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Abstract

We demonstrate the emergence of a non-equilibrium superradiant phase in the
dissipative Rabi-Dicke model. This phase is characterized by a photonic steady
state that oscillates with a frequency close to the cavity frequency, in contrast
to the constant photonic steady state of the equilibrium superradiant phase in
the Dicke model. We relate this superradiant phase to the population inversion
of Floquet states by introducing a Schwinger representation of the driven two-
level systems in the cavity. This inversion is depleted near Floquet energies
that are resonant with the cavity frequency to sustain a coherent light-field.
In particular, our model applies to solids within a two-band approximation,
in which the electrons act as Schwinger fermions. We propose to use this
Floquet-assisted superradiant phase to obtain controllable optical gain for a
laser-like operation.
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1 Introduction

Driven dissipative quantum systems display a plethora of intriguing phenomena, includ-
ing unconventional coherent light sources and amplification mechanisms. Phenomena such
as lasing without inversion [1–4], lasing with driven quantum dots [5, 6] and population
inversion in strongly driven two-level systems [7, 8], have been proposed or implemented
to extend the conventional lasing mechanism. These examples are based on the non-
equilibrium dynamics of the dissipative Rabi model, which presents a minimal example of
driven quantum systems. Similarly, driven Dicke models [9] exhibit rich non-equilibrium
dynamics of superradiant phase transitions and unconventional lasing states [10–19]. Driv-
ing the coupling in cavity-BEC setups, which can be mapped onto the dissipative Dicke
model, hosts several non-equilibrium phases [20–25]. Incoherently pumped Strontium
transitions have been used to explore the crossover regime of superradiant lasing [26, 27].
Nitrogen vacancy (NV) center spins in diamond present a similar platform that has been
used to create superradiant lasers [28–30]. In many-body systems, Floquet engineering
aims to tune collective properties, such as band topology [31–35], with coherent driv-
ing [36–38]. It has been shown that population inversion of Floquet states can occur in
driven systems [39–41]. Floquet theory itself presents a method to describe the effec-
tive dressed states in driven systems and their population, and is applicable to driven
dissipative cavity systems [42,43], in particular.

We present the emergence of a Floquet-assisted superradiant phase (FSP) in the dis-
sipative Dicke model under the influence of circularly polarized driving of the two-level
systems, reminiscent of the Rabi model. This superradiant phase is distinct from other
recently explored dynamical phases and lasing mechanisms in the Dicke model such as
the dynamical phases that emerge under parametric driving of the coupling [20–25], NV
room temperature superradiant lasers [28–30] and the Floquet maser realized using mag-
netic feedback circuits [44]. The FSP presents a mechanism for light-amplification and
coherent light sources in two-level systems that is induced by the driven coherences be-
tween effective dressed states and is thus not captured by semi-classical rate equations in
which population inversion is impossible. We find that this mechanism originates from
the effective population inversion of Floquet states that is depleted and transferred into
the cavity if the cavity frequency is close to resonance with the Floquet energy differ-
ence. This photonic coherent state saturates quickly, leading to a steady state of constant
magnitude with respect to the coupling strength. We analytically determine the regime
of driving field strengths in which the system displays Floquet state population inversion
and is therefore susceptible to the FSP. We further present an analytical prediction of the
parameters at which the FSP first emerges in the limit of small coupling strengths.

This work demonstrates that despite the fact that Floquet states are effective descrip-
tions with energies that are only defined modulo multiples of a given driving frequency,
their population inversion can induce and sustain a coherent photonic state in a close-to-
resonant cavity. The connection between this light-amplification mechanism in two-level
systems and effective populations of Floquet states translates into solid-state systems that
can be described with two bands, e.g. monolayer graphene. This suggests the possibility
of coherent Floquet engineered light-amplification in solids, where the dispersion relation
leads to a modification of our model in which the two-level systems are no longer equal
and their collective coupling to the cavity becomes more intricate. Such a system would
still be susceptible to the mechanisms that underly the FSP which we describe here.

This work is structured as follows. In section 2, we describe the Rabi-Dicke model
and its dissipative mean-field description. In section 3, we present numerical results for
the phase diagram of the photonic steady state which shows the FSP. We also show the
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photonic steady state of the FSP in frequency space as a function of the driving field
strength. Further, we present analytical calculations of the Dicke superradiant transition
in this model. In section 4, we extend our results to a Schwinger representation which
we use to calculate two-point correlation functions and Floquet state populations. In
this representation we demonstrate the population inversion of the Floquet states and its
depletion in the FSP. We then present an approximation of the Floquet energies of the
two-level system in the FSP from an approximate bichromatic Floquet description. In
section 5, we present analytical bounds for the driving field strengths at which population
inversion occurs. Additionally, we demonstrate an accurate description of the onset at
which the FSP first occurs for weak coupling to the cavity. In section 6, we conclude and
discuss our findings.

2 Dissipative Rabi-Dicke Model

We consider a system of N identical two-level systems with level-spacing ωz coupled to a
single lossy cavity mode with frequency ωc, as schematically depicted in Fig. 1. We em-
phasize that the dynamical superradiant state can be realized on any set of well-defined
two-level systems, including solids in a two-band approximation, see e.g. [45]. The indi-
vidual two-level systems experience Rabi-like driving with frequency ωd and effective field
strength Ed. The Hamiltonian of this Rabi-Dicke model is

1

h̄
H =

N∑
j=1

[
ωz
2
σjz +

Ed

ωd
(e−iωdtσj+ + eiωdtσj−)] + ωca

†a+
λ√
N

N∑
j=1

(a+ a†)σjx, (1)

where λ is the coupling strength and σjx,y,z are the Pauli-matrices of the jth two-level
system. It is σ± = (σx ± iσy)/2. a(†) is the photon annihilation (creation) operator. This
Hamiltonian, that we use as the basis for our analysis, derives from an underlying model
such as

1

h̄
H0 =

ωz
2
σz +

ωz
2h̄ωd

~E~d(e−iωdtσ+ + eiωdtσ−). (2)

Here ~E is the driving field and ~d is the dipole moment of the transition. Our effective
driving field strength relates to this case as Ed = 1

2ωz
~E~dh̄−1, where 2Edω

−1
d is the Rabi

frequency. As a second model that motivates the Hamiltonian H, we present the model

1

h̄
Hg = vF (kx +

eE

h̄ωd
cos(ωdt))σx + vF (ky +

eE

h̄ωd
sin(ωdt))σy (3)

that we used in the context of light-driven graphene [41,45]. Here vF = c/300 is the Fermi
velocity with the speed of light c. e is the elementary charge, E is the driving field strength
and kx,y are the momentum components. Our effective driving field strength relates to
this case as Ed = evFEh̄

−1. In the following we take h̄ = 1.
We use a mean-field approximation of the photon dynamics via the coherent state

ansatz α = αr + iαi = 〈a〉, with the system separating into the two-level subsystem A and
the cavity subsystem C resulting in the approximate Hamiltonian H =

∑
j H

j
A +HC, with

Hj
A =

ωz
2
σjz +

Ed

ωd
(e−iωdtσj+ + eiωdtσj−) +

λ 〈a+ a†〉√
N

σjx (4)

HC = ωca
†a+ λ

√
N 〈σx〉 (a+ a†). (5)

We include a cavity loss rate κ, such that the equation of motion of the photon mode is

α̇ = −(iωc + κ)α− iλ
√
N 〈σx〉 . (6)
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The Lindblad-von Neumann master equation of the two-level system is

ρ̇ = i[ρ,
ωz
2
σz +

Ed

ωd
(e−iωdtσ+ + eiωdtσ−) +

2λαr√
N
σx] +

∑
l∈{+,−,z}

γl[LlρL
†
l −

1

2
{L†lLl, ρ}], (7)

where we omit the superscript j, since the two-level systems are all identical, in this
approximation. We describe the dissipation of the two-level system in its instantaneous
eigenbasis, which has been shown to accurately describe two-band solids [45]. In particular,
the Lindblad operators are L+ = V σ+V

†, L− = V σ−V
† and Lz = V σzV

†, where V is the
unitary transformation into the instantaneous eigenbasis of HA(t) = εA(t)V σzV

†. εA(t) is
the instantaneous eigenenergy of the Hamiltonian HA(t). γ± and γz are the coefficients of
spontaneous decay and dephasing, respectively. The equation of motion of the two-level
system then takes the form (see App. A)

ρ̇ = i[ρ,HA(t)]− γ1(ρ− 1
2

)− γ2

2
HA(t)ε−1

A (t)− γ3

2
Tr(ρHA(t))HA(t)ε−2

A (t) (8)

with

γ1 = (γ− + γ+)/2 + 2γz γ2 = γ− − γ+ γ3 = (γ− + γ+)/2− 2γz. (9)

Throughout this work we use γ− + γ+ = ωd
100π , γ+ = γ−e

− 2εA
kBT ≈ 0, γz = ωd

50π and κ = ωc
100 .

Due to these small values of the decay and dephasing coefficients, the Floquet states are
well-resolved in frequency space. The cavity loss rate κ is very small compared to ωc which
constitutes the ’good cavity’ regime. We find that the FSP depends on dissipation and is
in particular sensitive to the cavity loss rate. However, the scaling behavior with respect
to dissipation is not the focus of this work. Rather, we point out the existence of a novel
superradiant phase, that emerges in the presence of optical driving. For this purpose we
choose a dissipative model. We note that the Lindblad master equation applied to strongly
driven two-level systems with weak dissipation has been found to show some deviations
from more accurate methods [46]. We understand these deviations to be small enough to
not affect the central results of this paper. The specific choice of the dissipative model
in the instantaneous eigenbasis is motivated by the natural dissipative environment of
electrons in solids [45]. The two-level systems that we consider here can be realized as
two electron states, with one electron occupying one or the other. As we describe below,
these two states can be embedded in a four-level system that includes both states to be
occupied or empty, within a Schwinger construction. While this is the natural Hilbert
space for an electronic realization, we emphasize that the results we obtain here can be
generated from the Rabi-Dicke model, i.e. Eq. 1.

3 Floquet-Assisted Superradiant Phase

We determine the steady state regimes of the system. For that purpose, we solve the
equations of motion Eqs. 6 and 7 and find the photonic state α(t), which serves as the
order parameter of superradiant phases. In Fig. 2 (a), we show the magnitude of α as a
function of the driving field strength Ed and the coupling strength λ, for ωz = ωd/2 and
ωc = ωd/4, as an example. We note that no specific ratio between these frequencies is
required. We find two phases of non-zero |α|. The phase for small driving field strengths
Ed is related to the Dicke superradiant phase and approaches it for Ed → 0, which is an
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Figure 1: An illustration of the dissipative Rabi-Dicke model (a) and a depiction
of its Hamiltonian as in Eq. 1 (b). A cavity (red) contains a set of identical
two-level systems (blue) which experience circularly polarized Rabi-like driving
(purple). γ± and γz denote the coefficients of dissipative processes in the two-
level systems, i.e. spontaneous decay and dephasing. κ is the loss rate of the
cavity, which determines the coherent output of the cavity.

equilibrium phenomenon. In this limit, Eq. 1 recovers the dissipative Dicke-model. To
capture this state, we write the equilibrium state of the static two-level system as

ρ =
1

2
(1− γ− − γ+

γ− + γ+

HA

εA
), (10)

which solves Eq. 8. We find the corresponding photonic steady state from Eq. 6 by inserting
α̇ = 0 and 〈σx〉 = ρx. It is

0 = −(iωc + κ)(αr + iαi)− iλ
√
Nρx (11)

with

ρx = −γ− − γ+

γ− + γ+

4λαrN
− 1

2√
ω2
z + 16λ2α2

rN
−1
, (12)

which we solve to find

α√
N

= (1 + i
κ

ωc
)

√(γ− − γ+

γ− + γ+

λωc

ω2
c + κ2

)2
−
(ωz

4λ

)2
. (13)

If α is purely imaginary, then ρx is zero, because of Eq. 12. This implies that the α = 0
solution is the state of the system, based on Eq. 11. If α has a non-vanishing real part, i.e.
αr 6= 0, the system is in the Dicke superradiant state. We determine the critical coupling
strength λc of this transition by setting the expression under the root in Eq. 13 equal to
zero. It is

λc =
1

2

√
γ− + γ+

γ− − γ+

ωz
ωc

(κ2 + ω2
c ). (14)
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Figure 2: In panel (a) we show the magnitude of the photonic field α as a function
of the driving field strength Ed and the coupling strength λ. For large Ed, the
Floquet-assisted superradiant phase (FSP) emerges and exhibits an oscillating
photonic steady state. In panel (b) we show the Ed → 0 limit, i.e. the Dicke
superradiant transition, which is predicted very well analytically. In panel (c) we
show the magnitude of the Fourier transform |α̂|/

√
N as a function of the driving

field strength Ed for the coupling strength λ = λc. In the FSP, the steady state
frequency of the cavity is close to the cavity frequency. We also show a zoomed-in
version of the regime in which the FSP occurs. In panel (d) we show the power
spectrum |α̂|2∆ωN−1 of the FSP integrated over the frequencies shown in (c) in
order to compensate for the frequency shift of the FSP as a function of Ed. The
dashed lines in (a), (c) and (d) indicate the analytically determined lower bound
for the FSP, see Eqs. 25 and 26. The dotted lines in (a), (c) and (d) indicate the
driving field strength at which the Floquet energy spacing is equal to the cavity
frequency.
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In the case of κ = 0 and γ+ = γ−e
− ωz
kBT this reproduces the well-known result for the

critical coupling

λc =
1

2

√
ωzωc coth(

ωz
2kBT

)
T→0→ 1

2

√
ωzωc. (15)

We show this transition in Fig. 2 (b) compared to the numerical solution, which show
excellent agreement. Increasing Ed initially maintains this transition, but increases the
critical coupling strength λc|Ed>0 − λc ∝ E2

d. For the parameters in our example it is
λc = ωd

4
√

2
for Ed = 0. Further, the phase is separated into two regimes by a boundary

Ebd ≈ 0.02ω2
d for λ >

√
2λc. For Ed < Ebd the phase shows similar scaling to the Dicke

superradiant phase, i.e. the value of α matches the case of Ed = 0. For Ed > Ebd the
system experiences heating in this part of the phase, due to the weak dissipation in the
two-level systems.

For larger field strengths Ed, there is a second superradiant phase, the FSP, with a
non-zero photon amplitude |α|. The existence and properties of this non-equlibrium state
is the central point of this paper. For weak coupling, i.e. λ � λc, this phase emerges at
the driving field strength at which the difference of Floquet quasi-energies is resonant with
the cavity mode, as we discuss later. For increasing λ, this domain broadens and gives the
tongue structure in Fig. 2 (a). Within this phase, |α| quickly approaches a constant value
for increasing coupling strength λ. The dashed line in Fig. 2 (a) indicates the asymptotic
lower bound of the FSP for increasing λ. We calculate and present the driving field
strengths that bound the FSP in section 5. A natural regime of realizing the FSP is given
by two requirements. On the one hand, the instantaneous eigenenergy εA, which is of the
order of the driving frequency ωd, needs to exceed the temperature. This derives from the
ratio γ2/(γ1 +γ3) = tanh( εA

kBT
). On the other hand the driving field strengths Ed has to be

sufficiently high to drive the system into the FSP, specifically Ed/ω
2
d ≈ 0.3. For the case of

graphene, see Eq. 3, for electric fields of the order of 18MV m−1, and for temperatures of
the order of 100K, this results in driving frequencies around ωd ≈ 2π× 48THz. Note that
for very large Ed beyond the point at which the Floquet bands cross, there is a further
very faint phase, to be discussed elsewhere.

In Fig. 2 (c) we show the magnitude of the Fourier transform α̂(ω) of the photonic
steady state as a function of the driving field strength Ed at λ = λc, indicated by the solid
line in Fig. 2 (a). We see that the steady state of the cavity in the FSP oscillates with a
frequency close to the cavity frequency ωc. This differs from the Dicke superradiant phase
in which the steady state is not oscillatory. The frequency in the FSP is the effective
Floquet energy difference of the two-level system, which is interacting non-linearly with
the cavity mode, as we elaborate in the following section. This energy is equal to the cavity
frequency ωc at the driving field strength indicated by the vertical dotted lines, which is the
same as the onset driving field strength at which the FSP emerges for small λ in Fig. 2 (a).
In Fig. 2 (d) we show the power spectrum of the photon mode |α̂|2∆ω =

∫
|α̂(ω)|2dω,

integrated over the range of frequencies shown in Fig. 2 (c) in order to compensate for
the shifting frequency of the FSP as a function of the driving field strength Ed. In the
following section, we show that this profile of the magnitude of the order parameter is
related to the depleted population inversion of the Floquet states of the two-level system.

4 Floquet State Population Inversion

To understand the underlying mechanism from which the FSP originates, we calculate
the Floquet state population of the driven two-level system. We introduce a Schwinger
representation of the two-level Hamiltonian in Eq. 4, and calculate the population in
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Figure 3: In panel (a) we show the Floquet state population n(ω) as a function of
the driving field strength Ed calculated in the Schwinger formalism. The dotted
line indicates the Floquet energies ε0F for λ = 0, the solid lines indicate the
approximate Floquet energies εF for λ = λc which we obtain from Eq. 21. In
panel (b) we show the effective population difference ∆n between Floquet states
for λ = 0 (blue) and λ = λc (red). The regime in which population inversion
occurs also contains the FSP, which depletes the inversion. In panel (c) we show
the difference ∆N between the two populations in panel (b). The dashed lines in
all panels indicate the values of Ed that bound the regime in which population
inversion occurs, see Eqs. 25 and 26. The dotted gray lines in (b) and (c) indicate
the driving field strength at which the Floquet energy difference ∆ε0F is resonant
with the cavity frequency ωc.

frequency space. In this representation the system is embedded into a larger system
consisting of two modes b1 and b2. The resulting Hilbert-space is spanned by the creation
operators b†1 and b†2 of these two modes. Note that these modes can be understood as hard-
core bosons in the atomic case of the Dicke model, i.e. b21 = b22 = 0, but also as fermions
in two-band models of solid-state systems, where these are the electrons, cp. [41,45]. Our
mean-field results are not affected by the specific exchange relations, bosonic or fermionic.
The Pauli-matrices are written as

σx = b†1b2 + b†2b1 σy = i(b†1b2 − b
†
2b1) σz = b†1b1 − b

†
2b2. (16)

We calculate the two-point correlation functions 〈b†j(t2)bj(t1)〉 and determine the fre-
quency resolved population of the two-level steady state as

n(ω) =
1

(τ2 − τ1)2

∫ τ2

τ1

∫ τ2

τ1

2∑
j=1

〈b†j(t2)bj(t1)〉 e−iω(t2−t1)dt2dt1, (17)

where the time τ1 is large enough for the system to have reached a steady state and (τ2−τ1)
is large enough to contain hundreds of driving periods. Note that in this calculation the
operators bj(t1) and b†j(t2) act only on one of the N atoms. For large N , we assume that
the remaining N − 1 atoms maintain their steady state unaltered, such that the steady
state α(t) is also not affected by either action of bj(t1) or b†j(t2).
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We show n(ω) as a function of the driving field strength Ed in Fig. 3 (a) for λ = λc.
We use the same values of ωz = ωd/2 and ωc = ωd/4 as for the example in Fig. 2. We
see that the state of the probed two-level system is distributed across frequencies that are
resonant with the Floquet energies of the system and its replicas ±ε0F +mωd, m ∈ Z. For
λ = 0, and α = 0, these Floquet energies are

ε0F =
ωd

2
±

√
E2

d

ω2
d

+
(ωd − ωz)2

4
. (18)

In the regime of the FSP, the Floquet spectrum is modified due to the additional driving
that the two-level system experiences from the interaction with the oscillating photonic
steady state. We approximate that the FSP oscillates at ωc = ωd/4. The integer ratio of
ωd and ωc is not required, it merely enables a two-frequency Floquet analysis. For this
choice of frequencies the two-level Hamiltonian in Eq. 4 is

H(t) = e−i4ωctH−4 + e−iωctH−1 +H0 + eiωctH1 + ei4ωctH4 (19)

with

H0 =
ωz
2
σz H±1 =

λ|α|√
N
σx H±4 =

Ed

ωd
σ∓. (20)

The corresponding Floquet Hamiltonian is

HF =



. . . H1 H4

H−1 H0 + 2ωc H1 H4

H−1 H0 + ωc H1 H4

H−1 H0 H1

H−4 H−1 H0 − ωc H1

H−4 H−1 H0 − 2ωc H1

H−4 H−1 . . .


. (21)

It operates on the Floquet representation of the state

|ψ〉〉 = (. . . , ψ↑,(n−1)ωc
, ψ↓,(n−1)ωc

, ψ↑,nωc , ψ↓,nωc , . . . )
T. (22)

Inserting the numerical steady state solutions of α that we find using Eq. 6, and show in
Fig. 2 (a), allows us to calculate the Floquet energies εF in the FSP using the Floquet
Hamiltonian HF . We show these Floquet energies as a function of the driving field strength
Ed in Fig. 3 (a) as gray solid lines. We see that these energies match the dominantly pop-
ulated frequencies in n(ω) of the two-level system very well. Note that slight mismatches
are a consequence of the approximation that the photonic steady state oscillates with the
frequency ωc, which we made to justify the expression of HF .

We sum up the population of all Floquet replicas to calculate the effective relative
population of the two-level system as

∆n =

∞∑
m=−∞

[∫ (m+ 1
2

)ωd

mωd

n(ω)dω −
∫ (m+1)ωd

(m+ 1
2

)ωd

n(ω)dω

]
. (23)

In Fig. 3 (b), we show this effective relative population ∆n of the two-level system as
a function of the driving field strength Ed for the cases of λ = 0 and λ = λc. We see
that there is a regime in which the system experiences an effective population inversion,
bracketed by the vertical dashed lines. In the case of non-zero coupling, i.e. λ = λc, part

9
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Figure 4: The magnitude of the photonic steady state α as a function of the
driving field strength Ed, the cavity frequency ωc (a) and the two-level energy
spacing ωz (b). The coupling is small with λ = ωd/24, such that the Floquet-
assisted superradiant phase (FSP) appears only close to resonance between the
cavity frequency ωc and the Floquet energy difference ∆ε0F , indicated by dot-
dashed lines at Eonset

d . The gray shaded areas are regimes in which no population
inversion of Floquet states occurs. They are bounded by Emin

d and Emax
d . The

dotted lines indicate the values of ωc and ωz of the other subfigure, respectively.

of the population inversion is partially depleted to maintain the FSP, i.e. the non-zero
steady state of the photon mode. In Fig. 2 (a), we see that the range of the FSP increases
for increasing values of λ, to approach the entire regime in which population inversion
occurs. In general, the FSP regime is smaller than the inversion regime, because of the
detuning of the cavity frequency ωc and the Floquet quasi-energy difference ∆ε0F .

In Fig. 3 (c), we show the depletion of the effective population inversion of the two-level
system

∆N = ∆n|λ=0 −∆n|λ=λc . (24)

The behavior of ∆N agrees very well with that of the photonic steady state that we show
in Fig. 2 (d) up to an overall factor. We conclude that the photonic steady state of the FSP
originates from the effective population inversion of the Floquet states which is depleted
to obtain a non-zero α. This explains the constant scaling of the FSP with respect to λ. In
the limit of λ→∞, the intensity of the photonic steady state is limited by the population
inversion of the Floquet states.

5 Cavity-Resonant Floquet Energies

While the magnitude of the photon amplitude α saturates quickly to a constant value with
increasing λ, here we determine the onset of the FSP for small λ. For small λ, the FSP
emerges near resonance of the Floquet energy difference ∆ε0F and the cavity frequency
ωc. We therefore present the dependence of the magnitude of α on the cavity frequency
ωc, as well as the two-level energy spacing ωz. In Fig. 4 (a) we show the magnitude of α
as a function of the driving field strength Ed and the cavity frequency ωc at ωz = ωd/2
and λ = ωd/24. We see that the FSP emerges near resonance of ∆ε0F and ωc with the
lower bound of Ed given by the regime of the population inversion of Floquet states. For

10
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ωc → 0, the critical coupling λc decreases to values smaller than that of λ used here, such
that we see the Dicke superradiant phase for small Ed. For ωc → ωd we see an expected
finite population in the cavity as it becomes resonant with the driving field.

We find the analytical solutions of the driven dissipative steady state for λ = 0 (See
App. A) and use them to calculate the driving field strength at which population inversion
occurs (Emin

d ). We also calculate the driving field strengths at which the Floquet state
energies cross (Emax

d ) and at which the Floquet energy difference is resonant with the
cavity frequency (Eonset

d ). They are

Emin
d =

ω2
d

2

√
1

4
−
(

1

2
− ωz
ωd

)2

(25)

Emax
d =

ω2
d

2

√
1−

(
1− ωz

ωd

)2

(26)

Eonset
d =

ω2
d

2

√(
1− ωc

ωd

)2

−
(

1− ωz
ωd

)2

. (27)

We use the regime bound by Emin
d and Emax

d to estimate where Floquet state population
inversion occurs and therefore the system is susceptible to the FSP. Eonset

d indicates where
the FSP first emerges for small λ, i.e. the driving field strength at which the Floquet energy
difference is resonant with the cavity frequency. In Fig. 4 (b) we show these regimes and
the magnitude of α as a function of the driving field strength Ed and the two-level spacing
ωz at ωc = ωd/4 and λ = ωd/24. We see that Eonset

d correctly predicts the initial onset of
the FSP for small λ inside the region of Floquet state population inversion.

6 Conclusion

We have demonstrated the emergence of a Floquet-assisted superradiant phase (FSP) in
the dissipative Rabi-Dicke model that is directly related to the effective Floquet state
population inversion of the two-level system. We propose to tune the Floquet energy
difference close to resonance with the cavity, which results in the emergence of the FSP.
In the FSP, the population inversion is depleted to populate a coherent photonic steady
state that oscillates with a frequency that is close to the cavity frequency. This frequency
is the Floquet energy difference of the effectively bichromatically driven two-level systems.

We have presented the frequency resolved state population of the two-level system,
calculated in a Schwinger representation, and found that the depletion of the population
inversion qualitatively agrees with the magnitude of the photon state. We have character-
ized the onset of the FSP with respect to the cavity frequency and the two-level energy
spacing in the limit of small coupling strengths analytically. This analytical result for the
regime that experiences population inversion agrees with the emergence of the FSP with
an initial onset for resonant cavity frequency and Floquet energy difference.

We emphasize that the FSP is conceptually distinct from other recently discussed
dynamical phases in comparable systems. For instance, the dynamical normal phase [21]
emerges in dissipative Dicke models with parametrically driven coupling strength and is
characterized by the periodic emission of pulses with opposite phase. The Floquet maser
[44] presents continuous superradiance by periodically inducing spin polarization inversion
in a noble gas inside a magnetic feedback circuit. This system can be expressed using an
undriven Dicke-adjacent model, albeit with different coupling terms. In NV center spins
in room temperature diamonds [28–30] and in cold Strontium setups [26, 27], incoherent
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effective driving can lead to superradiant steady states for cavities that are resonant with
the atomic or vacancy center spin transitions. While all of these non-equilibrium phases
are captured by models related to the Dicke model, they are all substantially different
from the FSP and its underlying mechanism.

The FSP presents a laser-like mechanism using population inverted Floquet states of
two-level systems that are brought into resonance with a cavity mode. The model we
have proposed is in particular applicable to solid-state systems coupled to a cavity, where
the identical two-level systems are replaced by a momentum-dependent two-band model.
The master equation approach that we utilized is well-suited for describing such materials
dissipatively. In such materials, Floquet state population inversion has been observed
which provides motivation to implement this mechanism, with the prospect of creating
Floquet-assisted laser systems.
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A Analytical Steady State Solutions

We take a two-level Hamiltonian H = ~H~σ, such that Tr(H) = 0. Let V be the transfor-
mation into the instantaneous eigenbasis of H, such that V HV † = εσz, where ε sets the
energy scale of the Hamiltonian. In general such a Hamiltonian can be written as

H = ε

(
cos(θ) e−iφ sin(θ)
eiφ sin(θ) − cos(θ)

)
(28)

such that
V = eiσy

θ
2 eiσz

φ
2 . (29)

We write the Lindblad-von Neumann master equation in the original basis of H, but
include dissipation in the instantaneous eigenbasis, such that Lz = V †σzV = Hε−1 = h
and L± = V †σ±V . It is

ρ̇ = i[ρ,H] +
∑

i∈{+,−,z}

γi(LiρL
†
i −

1

2
{L†iLi, ρ}) (30)

= iε[ρ, h] + γz(Tr(hρ)h− 2(ρ− 1
2

)) (31)

+ γ−(−1

2
h− 1

2
(ρ− 1

2
)− 1

4
Tr(~h~ρ)h) + γ+(+

1

2
h− 1

2
(ρ− 1

2
)− 1

4
Tr(~h~ρ)h) (32)

with ρ = 1
2(1 + ~ρ~σ). We simplify this to

∂t(~ρ~σ) = iε[~ρ~σ,~h~σ]− γ1~ρ~σ − γ2
~h~σ − γ3(~h~ρ)~h~σ (33)

with

γ1 = (γ− + γ+)/2 + 2γz γ2 = γ− − γ+ γ3 = (γ− + γ+)/2− 2γz (34)
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and further
~̇ρ = (2ε(h× ·)− γ1 − γ3

~h 〈~h, ·〉)~ρ− γ2
~h. (35)

We find the steady state solution of the dissipative Rabi model by rewriting ~ρ(t) with

respect to the basis {~h, ~̇h,~h× ~̇h}, such that

~ρ(t) = ρ1(t)~h+ ρ2(t)~̇h+ ρ3(t)(~h× ~̇h) (36)

ρ1(t) = ~ρ(t)~h (37)

ρ2(t) = |~̇h|−2~ρ(t)~̇h (38)

ρ3(t) = |~̇h|−2~ρ(t)(~h× ~̇h). (39)

Assuming that |~̇h|2 does not depend on time, the equations of motion become

ρ̇1(t) = ∂t(~h~ρ) = ~̇h~ρ+ ~h~̇ρ = |~̇h|2ρ2 − (γ1 + γ3)ρ1 − γ2 (40)

ρ̇2(t) = |~̇h|−2∂t(~̇h~ρ) = |~̇h|−2(~̈h~ρ+ ~̇h~̇ρ) = −2ε(t)ρ3 − γ1ρ2 + |~̇h|−2~̈h~ρ (41)

ρ̇3(t) = |~̇h|−2∂t((~h× ~̇h)~ρ) = 2ε(t)ρ2 − γ1ρ3 + |~̇h|−2(~h× ~̈h)~ρ. (42)

We expand the second derivative of the Hamiltonian vector ~̈h in this basis as well and find

~̈h(t) = (~̈h~h)~h+ (~̈h~̇h)~̇h+ (~̈h(~h× ~̇h))(~h× ~̇h) (43)

~̈h(t)~ρ(t) = ρ1(~̈h~h) + ρ2(~̈h~̇h)|~̇h|2 + ρ3(~̈h(~h× ~̇h))|~̇h|2 = −ρ1|~̇h|2 + ρ3(~h(~̇h× ~̈h)) (44)

(~h× ~̈h(t))~ρ(t) = ρ2((~h× ~̈h(t))~̇h)|~̇h|2 + ρ3((~h× ~̈h(t))(~h× ~̇h))|~̇h|2 = −ρ2(~h(~̇h× ~̈h)). (45)

We then arrive at the equations of motion

ρ̇1(t) = |~̇h|2ρ2 − (γ1 + γ3)ρ1 − γ2 (46)

ρ̇2(t) = −2ε(t)ρ3 − γ1ρ2 − ρ1 + ρ3|~̇h|−2~h(~̇h× ~̈h) (47)

ρ̇3(t) = 2ε(t)ρ2 − γ1ρ3 − ρ2|~̇h|−2~h(~̇h× ~̈h). (48)

In the Rabi-problem in particular it is ~H = (Ed
ωd

cos(ωdt),
Ed
ωd

sin(ωdt),
ωz
2 )T and therefore

|~̇h|−2~h(~̇h× ~̈h) =
ωdωz

2

√
E2

d

ω2
d

+ ω2
z

4

|~̇h|2 =
E2

d
E2

d

ω2
d

+ ω2
z

4

ε(t) =

√
E2

d

ω2
d

+
ω2
z

4
, (49)

which are all constant in time. We assume a periodic steady state ρ(t) = ρ(t + 2π
ωd

) and
express the equations of motion in terms of Fourier coefficients

imωρm1 = |~̇h|2ρm2 − (γ1 + γ3)ρm1 − γ2δm,0 (50)

imωρm2 = −2ερm3 − γ1ρ
m
2 − ρm1 + ρm3 |~̇h|−2~h~f (51)

imωρm3 = 2ερm2 − γ1ρ
m
3 − ρm2 |~̇h|−2~h~f. (52)

We find that the Fourier modes do not couple in this representation. We solve the system
of equations for arbitrary m and find the complete expressions for ρm1 , ρm2 and ρm3 , fully

13



SciPost Physics Submission

●

●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●

� ��� ��� ��� ��� ���
-���

-���

��

���

���

Figure 5: A comparison between the analytical (solid lines) and numerical (dots)
results of the dissipative two-level steady state components ρx and ρz at t =
2πω−1

d for λ = 0. It is ωz = ωd/2. The zero-crossing of ρz matches the onset of
Floquet state population inversion in Fig. 3 (b).

determining the dissipative steady state

ρ1 = Cγ2
1ω

4
d(4E2

dω
−2
d + ω2

z) + Cω4
d

(
(4E2

dω
−2
d + ω2

z)− ωdωz
)2

(53)

ρ2 = −Cγ1ω
4
d(4E2

dω
−2
d + ω2

z) (54)

ρ3 = −Cω4
d

(
(4E2

dω
−2
d + ω2

z)− ωdωz
)√

4E2
dω
−2
d + ω2

z , (55)

with the prefactor

C =
−γ2

16E4
dΓ + Γω4

d(γ2
1 + (ωd − ωz)2)ω2

z + 4E2
dω

2
d(γ2

1Γ + γ1ω2
d + 2Γωz(−ωd + ωz))

(56)

and Γ = γ1 + γ3. Expressed in the original basis, it is

ρx(t) = C22Edω
−1
d

((
γ2

1 + ω2
z − ωdωz + 4E2

dω
−2
d

)
cos(ωdt) + γ1Ed sin(ωdt)

)
(57)

ρy(t) = C22Edω
−1
d

((
γ2

1 + ω2
z − ωdωz + 4E2

dω
−2
d

)
sin(ωdt)− γ1Ed cos(ωdt)

)
(58)

ρz(t) = C2

(
(γ2

1 + (ωd − ωz)2)ωz − 2E2
dω
−2
d (ωd − ωz)

)
, (59)

with the prefactor

C2 = C
√

4E2
d + ω2

dω
2
z . (60)

In Fig. 5, we show the comparison between numerical results and the analytical solutions,
which match exactly.
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Multimode-polariton superradiance via floquet engineering (2021), 2011.12309.

[43] X.-W. Luo and C. Zhang, Self-adapted floquet dynamics of ultracold bosons in a
cavity, Phys. Rev. Lett. 120, 263202 (2018), doi:10.1103/PhysRevLett.120.263202.

[44] M. Jiang, H. Su, Z. Wu, X. Peng and D. Budker, Floquet maser, Science Advances
7(8), eabe0719 (2021), doi:10.1126/sciadv.abe0719, https://www.science.org/

doi/pdf/10.1126/sciadv.abe0719.

[45] M. Nuske, L. Broers, B. Schulte, G. Jotzu, S. A. Sato, A. Cavalleri, A. Rubio, J. W.
McIver and L. Mathey, Floquet dynamics in light-driven solids, Phys. Rev. Research
2, 043408 (2020), doi:10.1103/PhysRevResearch.2.043408.

[46] W. S. Teixeira, F. L. Semião, J. Tuorila and M. Möttönen, Assessment of weak-
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