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We introduce and study a model of hardcore particles obeying run-and-tumble dynamics on a one-dimensional
lattice, where particles run in either +ve or -ve x-direction with an effective speed v and tumble (change their
direction of motion) with a constant rate ω. We show that the coarse-grained dynamics of the system can
be mapped to a beads-in-urn model called misanthrope process where particles are identified as urns and
vacancies as beads that hop to a neighbouring urn situated in the direction opposite to the current. The hop
rate is same as the magnitude of the particle current;we calculate it analytically for two particle system and
show that it does not satisfy the criteria required for a phase separation transition. Nonexistence of phase
separation in this model, where tumbling dynamics is rather restricted, necessarily imply that motility induced
phase separation transition can not occur in other models in one dimension with unconditional tumbling.

An important class of nonequilibrium systems is that
of active matter systems (AMS)1 where the individual
constituents are self-propelled; instances of such systems
include bird flocks2, bacterial colonies3, photophoretic
colloidal suspensions4 and actin filaments5 etc. They ex-
hibit a number or interesting features like large number
fluctuations1, clustering and pattern formation4. A ma-
jor area of interest in the study of AMS has been the
so-called motility-induced phase separation (MIPS)6–13

which refers to spatially separated high and low den-
sity regimes. Such aggregation or clustering of particles
has been observed experimentally in many active matter
systems4. The relevance of such aggregation process has
also been proposed as a mechanism of formation bacterial
biofilms3, which are sources of infection.

Occurrence of MIPS relies on an argument that ef-
fective velocity of active particles decrease in crowded or
high density regions formed either by explicit dependence
of local density or merely by exclusion. Naturally such a
slowing down of movement further increases the density
of particles and gives rise to a feedback loop allowing the
stable high density (liquid-like) regions to form and coex-
ist with a low density (gas-like) phase elsewhere. MIPS
has been widely investigated in simulations and appar-
ent separation has been observed. Theoretical investiga-
tions of this phenomenon have thus far concentrated on
continuum models8–11 where motility parameters, such
as particle flux or velocity are characterized as functions
of the coarse-grained local density6,7. Lattice models of
active particles have been studied in one and two di-
mensions numerically14 with run and tumble particles
(RTPs). RTPs move at a fixed speed in the direction of
their current orientation (a run) until they tumble and
change their orientation. In one dimension (1D), the two
orientations (say, ±) are usually referred to as the in-
ternal degrees of the particle (spin), which flips with a
certain rate. Analytical studies of these lattice models
are limited. Recently Slowman et. al.15,16 have obtained
an exact solution for two RTPs which exhibits certain
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jamming induced attraction between the particles of the
opposite spins, indicating possibility of a phase separated
state for many particle systems. Dandekar et. al.17 found
a mean-field solution of RTPs in 1D which is a good ap-
proximation when tumbling rate is large.

An element of surprise in the formation of a phase
separated state without any explicit attractive interac-
tion has added excitement to the study of MIPS and
raised questions about the stability of such states in 1D
even though fluctuating hydrodynamic equations have
predicted them6,7. Recent works have added to the doubt
by showing that MIPS phase transition in 2D belongs
to the Ising universality class18 which does not have a
counterpart in one dimension. In this Letter we argue
and show explicitly, using 1D lattice models of RTPs,
that indeed MIPS transition can not occur in 1D; the
inhomogeneous states observed in numerical simulations
and in hydrodynamic models are only long lived transient
states.

First we introduce a generic model of hardcore RTPs
in 1D with a restricted tumbling and show that its
coarse-grained dynamics can be mapped to a beads-in-
urn model, namely a misanthrope process19, where beads
hop to their neighbouring urn situated in the opposite di-
rection of the particle current, with a rate same as the
magnitude of current. The functional form of hop rate
is determined from the exact steady state results of the
model with only two RTPs. To determine if MIPS tran-
sition is possible, we use the following criterion. If a
system of hardcore particles phase separates as its den-
sity ρ crosses a threshold ρ∗ then the maximum density
at which it remains homogeneous is ρ∗. Since systems
with homogeneous density are well described in the grand
canonical ensemble (GCE) by a unique chemical poten-
tial µ (or fugacity z = eµ), we argue that phase separa-
tion transition is possible in a system when its density in
GCE attains a maximum value ρ∗ = Max[ρ(z)] which is
less than unity (the density of a fully occupied lattice).
Nonexistence of MIPS transition in restricted tumbling
model would imply that the same can not occur in any
other RTP model in 1D where tumbling occurs more fre-
quently.

The restricted tumbling model: We introduce a generic
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model of RTPs on a one dimensional periodic lattice with
sites labeled by i = 1, 2, . . . L, where particles follow a
dynamics,

+0
p+


q+

0+; − 0
p−


q−

0−; +±
ω+



ω−
−± . (1)

where τi = ± corresponds to presence of a particle at
site i, running in +ve or −ve x -direction, and τi = 0
represents a vacant site. The forward (backward) moving
rates of RTPs are given by p± and q± respectively and
tumbling of direction occurs with rates ω±. The effective
velocity at which particles move is proportional to (p±−
q±). To make a correspondence of this restricted tumbling
model (RTM) with the usual continuum models studied
in 1D, we must ensure that the RTPs move along their
spin (±) directions with same speed20, i.e., p+ − q+ =
v = q− − p−. We will also take ω+ = ω = ω−, unless
specified otherwise.

A special case of RTM with p+ = α = q−, p− = 0 = q+

and unrestricted tumbling dynamics, +
ω


ω
− was studied

earlier15 and an exact steady state solution was obtained
for a system of two RTPs. It turned out that these two
particles experience an effective attractive interaction in
the steady sate when their spins are opposite; it is en-
visaged that this attraction might be the source of MIPS
states observed in corresponding hydrodynamic models.
In comparison to this model, in Eq. (1) we have dropped

one of the transition rates +0
ω


ω
−0; as a consequence,

particles do not tumble if they are not assisted by a right
neighbour. This restriction helps us getting an approxi-
mate steady state of the system without tampering the
main aim: the proposition that a stable MIPS state can
not be sustained in 1D. Since frequent tumbling of parti-
cles help the system to clear jamming, a proof of nonexis-
tence of MIPS in RTM necessarily guarantees its nonex-
istence in any other model that has more liberal tumbling
dynamics.

Mapping to beads-in-urn model: The microscopic con-
figurations of RTM model {τi} can be viewed as urns
containing beads –each particle is an urn that contains
beads which are uninterrupted sequence of 0s (vacancies)
to the right of the particle (as described in Fig. 1(a)).
The spin ± of the particle is termed as the internal de-
gree of the urn. Thus we have a beads-in-urn model of N
urns indexed by k = 1, 2, . . . N, each carrying an internal
degree σk = ± and mk = 0, 1, 2 . . . beads. The dynamics
(1) now translates to hopping of a bead from urn k to
k+ 1 (k− 1) with rate qσk+1

(pσk
), and flipping of inter-

nal degree of an urn from σk → −σk with rate ωσk
δmk,0.

The total number of beads
∑N
k=1mk = L − N ≡ M is

conserved by the dynamics. Like particle density ρ = N
L ,

the bead density η = M
N = 1−ρ

ρ is also conserved.

The mapping of RTM to beads-in-urn model is exact
but we could not solve for its steady-state. For our pur-
pose, i.e., to know if the maximum particle density in
GCE is less than unity, it is enough to look at a coarse-
grained picture of the model where internal degrees of
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FIG. 1. Mapping lattice model of RTPs to an urn model
(misanthrope process) where hop rate of a particle from one
urn to the next depends on the total particles present in the
departure and the arrival urn. The current J(m) that passes
through two consecutive domain having in total m vacant
sites, plays the role of hop rate u(m).

the urns do not play any role. In the coarse-grained pic-
ture we aim at finding the average particle current J(m)
that flows across a domain of size m, irrespective of its
internal degree σk, which is then interpreted as an ef-
fective hop rate of beads moving to a neighbouring urn
(situated along the direction opposite to the particle cur-
rent). Since in the exact mapping of RTP model and urn
model (Fig 1(a)) the hop rate dependn on the internal
degree of both the arrival and the departure urns, we ex-
pect that in the coarse-grained picture too the hop rate
u(mk,mk+1) depends on the number of particles in the
departure site k and the arrival site k + 1. Its functional
form can be calculated from the exact steady state cur-
rent J(m) ≡ u(m = mk + mk+1) carried by the beads
in a system of two urns and m beads (demonstrated in
Fig. 1(c)). Such coarse-grained descriptions are reliable
and have helped researchers21 earlier to establish impos-
sibility of phase separation transition in certain lattice
models22 where rigorous numerical simulations have ex-
hibited apparent phase separated states. It also helped
in predicting true phase separation transition in many
other models21,23,24.

Two urns: To calculate the current J(M) that flows
through two consecutive domains of total size M , we
consider a system of length L = M + 2, having exactly
two particles, which is same as two urns containing M
beads in total. In this case, the steady state probabilities
P ({σkmk}) of configurations {σkmk} can be calculated
using matrix product ansatz25 extended to urn models in
Ref.26,

P ({σkmk}) =
1

QM
Tr[

N∏
k=1

Xσk
(mk)] with

QM =
∑
{σk}

∑
{mk}

Tr[

N∏
k=1

Xσk
(mk)]δ

(
N∑
k=1

mk −M

)
,(2)



3

where the δ-function ensures the conservation of the total
number of beads in N urns.

The matrix functions Xσk
(mk) that represents an urn

k of type σk containing mk particles must satisfy the
steady state condition dP

dt =MP = 0 with Markov ma-
trix M corresponding to the dynamics described in Fig
1(a). This condition for any configuration {σkmk} can

be expressed as
∑N
k=1 Tr[HR

k + HT
k ] = 0 where HR

k and
HT
k correspond to the run and the tumble dynamics oc-

curring at urn k respectively,

HR
k = −(pσk

+ qσk+1
)Xσk−1

(mk−1)Xσk
(mk)Xσk+1

(mk+1)
+ qσk

Xσk−1
(mk−1 + 1)Xσk

(mk − 1)Xσk+1
(mk+1)

+ pσk+1
Xσk−1

(mk−1)Xσk
(mk − 1)Xσk+1

(mk+1 + 1),

and HT
k = ω[X−σk

(0)−Xσk
(0)]Xσk+1

(mk+1). (3)

We now introduce some suitable choice of auxiliary ma-
trices X̃σk,σk+1

(mk,mk+1), yet to be determined along

with Xσk
(mk), so that both

∑
kH

R
k and

∑
kH

T
k vanish;

one such cancellation scheme for HR
k is,

HR
k = X̃σk−1,σk

(mk−1,mk)Xσk+1
(mk+1)

− Xσk−1
(mk−1)X̃σk,σk+1

(mk,mk+1). (4)

We find that a choice X̃σ,σ′(m,n) = hσ,σ′Xσ(m)Xσ′(n)
with some scalar parameter hσ,σ′ does satisfy the steady
state condition with 2× 2 matrices

X+(m) =

[
1 0
1 0

]
, X−(m) = γm

[
0 1
0 1

]
, (5)

where γ = p++q−
p−+q+

, hσ,−σ = 0, and

hσ,σ =

{
qσ(1− γσ) m > 0, n > 0
0 else.

(6)

We need not bother about the condition
∑
k Tr[HT

k ] = 0,
because the individual terms in the sum vanishes, as
Xσ(0)Xσ′(m) = Xσ′(m) for all σ, σ′,m. The only trou-
bling part on the way of exact solution is Eq. (6) that
requires hσ,σ to vanish for some values of m,n. This con-
dition forces hσ,σ to depend explicitly on m,n and a con-
sistent solution can not be obtained for generic rates; one
can, however, obtain an approximate steady state (dis-
cussed in later part of this article). This difficulty, how-
ever, does not arise when qσ(1−γσ) = 0. In this case, i.e.,
when γ = 1, or q± = 0 or both, the steady state written
in matrix product form is exact. But neither of these
cases constitutes the scenario of MIPS (as all particles
move, effectively, in the same direction).

We proceed with N = 2, where again, matrices (5)
provide an exact matrix product steady state for all
pσ, qσ, ωσ. This is because, our cancellation scheme (3)
puts constraints on the product of three consecutive ma-
trices which are irrelevant when N = 2 (we can then set
hσ,σ′ = 0). The steady state probabilities are then,

Pσ1σ2(m) =
Tr[Xσ1

(m)Xσ2
(M −m)]∑

σ1,σ2

∑M
m=0 Tr[Xσ1

(m)Xσ2
(M −m)]

.

where m is number of beads in the 1st urn. Explicitly,
P++(m) = 1/QM , P−−(m) = γM/QM and P−+(m) =
γm/QM = P+−(M −m). The magnitude of current car-
ried by the beads is same as the total current carried by
+ and − particles and its average value is,

J(M) =
∑

σ1,σ2,m

Pσ1σ2
(m)(pσ1

− qσ2
).

For large M, taking γM → 0(∞) when γ < 1 (γ > 1),

J(M) = M
1− γ
M + c

; c =

{
1 + 2

1−γ γ ≤ 1

1 + 2
1−γ−1 γ > 1

(7)

Here we have used p± = q∓, a condition required for
RTPs to have a well defined continuum limit.

As we have argued earlier, in the coarse-grained model
of many urns, J(M) serves as the hop-rate: a single bead
hops from k to (k + 1)-th urn with rate u(mk,mk+1) ≡
u(mk + mk+1) = J(mk + mk+1). This urn model is a
specific example of misanthrope process19 that can be
solved exactly; its steady state is factorized P ({mk}) ∼∏N
k=1 f(mk) with f(m) =

∏m
n=1

u(1,n−1)
u(n,0) = 1. In the

grand canonical ensemble where both N,M =
∑N
k=1mk

vary keeping L fixed, the partition function is

Z(z, y) =

∞∑
N=0

zNF (y)N =
1

1− zF (y)
(8)

where F (y) =
∑
m f(m)ym = 1

1−y . Here, z, y are

the fugacities associated with N,M respectively so that,
〈N〉 = z ∂

∂z lnZ(z, y) and 〈M〉 = y ∂
∂y lnZ(z, y). We set

L = 〈N〉+ 〈M〉 to obtain z = L
(1+L)F (y)+yF ′(y) and

ρ(y) ≡ 〈N〉
L

=
F (y)

F (y) + yF ′(y)
= 1− y. (9)

The maximum value of density in the GCE is then ρ∗ = 1
(obtained when y → 0) and thus the system remains
homogeneous and can not phase separate (following the
criterion we discussed) for any particle density 0 ≤ ρ ≤ 1.

The above argument is based on the coarse-grained pic-
ture where the main assumption is that hop rate u(m,n)
depends on the total number of particles present in the
departure and the arrival urns. The actual form of u(.)
is unimportant in obtaining the result ρ∗ = 1, but we
would like to check from the Monte Carlo simulations of
the model if the functional form given by Eq. (7) is in-
deed valid. In fact, for γ < 1, we expect from Eq. (7)
u(m)−1 to be a linear function of m−1 with y-intercept
(1 − γ)−1 and slope 3−γ

(1−γ)2 . To calculate the same from

simulations, first we calculate Fr(m+ n), Fl(m+ n), the
number of times particles move to right or left in a large
time interval, when the arrival and departure box has ex-
actly m and n beads respectively (internal degree of urns
are ignored). Also we keep track of F (m+n), the number
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FIG. 2. (a) Hop rate u(m)−1 obtained from numerical sim-
ulations (solid line) for γ = 0, 0.4 and ω ∈ (0.005, 1) are com-
pared with Eq. (7) (dashed line) when ρ = 0.02. All the curves
approach the asymptotic value (1−γ)−1 linearly as predicted.
(b) Marginal distribution p(m) of the separation m (distance
between consecutive particles) are compared for γ = 0 and
ρ = 0.1, 0.3, 0.9 in semi-log scale. Solid lines (results from
simulations for ω ∈ (0.2, 10)) are shown along with dashed
lines, ρ(1 − ρ)m obtained from coarse-grained description of
the model. The inset shows the same for ρ = 0.1 but smaller
ω ∈ (0.003, 1). In all cases p(m) shows exponential behaviour;
but for small ω, the correlation length is substantially larger
than the predicted value 1/| ln(1 − ρ)|. Here, p+ = γ = q−,
p− = 1 = q+, L = 104. In each case, statistical averaging is
done for more than 107 samples.

of jump-events attempted during that interval. Clearly,
u(m,n) = (Fr(m + n) − Fl(m + n))/F (m + n). In Fig.
2(a) we plot u(m)−1 versus m−1 for γ = 0, 0.4, ρ = 0.02
and ω = 0.003 to 1; in all cases, u(m)−1 is found
to be linear for large m with y- intercept approaching
(1 − γ)−1, which is the asymptotic value of the cur-
rent obtained from exact solution of the two-urn sys-
tem. Their slopes, however, differ a bit. Further, in Fig.
2(b) we plot the marginal distribution p(m) of number
beads m for γ = 0, ρ = 0.1, 0.3, 0.9, ω varying in the
range (0.2 to 10). The dashed line corresponds to the
theoretical curve obtained from the coarse-grained pic-
ture, p(m) ∼ ymf(m) = ym, where y = 1− ρ, and thus,
the correlation length is ξ = 1/| ln(1 − ρ)|. For all cases
shown Fig. 2(b), p(m) exhibits an exponential distribu-
tion, closer to the theoretical prediction for large ω. As
ω → 0 the exponential feature remains persistent but the
correlation length increases substantially. This is also ex-
pected as ergodicity is broken at ω = 0, where the system
falls into an absorbing state.

In summary, the coarse-grained picture turns out to
be a good description of the RTP model as the p(m)
decays exponentially for large m as predicted; although
the correlation length differs substantially for small tum-
bling rates. But an exponential form of p(m) is enough
to assure that, in GCE, the fugacity can be tuned ap-
propriately to obtain any desired particle density ρ and
thus, the system remains homogeneous for any 0 < ρ <
1, w > 0 and γ ≥ 0. It is also indicative that any other
RTP model where tumbling occurs more frequently can
not undergo a MIPS transition.

Approximate solution: Another approach to study the
possibility of MIPS transition in this RTP model is to
extend the matrix product state given by Eq. (5) to many
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FIG. 3. (a) η+, the density of beads in + urn and (b)
ρ+, the fraction of + urns are shown as a function of γ for
different ρ = 0.1 to 0.9 (top to bottom). Data from Monte
Carlo simulations (solid lines), averaged over 107 samples are
compared with Eqs. (10) (dashed line). Other parameters are
L = 103, p+ = γ = q−, p− = 1 = q+ and ω = 1.

urns. It would have been an exact solution if hσ,σ in Eq.
(6) were not forced to vanish for some cases. Ignoring
this fact one may take hσ,σ = qσ(1 − γσ) ∀m,n ≥ 0
to get an approximate steady state solution for small q±
when γ ' 1, which corresponds to small velocity limit of
the RTP model. The grand canonical partition function
Z(z, y) is given by Eq. (8), with fugacities z, y associated
with N,M, and

F (y) =
∑
σ=±

∞∑
m=0

ymTr[Xσ(m)] =
1

1− y
+

1

1− γy
.

The density of the system is now (similar to Eq. (9)),

ρ(y) =
F (y)

F (y) + yF ′(y)
=

(1− y)(1− γy)(2− y − γy)

(1− γy)2 + (1− y)2

Clearly, the maximum density that can be achieved in
GCE by tuning y is ρ∗ = 1 (when y = 0) and thus, fol-
lowing the criterion we discussed earlier, this RTP model
can not undergo a phase separation transition.

To justify that it is indeed a good approximation, we
calculate the steady state average of η+, the density of
beads in + urns and ρ+, the fraction of urns having in-
ternal degree +,

η+ =
1

N

N∑
k=1

mkδσk,+; ρ+ =
1

N

N∑
k=1

δσk,+, (10)

and plot it in Fig. 3 as a function of γ (dashed lines),
for different ρ in the range (0.1, 0.9), along with those
obtained from the Monte Carlo simulations of the model
(solid lines). They match quite well for all γ < 1. Thus
the approximate solution describes the RTP model very
well and also indicates nonexistence of MIPS transition
in 1D. This is consistent with recent results18 that MIPS
transition in 2D belongs to the magnetic transition in
Ising models, a transition which is also absent in 1D.

One possible way to generate a true phase separated
state in 1D is to use severely reduced tumbling rate, say
ω ∼ 1

L , so that it can not win over the run-dynamics
in the thermodynamic limit. In fact, recently Kourbane-
Houssene et. al.27 have introduced a RTP model where
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the difference of run-rates (or effective velocity) is pro-
portional to 1

L and the tumbling rate is proportional to
1
L2 and have shown using an exact coarse-grained hydro-
dynamic description that the homogeneous phase in 1D
is not stable in certain regimes of density and rates. An-
other way would be to bias the tumbling rates strongly,
say ω+ � ω−. In this case a phase separation transi-
tion occurs28 when q± = 0, where the dynamics of RTM
reduces to that of a two species exclusion process29. Its
extension to small q± ' 0, is a RTP model (having a good
continuum limit) and it is reasonable to assume that the
phase separation features may also survive there. Yet an-
other possibility is to introduce defects - recent studies30

have shown that a jammed phase does exist in RTM like
models with defects. More investigation is required in
all these directions to confirm if RTP models in 1D can
phase separate.
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