571

1 k-points in all supercells (9 × 9 × 1 in the untwisted572

cases). The equilibrium interlayer distance has been fixed573

at 3.22 Å in all bilayers as detailed below. The in-plane574

cell parameter was a = 2.23 Å and no in-plane relaxation575

has been done. A cell height L =15 Å has been used in576

all calculations unless specified differently. This value has577

been fixed by paying attention to the alignment of the σ578

and π conduction bands. In fact, as already pointed out579

by several authors [15, 44–49] the bottom conduction in580

Γ is composed of nearly-free-electron (NFE) states that581

extend for several Ångströms above the layer and thus582

converge very slowly with the amount of vacuum (see583

the dedicated section of the Supplemental Material).584

To fix the interlayer distance, we calculated the total585

energy per unit formula E(h) at different input values of586

the interlayer distance h. Results are reported in Fig-587

ure 10. We took the BB(1,2) and the BB(2,3) bilayers588

as reference structures. For these bilayers, we sampled h589

on a fine grid. Both bilayers have the energy minimum590

at h = 3.22 Å, with a negligible energy difference (∼ 0.1591

meV per formula unit). Then we computed E(h) for the592

BN(1,2), NN(1,2), BNNB(1,2) and BBNN(1,2) bilayers593

on a coarser grid and found that the points fell basically594

on top of the BB(1,2) curve. Following this analysis, we595
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BB(1,2)

BB(2,3)

BN(1,2)
NN(1,2)
BNNB(1,2)
BBNN(1,2)

equilibrium
interlayer 
distance

FIG. 10. Total energy calculation of the five stackings in
the (1,2) supercell as a function of the interlayer distance
h. The BB(1,2) is the full black line with black bullets and
the BB(2,3) is the dotted line with empty circles. The other
(1,2) stackings are superimposed to the BB(1,2) curve almost
exactly and are reported with different colors and symbols.

deduced that we can safely fix the equilibrium distance596

at h = 3.22 Å irrespective of the stacking or the twist597

angle. We note however that this value may be inaccu-598

rate for very small twist angles that are not investigated599

in this work.600

G: Untwisted bilayers601

It is possible to extend the nomenclature we intro-602

duced in the main text to untwisted bilayers. In this603

case, only the stacking label is meaningful, the (q, p) pair604

being trivially 1 and 0. In Figure 11 we report an image605

System h EBN Eind Edir

BBNN(0,1) 3.425 8.7 3.957 4.037

NN(0,1) 3.375 6.8 4.345 4.037

BB(2,3) 3.220 0.1 4.217 4.251

BB(1,2) 3.220 0 4.318 4.394

BB(0,1) 3.150 -8.3 3.950 4.436

BNNB(0,1) 3.125 -11.1 4.649 4.398

BN(0,1) 3.100 -12.8 4.463 4.438

TABLE V. Equilibrium interlayer distance h (Å), total energy
per formula unit EBN with respect to the BB(1,2) bilayer (in
meV) , smallest indirect gap Eind (eV) and energy of the
smallest direct transition Edir (eV) (direct gap).

of the structure of the five untwisted stackings and their606

stability curve E(h) together with that of the BB(1,2)607

bilayer. We observe that the three most stable untwisted608

structures, i.e. the BN(0,1), the BNNB(0,1) and the609

BB(0,1) have a smaller equilibrium distance, whereas for610

the two most unstable, the NN(0,1) and the BBNN(0,1),611

the equilibrium h is larger, so that the twisted bilayers612

fall somewhat between the two groups. This makes sense613

if one reckons that inside the same twisted bilayer one614

can find domains with a local stacking intermediate to615

the five untwisted ones.616

In experiments it is observed that, far from certain an-617

gles, it is pretty easy to move or twist a BN flake on618

top of another, and this is consistent with the negligible619

energy differences we calculated between different stack-620

ings at fixed angle and between the two reference calcu-621

lations with the same stacking sequence. However when622

the twist angle gets close to some specific values, the flake623

gets stuck and no further twist is possible. In fact, the624

large energy differences with the untwisted configurations625

(order of 10 meV per unit formula) suggest that when ap-626

proaching small twist angles the bilayer falls into one of627

the energetically more favorable configurations, possibly628

undergoing large in-plane deformation to maximize the629

size of the untwisted domains. [30, 50, 51, 57].630

The equilibrium distances, the total energy per BN631

pair with respect to the BB(1,2) bilayer and the values632

of the DFT direct (at K) and indirect band gaps (be-633

tween valleys close to K and the point M) are reported634

in Table V.635

H: Nearly-free-electron states636

As already pointed out by Blase and coworkers in the637

case of bulk hBN [15], the conduction states at Γ converge638

very slowly with the amount of vacuum because they639

correspond to some unoccupied N-centered nearly-free-640

electron (NFE) state extending for several Ångströms641

above the BN layer [15, 44–49]. These NFE states have642

a neat 3s orbital component, as shown in the fat-band643

plot reported in Figure 12.644

Their alignment with respect to the π bands is a deli-645

cate issue on the purpose of this article because the en-646

ergy difference between the bottom of the unoccupied σ647

band and the bottom of the unoccupied π band are very648

close in energy and they may compete in determining the649

indirect nature of the gap. Therefore, it is worth paying650

much attention to their convergence. To this aim, we651

made a series of two test calculations in a BN(1,2) bi-652

layer. First we tested the evolution of these states as a653

function of the height of the simulation cell at fixed inter-654

layer distance (the three panels of Figure 13a). This test655

shows that by reducing the cell height, the NFE states656

are pushed toward higher energies because of fictitious657

cell-to-cell interactions. Replicas of the system must be658



12

BBNN(0,1)

N
B

le
ss

 s
ta

bl
e

m
or

e 
st

ab
le BB(1,2)

BB(0,1)
BNNB(0,1)

BN(0,1)

NN(0,1)

BBNN(0,1)

NN(0,1)

BN(0,1) BB(0,1)BNNB(0,1)

FIG. 11. The five hexagonal stackings in untwisted bilayers and their stability curves with respect to the BB(1,2) twisted
bilayer.

separated of around L ∼ 20 Å for the band dispersion659

and alignment to be converged. Note that we decided on660

purpose to carry out our simulations with a slightly lower661

value (15 Å) because the fact of pushing the NFE states662

to higher energies is not detrimental to our investigation663

and allows us to reduce the computational workload.664

Then we tested the evolution of the NFE states as665

a function of the interlayer distance leaving a constant666

amount of vacuum (L − h) of 40 Å, which is largely667

enough to prevent cell-to-cell interactions. In the pan-668

els of Figure 13.b, we report three calculations of the669

BN(1,2) bilayer with a varying interlayer distance (20,670

10 and 7.5 Å respectively in panels b1, b2 and b3). In671

the b1 panel, we also plot in black the conduction band672

of the isolated monolayer in the (1,2) supercell and we673

verify that it coincides with the h = 20 Å bilayer cal-674

culation. This test demonstrates that moving two layers675

closer to each other induces a bonding/antibonding split-676

ting of the NFE states which increases as the layers get677

closer.678

Since there is no difference between the interlayer dis-679

s
pz

L=30 Å

h=3.22 Å

FIG. 12. Orbital momentum component of the conduction
bands of the BN(1,2) bilayer (fat bands).

a2
L=30 Å
h=3.22 Å

L=20 Å
h=3.22 Å

L=15 Å
h=3.22 Åa1 a3

a: Varying the cell height L

L=60 Å
h=20 Åb1

bilayer
monolayer

b: Varying the interlayer distance h (fix L-h)

L=50 Å
h=10 Åb2 b3

L=47.5 Å
h=7.5 Å

FIG. 13. The evolution of the NFE states as a function of the
simulation parameters in the BN(1,2) bilayer. a: evolution
as a function of the cell height L at fixed interlayer dsitance
(h = 3.22 Å). L = 30, 20 and 15 Å in panels a1, a2 and
a3 respectively. b: evolution as a function of the interlayer
dsitance h at fixed vacuum (L − h = 40 Å). h = 20, 10 and
7.5 Å in panels b1, b2 and b3 respectively. In panel b1,
the band structure of the BN(1,2) bilayer (flashy green) is
compared with that of the isolated monolayer (black).

tance separating two layers inside the cell and the space680

separating replicas of the simulated system, one should681

pay attention that these two effects (pushing to higher682

energies and band splitting) happen at the same time.683
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FIG. 14. Energy surface of the lowest empty band (top pan-
els) and the highest occupied band (bottom panels) of the
BN(1,3) and the BN(3,5) bilayers from left to right. The
top valence and the bottom conduction states are highlighted
with red hexagons.

I: Band gap of the δ = 2 family684

In the main text we give the values of the gapwidth of685

the five stackings of the (1,3) and (3,5) supercells. The686

values have been extracted from the corresponding band687

plots, so they refer to gapwidths calculated along spe-688

cific high symmetry paths in the Brillouin zone. In this689

section we report a more complete mapping of the band690

structure of the top valence and bottom conduction of691

the BN stacking, chosen as representative of the bilay-692

ers. In Figure 14 we report the energy surface of the693

highest occupied states and the lowest unoccupied states694

in the BN(1,3) and BN(3,5) bilayers. With this analysis695

we demonstrate that the values reported in the main text696

are meaningful because the bottom of the conduction and697

the top of the valence fall indeed on the high symmetry698

lines.699

For this analysis we acknowledge F. Paleari who kindly700

provided us with a dedicated analysis post-processing701

tool.702

J: Band structure of the other stackings703

Here below we report the band plots missing in the704

main text corresponding to stackings BBNN, BB and705

BNNB from top to bottom.706
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