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Abstract

The γ-ray Galactic Centre Excess (GCE) remains one of the few observed high-energy
signals for which a dark matter (DM) origin is a plausible explanation. We present a
deep learning-based analysis of the γ-ray sky in the Galactic Centre region, carefully
accounting for the mathematical degeneracy between faint point-sources (PSs) such as
millisecond pulsars (MSPs) and DM-like Poisson emission. Using recent models for the
Galactic foregrounds, we find that relatively few bright PSs just below Fermi’s detection
threshold seem unlikely to explain the GCE, although we continue to find evidence for
PSs. Looking ahead, further improvements in the modelling of the γ-ray sky will be
crucial for distinguishing between a DM-like and point-like morphology of the signal.

1 Introduction

The Galactic Centre (GC) constitutes a prime target for indirect dark matter (DM) detection
given its relative closeness to Earth and its high DM density (e.g. [1, 2]). Shortly after the
launch of the Fermi satellite in 2008, an excess of photon counts from the vicinity of the GC
was reported, for which DM annihilation was proposed as a possible explanation [3,4]. In the
past decade, this excess – known as the Galactic Centre Excess (GCE) – has been thoroughly
scrutinised by numerous researchers, and its energy spectrum, spatial morphology, as well as
luminosity seem to be largely consistent with an annihilation signature of weakly interacting
massive particles (WIMPs), see e.g. [5–14]. However, astrophysical point-sources (PSs), each
of them too faint to be individually resolved, provide an alternative explanation for the GCE
(e.g. [15–21]). The arguments in favour of a PS explanation, most prominently a putative
population of millisecond pulsars (MSPs), can generally be subdivided into two categories.
First, there are claims that template fits exhibit a preference for the GCE to follow the stellar
bulge rather than a squared Navarro–Frenk–White halo profile [22] as would be expected
for DM annihilation [23–25] and second, some studies found a granular point-like GCE to
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be preferred over a smooth DM-like GCE morphology [26, 27]. Regarding the preference for
the stellar bulge over a halo-like shape of the GCE, no final conclusions have been reached
yet; for example, the recent studies in Refs. [13, 14] found good agreement with a DM-like
distribution. For investigating the point-like vs. smooth (Poissonian) nature of the GCE –
indicative of a PS or DM origin of the GCE, respectively – two methods have traditionally been
used: the Non-Poissonian Template Fit (NPTF) [26, 28] (see also [29]) and wavelet analyses
[27, 30, 31]. While early analyses using these methods obtained a strong preference for a
point-like GCE [26,27], doubt has been cast on the robustness of these results in Refs. [32–34],
which demonstrated that a spurious preference for a point-like GCE may arise with the NPTF
as an artefact of mismodelling the signal and backgrounds (see also Refs. [35] and [36] for
discussions about the robustness of the NPTF). Further, a reanalysis of the Fermi data with the
wavelet method by Ref. [37] identified a GCE consistent with Poisson emission when using an
updated PS mask for the known bright sources [38].

In these proceedings, we will provide a brief synopsis of our work in Refs. [39,40], where
we demonstrated that convolutional neural networks (CNNs) [41] are a powerful alternative
analysis method for the γ-ray sky, which appear robust to the systematic issues identified for
the NPTF. In §2, we will introduce our analysis framework, followed by a brief summary of
our main results in §3 and concluding remarks in §4.

2 Method

We model the γ-ray flux from the inner Galaxy region as a superposition of different emission
components, each of which is described by an individual spatial template: (1) diffuse emission
from pion decays and bremsstrahlung produced by the interaction of cosmic rays with the
interstellar gas (π0 + BS), (2) diffuse emission due to inverse Compton (IC) up-scattering of
interstellar medium photons by cosmic-ray electrons, (3) isotropic emission originating from
extragalactic sources, (4) the Fermi bubbles [42], (5) a PS population in the Galactic Disk, and
(6) the GCE, which we model with a generalized NFW-squared profile with exponent γ= 1.2.
For the disk PSs and the potentially point-like GCE, the exact locations of the individual sub-
threshold sources are unknown, for which reason the resulting photon counts follow non-
Poissonian statistics (see e.g. [26] for more details). In Refs. [39,40], we considered the inner
θ ≤ 25◦ around the GC and masked latitudes |b| ≤ 2◦ as well as the resolved PSs in the 3FGL
catalogue [43]. Our full data selection criteria are detailed in those works.

For our analysis of the Fermi data, we employ CNNs, which have become vastly popu-
lar across the sciences due to their ability to detect patterns in complex image data such as
template edges and gradients for our task of disentangling γ-ray emission. While CNNs are
arguably less interpretable than traditional analysis methods, they also possess notable ad-
vantages: first, CNNs assess entire regions of different sizes in γ-ray maps – in contrast to the
product-over-pixel likelihood maximised by traditional template fitting methods, which may
produce overly narrow posteriors because the counts in neighbouring pixels are in fact not
independent of each other due to the point-spread function (PSF), which is what a product
likelihood implicitly assumes (see Ref. [44]). This conceptual difference leads to a different
behaviour of the methods in the presence of modelling deficiencies, see Ref. [40]. Second,
as a representative of supervised machine learning methods, CNNs learn to infer the under-
lying relation between inputs (given by photon-count maps) from a labelled training dataset.
Hence, the CNN can learn the effect of the PSF without being restricted by the need for ex-
plicitly prescribing an analytic approximation of the true likelihood. We take the label of each
photon-count map to be the flux fraction of each template as well as the source-count distri-
butions (SCDs) F dN

d log10 F of the PS templates (disk and GCE), which express the expected flux
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F of the dN PSs within each infinitesimal logarithmic flux bin d log10 F .
We generate the training data by drawing from Poissonian distributions and using a mod-

ified version of NPTFit-Sim [45] for the Poissonian and PS templates, respectively. Impor-
tantly, we model all emission components that are potentially point-like as non-Poissonian.
The rationale is as follows: Poisson emission can be viewed as the limit of N → ∞ PSs
that each contribute a negligible flux F → 0 to the map, where the limit is taken such that
N F = µ = const. Thus, by choosing the priors for the SCDs in such a way that narrow SCDs
peaking at very low fluxes corresponding to ≪ 1 count per PS occur sufficiently often, many
training maps will contain PS emission that is virtually indistinguishable from Poissonian emis-
sion. Using this approach, the (technically artificial) separation between Poissonian and point-
like emission can be circumvented, acknowledging the fact that sufficiently faint PS emission
is statistically degenerate with Poisson emission.1

Our analysis framework consists of two separate CNNs. The first CNN learns to estimate
the flux fraction belonging to each template, disregarding whether the emission is Poissonian
or point-like. Then, a second CNN is trained to predict the SCDs of the PS templates. For
this purpose, we discretize the SCDs as histograms and utilise the Earth Mover’s Pinball Loss
function [46], which quantifies the uncertainties for the SCD histograms in terms of quantiles.
Our CNN architecture is built on the graph-based DeepSphere framework [47,48].

Finally, by comparing the predicted SCD for the Fermi GCE with our CNN predictions for
simulated best-fit maps that contain an entirely Poissonian GCE, constraints on the Poissonian
flux fraction of the Fermi GCE can be derived: GCE flux that the CNN attributes to bright PSs
with high confidence is unlikely to have been produced by a Poissonian emission mechanism
that follows the smooth NFW-squared template, whereas flux at the faint end of the estimated
SCD cannot confidently be attributed to either dim PSs or Poissonian emission given their
inherent degeneracy. For the full details of our methodology, we refer to Refs. [39,40].

3 Results

Here, we present the main results derived from the Fermi data. Extensive experiments vali-
dating the performance of our CNN-based framework on simulated maps, as well as various
cross-checks for different template choices, the recovery of artificially injected GCE flux, and
bias caused by different types of mismodelling can be found in Refs. [39,40].

Table 1 compares the flux fractions predicted by our CNN for two different choices of diffuse
foreground models, the official Fermi model p6v11 that was used in the original NPTF analysis
by Ref. [26], and Model O, which was introduced in Ref. [36] (extending work by Refs. [23,49])
and has been shown to give a significantly better (albeit still suboptimal) fit to the Fermi data
than p6v11. In particular, the overly hard IC component of p6v11 at energies ≥ 10 GeV –
which is fused with the diffuse foregrounds from pion decay and bremsstrahlung into a single
template – may lead to over-subtraction of other emission components [11, 36]. The results
presented herein rely on the same priors for the data generation as in Ref. [39], but we binned
the photon counts into HEALPix [50] pixels at resolution Nside = 128 (instead of Nside = 256
in that work). Notably, the flux assigned to the GCE increases by almost a factor of two when
replacing p6v11with Model O, and much more flux is attributed to disk PSs. For completeness,
we remark that the flux fraction estimates obtained with the NPTFit implementation [28]
of the NPTF are very similar to those of our CNNs for both diffuse models (see Ref. [39]),
demonstrating that the modelling uncertainties outweigh the differences between the results

1Note that when modelling the Poissonian and PS components associated with one and the same spatial template
separately instead (e.g. DM-like GCE and point-like GCE), particular care must be taken in order for the priors on
the model parameters not to introduce a bias, see Ref. [44].
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Diffuse π0 + BS Diffuse IC Isotropic Fermi bubbles GCE Disk

p6v11 88.5 ± 0.4 0.5 ± 0.4 6.3 ± 0.3 4.4 ± 0.4 0.5 ± 0.3
Model O 52.5 ± 0.9 26.6 ± 1.5 2.0 ± 0.9 5.9 ± 0.5 7.4 ± 0.5 5.7 ± 1.4

Table 1: Flux fraction estimates for each template (mean ± 1σ, in %) in our region of
interest (θ ≤ 25◦, |b|> 2◦, 3FGL masked) as determined by our CNN when modelling
the diffuse emission with the model p6v11 (for which all diffuse foregrounds are
contained in a single template) and the more recent Model O.

of the two methods.
Figure 1 shows our SCD estimates for the GCE, again for both diffuse models. Here, the dif-

ference is particularly striking: consistent with the original NPTFit-based analysis in Ref. [26],
we identify a GCE PS population located not far below the Fermi detection threshold when us-
ing the diffuse model p6v11, implying that some hundreds to a few thousand relatively bright
PSs would suffice to explain the GCE. However, with the more recent Model O, the SCD shifts
to much fainter fluxes, peaking at a value corresponding to 3− 4 counts per PS with the data
selection cuts in this present analysis. Importantly, for such a SCD, we cannot exclude that its
low-flux end in fact represents Poissonian emission in view of the above-mentioned Poisson vs.
dim PS degeneracy. Yet, also in this case the GCE was not found to be consistent with 100%
Poissonian flux, and a PS contribution was required (see Ref. [40]).

4 Conclusions and outlook

In these conference proceedings, we have provided a bird’s eye view of our machine learning-
based framework for the analysis of the γ-ray sky presented in Refs. [39,40]. While modelling
uncertainties still preclude a definite answer as to whether the GCE is caused by DM anni-
hilation or by PSs such as MSPs, an important avenue is the development of novel analysis
methods that – once the modelling of the γ-ray sky becomes sufficiently accurate – are able to
accurately and reliably infer the GCE’s flux, SCD, and energy spectrum. Importantly, since dif-
ferent analysis methods exhibit different systematics in the presence of modelling deficiencies
(which can of course never be completely eradicated), taking the results of multiple methods
in aggregate provides a more complete and in particular robust picture of the GCE’s nature.

A valuable extension of our method would be to consistently incorporate modelling un-

Figure 1: SCDs of the Fermi GCE estimated by our CNN for the diffuse model p6v11
and Model O (arbitrarily normalised). Black lines show the median estimates, while
the faint red to blue lines show 5%−95% quantiles. The flux corresponding to a single
count per PS and the (approximate) Fermi 3FGL detection threshold are marked in
the plot. The upper x-axis indicates the expected number of counts per PS.
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certainties into our analysis by endowing templates with additional degrees of freedom (as
done by e.g. Ref. [51] for a likelihood-based approach). In this spirit, Refs. [52, 53] recently
explored the use of Gaussian Processes for making the diffuse emission model more flexible in
the context of Normalising Flows.

Another possible refinement is to harness the spectral information alongside the photon-
count statistics. So far, methods that attempt to distinguish DM from PSs based on photon-
count statistics such as the NPTF or deep learning methods have analysed the Fermi data
integrated over a certain energy range (e.g. 2 − 20 GeV), thereby discarding the spectral
information contained in the data (which, of course, has been the subject of other template-
based analyses of the GCE, however, see e.g. Ref. [11]). This direction seems particularly
promising because it would not only provide more nuanced information, but would also enable
(1) the use of state-of-the-art templates that are tailored to specific energy ranges (e.g. [54])
and (2) a more accurate treatment of the Fermi PSF, which improves at higher energies.2 With
further progress on the modelling of the γ-ray sky, improvements in the analysis methods,
and possibly the (non-)detection of the putative Galactic Bulge MSPs with upcoming radio
telescopes, the 2020’s will hopefully be the decade in which the GCE mystery is resolved.
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