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Abstract

Tensor network, which originates from quantum physics, is emerging as an efficient tool
for classical and quantum machine learning. Nevertheless, there still exists a consider-
able accuracy gap between tensor network and the sophisticated neural network models
for classical machine learning. In this work, we combine the ideas of matrix product
state (MPS), the simplest tensor network structure, and residual neural network and
propose the residual matrix product state (ResMPS). The ResMPS can be treated as a
network where its layers map the “hidden” features to the outputs (e.g., classifications),
and the variational parameters of the layers are the functions of the features of the sam-
ples (e.g., pixels of images). This is different from neural network, where the layers
map feed-forwardly the features to the output. The ResMPS can equip with the non-
linear activations and dropout layers, and outperforms the state-of-the-art tensor net-
work models in terms of efficiency, stability, and representation power. Besides, ResMPS
is interpretable from the perspective of polynomial expansion, where the factorization
and exponential machines naturally emerge. Our work contributes to connecting and
hybridizing neural and tensor networks, which is crucial to further enhance our under-
standing of the working mechanisms and improve the performance of both models.
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1 Introduction

The tensor network (TN), as a mathematical model widely used to describe quantum many-
body states [ 1-4], has been successfully applied to machine learning (ML). For instance, TN is
used in supervised and unsupervised image classification, natural language processing, etc. [ 5—
11]. Several recent works also demonstrate TN’s ability of establishing the connection between
physics and artificial intelligence [12,13]. Nevertheless, despite the high interpretability of
TN [14-16], there still exists a considerable performance gap between TN and neural network
(NN) [7,17].

In the context of quantum physics, TN is used to represent linear ansatz. While in machine
learning, TN realizes a non-linear map from the features to the outputs, where there exists
a local kernel function [5] that maps the features of the samples to the quantum states in
Hilbert space. It is still an open issue to determine whether the NN techniques can enhance
TN performance. Several recent works have explored different ways to combine TN and NN,
which includes adopting the convolutional neural network (CNN) as a feature extractor in
TN [7,17,18]; compressing the linear layers of deep NN by matrix product operators [19];
and implementing the convolutional operations using TN [20], etc. These attempts further
motivate us to investigate the possible hybridization of TN and NN.

In this work, we incorporate the information highways (also known as shortcuts) [21,22],
non-linear activations, and dropout [23] into TN (MPS in specific), and propose Residual MPS
(ResMPS in short). The essential underlying idea of ResMPS is a delicate way of inputting
data such that the variational parameters of the network layers are the functions of the data
features. Such idea is inspired by the traditional feed-forward neural network (FNN), while
in FNN, the data is input only in the initial step.

We provide two specific examples of ResMPS dubbed as simple and activated ResMPS. The
simple version (sResMPS in short) is a multi-linear model that can exactly be written into a
standard MPS, and the activated version (aResMPS in short) is a non-linear model equipped
with NN layers. The results on Fashion-MNIST show that the simple ResMPS achieves the same
accuracy as MPS while its parameter complexity is half of the MPS. For the activated ResMPS,
we find a significant enhancement of efficiency and accuracy by introducing the non-linear
activations and the dropout layers on the residual terms.

Furthermore, we determine the model interpretability of sResMPS by polynomial expres-
sion. The truncated model achieves a high level of accuracy with only a few low-order terms
of sResMPS. Surprisingly, the factorization [24] and exponential machines [25] have naturally
emerged in this expansion scheme. ResMPS shows the underlying connections between TN
and NN for ML and can shed light on novel possibilities and flexibility for developing powerful
ML models beyond NN or TN.
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Figure 1: Illustrations of a typical ResMPS compared with a standard MPS. (a) An
illustration of ResMPS containing a three-layer FNN in which the variational param-
eters are functions of the features, x. (b) An illustration of a three-tensor MPS, which
is contracted with the feature vectors [see Eq. (13)]. (c¢) An illustration of sResMPS,
which is only parameterized by a single channel weight matrix. (d) An illustration
of ResMPS, which is equivalent to the standard MPS. (e) An illustration of aResMPS,
where the hidden feature will pass through a two-channel linear layer, ReLU activa-
tion, and dropout layer in sequence.

The remainder of this paper is organized as follows. We define ResMPS in Sec. 2.1 and
present its two typical architectures in Sec. 2.2. We decipher the working machanism of
ResMPS in Sec. 2.3. The image recognition benchmarks compared with other networks are
exhibited in 2.4. Relation to recurrent neural network (RNN) and transformer is discussed in
Sec. 2.5. The contribution of residual terms to training stability is discussed in Sec. 3.1. We
establish equivalence between truncated ResMPS and factorization machine in Sec. 3.2. We
conclude the result in Sec. 4.

2 Residual matrix product state

2.1 Definition of residual matrix product state

The traditional FNN, including the residual neural network, consists of multiple trainable lay-
ers [26]. For instance, in supervised learning, FNN maps the input sample x to the output [,
e.g., the corresponding classification. The typical form of one layer can be written as

bl = o (FU (Rl wind) 4 bl 1)

where h"™1] denotes the hidden variables that are input to the n-th layer with h{% = x, Fl"]
denotes the mapping of the n-th layer (e.g., fully connected, convolution, or pooling layer).
Each layer may consist some variational parameters win] (weights) and b (bias). Furthermore,
o denotes the activation function.

Inspired by the matrix product state [27, 28] and residual neural network [21,22], here
we propose a novel machine learning architecture dubbed as residual matrix product state
(ResMPS). Different from FNN [see, Eq. (1)], ResMPS does not explicitly map the features
with a feed-forward network. Instead, it uses the features to parameterize FNN variational
parameters. This enables an FNN to map the hidden features to the expected outputs (see,
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Fig. 1). In the ResMPS, the mapping of one layer is

hi = pln=11 4 ylnl (h[n—l]; winl (x,), b[n]) , (2)

where the second term vi"! is the function of h{"} parametrized by weights W] and bias bl™J,
and weights W] are further parameterized by the n-th feature x,,, which distinguish ResMPS
from FNNs; the initial hidden h{° is initialized by ones for simplicity. Therefore, the depth of
ResMPS depends on the input size. Eq. (2) gives the general form of vi™], in this work we limit
vt in a simple form,

vil = & (L[”] (h[”_l]; win] (xn)) + b[”]) . 3

where L™ is a linear map, and o is the activation. Similar to ResNet, the output of one layer is
the addition of the output of vI"), and the input includes the hidden features. This is to form a
shortcut of the information flow, which can avoid the vanishing/explosion of the gradients (see
Sec. 3.1 for details). We further note that one obtains a standard FNN by adopting h!®) = x
and removing the dependence of W on x.

Note that the dimension of the hidden variable is not equal to the dimension of the label
index (i.e., the number of classes in the discriminative task). Therefore, one additional linear
layer without bias and activation should be added to map the final hidden h™¥! to the output
fOas fO = > LlihEN] where dim(l) equals to the number of classes. The linear map can be
flexibly replaced by any other map as long as its output dimension matches the dimension of
the label.

2.2 The Architecture of ResMPS

In the following, we examine two instances of ResMPS, called simple ResMPS [sResMPS, see
Fig.1(c)] and activated ResMPS [aResMPS, see Fig.1(e)]. The sResMPS is a multi-linear model
that is equivalent to MPS. It achieves the same accuracy with only half of the parameter com-
plexity of the MPS. The aResMPS is a generalized version of sResMPS, in which the general-
ization efficiency is enhanced by introducing non-linear activation functions and dropout in
the FNN part. The map of one layer in the sSResMPS is written as

R = plr S e il @)
i

The weights of the layers in the FNN are linearly dependent on the features x. The bias terms
are also disabled in this example.

sResMPS is equivalent to a restricted version of MPS and can achieve identical performance
with only a half parameter complexity of standard MPS. See Sec. 2.4.2 for details.

It is seen that MPS has a remarkable representation power. The training error is less than
1% [29]. However, a gap between the training and testing accuracy suggests an over-fitting
issue. To address the over-fitting issue, we propose the aResMPS by incorporating the non-
linear activation functions and dropout. This modification also enhances the generalization
power [30]. The map of each layer in the FNN of the aResMPS is more-or-less a fully-connected
layer with a shortcut, which reads

hi = pln-11 4 & (L[n](h[n—l]) + b[n]) , (5)

where o is an activation function. The map L™ relies on the feature x,, in a non-linear fashion

LIy = D | €90 Wi | 6)
i

c=1,2

4
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The architecture of ResMPS is flexible, due to the choice of & [C](xn) and the number of
channels dim(c). Here we choose £[M(x,) = x,, and £1(x,) = 1 — x,,. We introduce & to
enhance the non-linearity of the aResMPS. It is worth mentioning that even sResMPS repre-
sents a non-linear map on the features x (but a linear map on the hidden features).

For the aResMPS, the map on either the features or the hidden features is non-linear. In-
deed, the FNN embedded inside the aResMPS can be replaced by any NN. Here, we choose a
standard fully-connected network with two channels labeled by c.

Throughout this paper, we choose the ReLU activation function that can screen the nega-
tive inputs [31,32]. Due to its piecewise linear characteristics, the gradient can directly pass
through without attenuation or enhancement. Therefore, the ReLU function is suitable for en-
hancing the non-linearity of the deep networks, which can improve its representation power
and avoid the vanishing/explosion of the gradient. Furthermore, we use a dropout layer com-
bined with the residual structure to improve the generalization ability of ResMPS. The dropout
layer effectively creates an ensemble of networks while avoiding the co-adaptation of inter-
mediate variables [23,33,34]. We impose dropout on the residual terms, i.e. hl?l = pln—1l
+ dropout (o (---)).

If we discard the activation and the dropout layers of aResMPS [see Fig.1(e)], we will get
a standard two-channel MPS. For a standard MPS with physical bond dimension d = 2, the
map given by a local-tensor construction is [29]

hgn] — Z |: [C](Xn)ZTlnC]h[n 1] :| %

c=1,2

If we introduce transformation T[n el = W, [ncl 4 5., we can simply get

ij>
hE'n h[n 1](2 g[c](x ))+ Z |:€[C](x )ZW[HC [n— 1]i|. (8)
c=1,2 c=1,2

By taking feature map with norm-1 normalization [29], i.e. Zc:1,2 glel(x,) = 1, we get a
ResMPS with map

Rt =l S [S[C](xn)Zm[j"’c]hE”_l]]. 9)

c=1,2
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@ \ ®)

Figure 2: Encoding process of the ResMPS. (a) An illustration of a high-dimensional
path of one sample. Blue arrows represent hidden features between different layers.
Red arrows represent shift-vectors contributed by the residual part. (b) An illustra-
tion of the aggregation behavior of samples. The same color denotes samples belong-
ing to the same class. (c) The two-dimensional data distribution generated by t-SNE
on the endpoint dimension reduction of (b), the data points come from the Fashion-
MNIST data set, and the corresponding accuracy is on the right. Note we reduce the
feature dimension to 2 for illustration, which is far less than the original dimension
of the hidden and weakened separations of the samples from different classes.

2.3 The working mechanism of ResMPS

We illustrate the path of the hidden state hl'] of ResMPS in the high-dimensional vector space
[as shown in Fig.2(a)]. Each layer of the ResMPS updates the state hl'l once to make it one
step forward with shift-vector vii*1] = hlt+1] —hlil After passing through all layers, all shift-
vectors are connected into a continuous path, namely Zivzl viil, For the same ResMPS, differ-
ent features of the samples share the same initial point (i.e., h%). Since the parameter W of
shift-vector v is a function of feature x, the path encodes the information of samples. Besides,
Similar samples have close paths in the vector space [as shown in Fig.2(b)]. After training
convergence, samples of the same category will eventually gather together.

In order to show the behavior of paths of the hidden variables in the high-dimensional
space, we use the Fashion-MNIST dataset to train sResMPS, and use the t-SNE algorithm [35,
36] to embed the endpoints of the ResMPS to a two-dimensional plane after the network
converges. Note that before we apply t-SNE for dimensionality reduction, the original virtual
feature has 100 components, which is sufficient large for accuracy yet economical. Fig. 2(c)
illustrates the visualization of final hidden features hEN] in the two-dimensional space. Samples
with better classification accuracy are relatively separated, while those with poor classification
accuracy overlap with other classifications. We also demonstrate the visualizations by t-SNE
for the intermediate hidden features in Fig. 3 to show how the hidden features gradually cluster
into different sub-regions. It shows that the initial hidden features are uniformly distributed,
and then gradually separated during the encoding process.
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Figure 3: Intermediate hidden features h!™(1 < n < 784) visualized by t-SNE. It
is shown that samples of the same classes gradually enter the same regions. This
characterizes the encoding process of ResMPS.

2.4 Benchmarking results
2.4.1 Classification accuracy

For the MNIST and Fashion-MNIST datasets, Table 1 shows the accuracy of the sResMPS and
aResMPS, compared with several established NN [39] and TN models [7,9, 15,17, 29, 38].
The MPS and ResMPS models represent a high level of representation power, as indicated by
their high training accuracy. The aResMPS also surpasses the probabilistically interpretable
Bayesian [15] and other TN models, including the two-dimensional TN known as projected-
entangled pair state (PEPS) [17]. It also achieves a (slightly) better accuracy than that of
CNN-PEPS model, in which CNN is adopted as the feature extractor. This accuracy surpasses
the CNN without the stacking architecture, such as AlexNet [39]. The aResMPS still does not
overperform the ResNet which is formed by stacking multiple convolution layers.

2.4.2 Redundancy of regular MPS

To see the equivalence between the standard MPS and sResMPS mentioned in Sec.2.2, we
introduce the third-order tensors T satisfying

Tt =1, 7l = win, (10)

The feature vectors ¢(x,) are obtained by the feature map as ¢(x,) = (1,x,) [5,9, 29].
Summing their joint index gives a linear mapping represented by a matrix

AElr:l]—l’aﬂ - Z TIE:’]an—l’an ¢ (xn_]- )pn
Pn

=5, . +x,WM (11)

T n, n—1,dn"
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Table 1: Experimental results on MNIST [37] and Fashion-MNIST dataset. The
first 6 models are pure TN architectures, which means they are multi-linear, and no
neural structures like pooling, activation and convolution are introduced. AlexNet,
ResNet, and CNN-PEPS are NN or TN-NN hybrid models. For aResMPS, we use ReLU
as activation, and the dropout probability is set to be 0.6.

Model MPS MPS Fashion- Fashion-
Train Test MNIST Train  MNIST Test
MPS machine [29] 1.0000 0.9880 0.9988 0.8970
Unitary tree TN [9] 0.98 0.95 - -
Tree curtain model [38] - - 0.9538 0.8897
Bayesian TN [15] - - 0.8950 0.8692
EPS-SBS [7] - 0.9885 - 0.886
PEPS [17] - - - 0.883
CNN-PEPS [17] - - - 0.912
AlexNet [39] - - - 0.8882
ResNet [39] - - - 0.9339
sResMPS 1.0000 0.9873  0.9987 0.8909
aResMPS 1.0000 0.9907 0.9999 0.9142

Applying this mapping to h{"!1, one gets

1
h[n Z hEl: 1 ] I(:lrfll] 1,an

ap—1

_h[n 1] +Zh[n 1] [n] (12)

ap—1,an
an—1
This form is exactly the definition of sResMPS, shown in Eq. (4). Therefore, the sResMPS is
equivalent to the standard MPS formed by the following tensors

7= 170, a3

{a,} n

as its tensor-train cores [40] [Fig. 1 (b)]. The numbers of the input and output hidden features
for different layers provide the two virtual bond dimensions of the MPS, i.e., {dim(a,)}. In
this work, we fix dim(a, ) = y, Vn. The physical dimension of the MPS should also match the
dimension of the feature vector, i.e. dim(¢(x,,)) = dim(p,,).

For dim(p,)) = 2, the number of variational parameters in sResMPS is ~ O(N y2) where
N is total number of features. This is only half of that in the MPS which is ~ O(2N y2). Our
numerical simulations show that the accuracy of both models is almost the same. See the
training and testing accuracy versus epochs on Fashion-MNIST dataset [41] in Fig. 4 (a) with
x = 40. This is because one of the two channels of each tensor in the MPS is much less
“activated”. The inset of Fig. 4 (a) shows the average norm of the two channels of different

tensors
1 L&
n] - E
%2
j=1

(14)

ka

with p = 1,2 representing the channels. The main contribution to the output is from the
second channel. Therefore, one channel is sufficient to pass the information to the output.
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Figure 4. Numerical results of the simple ResMPS. (a) Training and testing accuracy
of sResMPS (without dropout) and MPS versus epochs on the Fashion-MNIST dataset.
The inset shows the average norm [Eq. (14)] of the two channels in the MPS for
different tensors n. (b) Training and testing accuracy of the sResMPS versus the total
number of unmasked weights in the sResMPS. The left end of each curve corresponds
to the un-pruned result. It is also seen that the first few steps of pruning improve the
accuracy. The total number of parameters of sResMPS with y = 20, 30, and 40 equals
to about 3 x 10°, 7 x 10° and 13 x 10>, respectively.

2.4.3 Sparse ResMPS and its representation power

For sufficient large y, the accuracy achieves saturation, which shows the possibility to obtain
a sparse ResMPS by removing those less activated parameters, without reducing its represen-
tation power. To this end, a pruning process [14] is applied. We first train a dense ResMPS to
convergence and then mask its parameters with relatively small absolute values by multiplying
zeros. After that, we optimize unmasked parameters. The mask-retraining step can be applied
multiple times until one achieves a desired sparsity.

Fig. 4 (b) shows the accuracy values versus the number of unmasked parameters M, for
different virtual bond dimensions, y = 20, 30, and 40. The training and testing accuracy are
consistent for different M. Hence, the representation power of sparse ResMPS is characterized
by M. It’s worth noting that to achieve a desired accuracy, the sparse ResMPS needs fewer
parameters than the dense one. For example, to achieve (approximately) 86.5% testing set
accuracy, the dense one needs y2L = 12544 parameters (y = 4), while the sparse one only
needs M = 4000 parameters.

2.5 Comparison with the recurrent neural network and transformer

In the first sight the ResMPS is quite similar to the RNN and transformer, which are intensively
explored nowadays. Here we compare the ResMPS with the later two respectively.

The layer mapping of ResMPS is similar to recurrent neural network (RNN). However,
there are two essential differences between ResMPS and RNN. Firstly, ResMPS is non-uniform,
and can be reduced to the translation-invariant MPS named as uniform MPS [42,43]. From
this point of view, RNN, in which the layers share the same variational parameters, is closer
to the uniform MPS. Secondly, the recurrent mapping (also called a unit) is constructed by
several linear operations and non-linear activations. Different constructions of the units define
different RNN, such as the long short-term memory model. For the ResMPS, it is formed by
tensor units, which are simply multi-linear mappings and can be analyzed by the established
methods such as tensor decompositions [2,27,40].

ResMPS is different from transformer networks. Firstly, the transformer network is es-
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tablished on the attention mechanism, which is given by the inner product of “querys” and
“keys”, while ResMPS contains higher order interaction of input features (see its connection
to exponential machine in Sec. 3.2 for detail). Hence, the working mechanism of ResMPS, as
explained in Sec. 2.3, is different to transformer networks. Secondly, A general transformer
network consists of an encoder and a decoder. The encoder transforms a data sequence into a
vector, while the decoder transforms the vector into another sequence. In contrast, ResMPS,
and in general the MPS-based networks output a vector. Moreover, ResMPS does not need
positional encoding, see appendix B for more discussions.

3 Properties of the residual structure

3.1 Avoiding the gradient problems by residual terms

A typical MPS architecture designed for pattern recognition contains hundreds of tensor cores.
Such an architecture probably encounters gradient vanishing/exploding problems. To avoid
the gradient problems, some existing MPS schemes apply a DMRG-like algorithm where the
MPS takes the canonical form [5,6,10,44]. In these attempts, however, the accuracy is sensitive
to the hidden features’ dimensions (virtual bonds). Recently, an MPS algorithm was proposed
based on the automatic gradient technique [29] that can achieve higher accuracy than the
previous ones, while its performance is not sensitive to the virtual dimensions. To find out
why such a deep network avoids the gradient problems, here we construct the tensor cores to

satisfy a specific form given by Eq. (10). The identity in T plays the role of “highway” to pass

the information from the previous tensor core directly to the latter ones. The components T, [n]
represent the residual terms, which is < O(1). The application of residual conditions 1mp11es
that each layer of ResMPS can easily express identity mapping. In other words, the architecture
of ResMPS satisfies the identity parameterization [21,22,45].

To further demonstrate the role of identity parameterization in ResMPS, we use Gaussian
distributions with zero mean and standard deviation € to randomly initialize the elements of
T[”] Fig. 5 shows the testing accuracy at the 10-th, 20-th, and 50-th epochs. For a sufficiently
small €, the accuracy is quickly and stably converged. However, for relatively large ¢ [e.g.,
o(10™ 1)] as illustrated by the green region, the gradients become unstable. Consequently, the
accuracy stays around 0.1 and cannot improve further through the training process. Note that
this may be unstable in most cases if instead of the identity parameterization, the entire T is
randomly initialized.

3.2 Relations to polynomial expansion

The forward propagation of the sResMPS (4) is fully linear on the hidden features. Applying
the maps to the initial hidden features h, in sequence, we can then rewrite the output hidden
features in an expansive form [Fig. 6 (b)] as

hiV = (14 2y WIVD) L (T4 3, WD) (T4 5, WHT) hlO]

N
=> MK, (15)

where N is the total number of features x. The output h'¥! is the stack of N + 1 terms. The
zeroth term satisfies M(®] = I, which is the result of the information highway from the first
input hidden features to the output. The term M = Zgzl an[“] is the part in ResMPS
which is linear on the features x. The k-th term contains the k-th order contributions from x,

10
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Figure 5: The testing accuracy of the sResMPS versus ¢ on Fashion-MNIST dataset.
Here ¢ is the standard deviation of the initial residual part. We fix the number of
epochs to be 10, 20, and 50. The network can be trained stably for small values
of €. Otherwise, the training process encounters gradient vanishing (or explosion)
problems. The stable and unstable regions are illustrated by orange and green colors,
respectively. Note that for the unstable region, the value of the network elements
diverges. The network will give classifications randomly, thus, the accuracy tends to
be 0.1.

ie.,

N
MK = 7 Gy g Xy - xg WAL W, (16)

ay...ap=1

l, ag>ay>...>qa,
Ga1>a2 ~~~~~ an:

. (17)
0, otherwise.

This formula is actually a specific form of the Exponential Machines [25]. Due to their essential
similarity, the algebraic properties of Exponential Machines are also valid for sResMPS. For
instance, the output feature h!VJ is a linear mapping concerning the initial hidden feature ho,
and a multi-linear mapping concerning the feature x.

Due to the residual condition [see Eq. (10] with [W(™] < 0(1071)], the contributions from
the higher-order terms of Eq. (16) should decay exponentially with k. Therefore, we can define
a set of lower-order effective models by retaining the first few terms. For instance, by keeping
the zeroth- and first-order terms in Eq. (16), we obtain a model in which the output features
are linear to both hidden and sample features. Keeping the zeroth, linear, and quadratic terms
gets a model

N N
B = (145 e W £ 7 G sy W0 as)
a=1 a,f=1

This model is similar to Factorization Machines [24] and polynomial NN [46].

Fig. 6 (a) shows the difference between the accuracy of several lower-order models and
the sResMPS. This implies that the significant improvement achieved by the sResMPS has its
root in a few lower-order terms, especially the linear term. As the order increases, the cost of
directly computing Eq. (15) is also exponentially increased. Therefore, truncating the order
of expansion is not economical. ResMPS adopts a different and efficient scheme for retaining
all higher-order interactions.
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Figure 6: Polynomial expansion based on ResMPS. (a) Training (dashed) and testing
(solid) accuracy versus y by taking different orders in the expansion form; (b) An
illustration of the polynomial expansion picture of the sResMPS, see Eq. (16).

4 Conclusion

We propose ResMPS by incorporating MPS with the information highways, non-linear activa-
tions, and dropout. In contrast to FNN, the variational parameters in ResMPS are replaced by
adjustable functions. For FNN, features are input at the first layer of the network. For ResMPS,
however, features are divided and input into the weight matrices of each layer, which is in-
herited from MPS. Furthermore, the introduction of neural network structures in the ResMPS
brings more vital representation power than the usual MPS. For concreteness, we present two
specific versions of ResMPS.

The first derived architecture, sSResMPS, is simply a linear version of ResMPS. By comparing
MPS’ learning performance on the Fashion-MNIST dataset, we reveal the channel redundancy
of MPS. sResMPS thus discards the redundant channel. Consequently, it achieves consistent
accuracy while the parameter complexity is reduced by half.

The second derived architecture, aResMPS, is equipped with activation and dropout layers.
We compare aResMPS with several TN and NN models on the Fashion-MNIST dataset. The
activation and dropout layer enhance the non-linearity and generalization ability of the model,
respectively. Therefore, aResMPS surpasses the state-of-the-art TN methods and AlexNet in
terms of accuracy, although it is still inferior to ResNet formed by stacking multiple convolution
layers. Going beyond present aResMPS to achieve higher accuracy, e.g., replacing the weight
matrices with convolution layers, is a valuable improvement direction of ResMPS.

The perspectives of the residual network derive the polynomial expansion of ResMPS. The
benefits are two-fold. Firstly, we give the condition of vanishing/explosion of the gradients
of ResMPS. This helps the feature design of MPS and ResMPS algorithms with stable conver-
gence. Secondly, it establishes the equivalence between MPS and polynomial networks such as
Factorization Machines and Exponential Machines. Further numerical evidence suggests that
the contribution of high-order terms is insignificant. This helps to better understand the MPS
and ResMPS.

Are other NN structures (e.g., convolution and pooling layers) compatible with ResMPS?
Is it possible to propose a ResMPS structure based on general NN structures (e.g., Tree TN or
Projected Entangled-Pair States)? These problems are worthy of investigation in the future.
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A Training details

All benchmarks of this paper are implemented on MNIST and Fashion-MNIST datasets, each
of which includes 60,000 training and 10,000 testing grayscale images with L = 10 labels.
To fit inputs of ResMPS, we choose a specific path to reorder 2D pixels into a 1D sqeuence
{(x1,x9,...x,;n = 784)|x; € [0,1]}, where 784 is the pixel number of one image. For single
channel ResMPS, e.g., the sResMPS, there is no need to feature map the original data. And
for double channel ResMPS, a linear feature map (x,1— x) is adapted to match the channel
dimension. The dimension of the hidden feature y is set to 100, which is sufficient large for
accuracy yet economical. The predicted classification is given by the largest component

f(x) = argmax, f (), (19)

where f(O(x) is the overall mapping of ResMPS with [ = 1,... L denotes classification. To train
ResMPS, we use the Stochastic Gradient Descent (SGD) method with Adam optimizer [47] and
learning rate 10~*. Data are divided into mini-batches of size 1000. We choose cross-entropy
as the loss function,
CE=— Z logsoftmaxf(yi)(xi) 20)
(x;,;)€D

where
ef (yi ) (Xi )

L1 rO)(x.)
leo ef oL (Xl)

Here D is the data set of a mini-batch, and x; and y; are the i-th input and classification
respectively. If dropout is taken, the corresponding probability is set to 0.6. We take ReLU
for the non-linear case. The whole implementation is based on the PyTorch library, and the
relevant code is available on GitHub.

softmaxf 07 (x;) = (21)

B Path independency

ResMPS naturally deals with sequential data, but general data like images are usually high-
dimensional. Therefore, one needs to choose a specific path to unfold high-dimensional data.
To study how path choice effects the performance, we here compare three typical paths —
zigzag path, Hilbert path, and random path. The first two are illustrated in Fig. (7). The zigzag
path, as the most popular one, arranges data row by row; the Hilbert path preserves more
neighboring information than others; as for the random path, the original position information
is completely dropped, i.e., all points are collected together, shuffled completely, and then
reorderd in a random way. Note that the numbers of rows and columns of the Hilbert path
need to fit 2" with n a positive integer, so we need to extend the original image by using
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Figure 8: Convergence history of different paths on Fashion-MNIST dataset.

borders consisting of zeros. For the case of MNIST and Fashion-MNIST, image size is extended
from 28 x 28 to 32 x 32.

We run benchmarks for sResMPS without activation and dropout on the Fashion-MNIST
dataset. The hidden dimension is set to be 40 and other training details are the same as
appendix A. The result is shown in Fig. 8. To our surprise, there is no significant performance
difference observed, even the random path still performs well.

Since the correlation decay exponentially in MPS [48], one would expect that ResMPS can
not capture long-range information, and hence is path-independent. However, the previous ex-
periment show that ResMPS is path-independent. We suppose that this inconsistency is mainly
due to the introduction of residual connection, which preserve the sensitivity of gradient in
the long-range, and presumably maintains the long-range correlation.

C Additional benchmarks

Note that aResMPS can achieve better performance than sResMPS, while the former differs to
the later in three aspects: the channel number is doubled, the nonlinear action and dropout are
added. To explore the contribution of each aspect to the final performance, we use different
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Table 2: Benchmarks for fine partitioned models. sResMPS and aResMPS corre-
sponds to the first and the last row respectively. Other models filled the gap between
sResMPS and aResMPS.

Model MPS MPS Fashion- Fashion-
Train Test MNIST Train  MNIST Test
1-channel, -ReLU, -dropout 1.0000 0.9873  0.9987 0.8909
1-channel, -ReLU, +dropout  1.0000 0.9889  0.9618 0.9022
1-channel, +RelU, -dropout ~ 1.0000 0.9864  1.0000 0.8957
1-channel, +RelU, +dropout 1.0000 0.9885 0.9904 0.9108
2-channel, -ReLU, -dropout 1.0000 0.9880 0.9988 0.8970
2-channel, -ReLU, +dropout  1.0000 0.9896  0.9899 0.9081
2-channel, +RelU, -dropout  1.0000 0.9873  1.0000 0.9102
2-channel, +RelLU, +dropout 1.0000 0.9907  0.9999 0.9142
0.9

o
o)

Accuracy
o
~

0.6} — x=2 — x=8
x=4 — x=10
— X=6 — x=12

0.5 50 100 150 200

Epoch

Figure 9: Testing accuracy for sResMPS on Fashion-MNIST dataset for various hidden
dimension y. The performance will increase as y increase for small y, and achieves
saturation after a critical point about y. = 6, which is the same as the target space
dimension.

combinations to give more fine partitioned models. The benchmark results are shown in Ta-
ble 2. From the experimental results, we can see that these components more or less improve
the performance, and aResMPS as the most complex one achieves maximum performance.

The result of the pruning test shows that the hidden dimension y does not affect the
accuracy, but this statement is only valid for sufficiently large y. If we gradually reduce the
value of y, a predictable result is that the dimensions of hidden space are too small, so that
different classes become hard to distinguish. We show convergence procedure of sResMPS for
small ys, see Fig. 9. The results show that increasing the bond dimension indeed helps to
improve the accuracy, but only for a small enough y. Once a certain threshold is exceeded,
increasing y has no benefit to accuracy growth. Another fact is that even a really small value
of hidden dimension y = 2 has already achieved about 78% accuracy.
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