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We introduce and study a model of hardcore particles obeying run-and-tumble dynamics on a one-dimensional
lattice, where particles run in either +ve or -ve x-direction with an effective speed v and tumble (change their
direction of motion) with a constant rate ω when assisted by another particle from right. We show that the
coarse-grained dynamics of the system can be mapped to a beads-in-urn model called misanthrope process
where particles are identified as urns and vacancies as beads that hop to a neighbouring urn situated in the
direction opposite to the current. The hop rate is same as the magnitude of the particle current; we calculate
it analytically for a two-particle system and show that it does not satisfy the criteria required for a phase
separation transition. Nonexistence of phase separation in this model, where tumbling dynamics is rather
restricted, necessarily imply that motility induced phase separation transition can not occur in other models
in one dimension with unconditional tumbling.

An important class of nonequilibrium systems is that
of active matter systems (AMS)1 where the individual
constituents are self-propelled; instances of such systems
include bird flocks2, bacterial colonies3, photophoretic
colloidal suspensions4 and actin filaments5 etc. They ex-
hibit a number or interesting features like large number-
fluctuations1, clustering and pattern formation4. A ma-
jor area of interest in the study of AMS has been the
so-called motility-induced phase separation (MIPS)6–13

which refers to spatially separated high and low den-
sity regimes. Such aggregation or clustering of particles
has been observed experimentally in many active mat-
ter systems4. Relevance of the aggregation process has
also been proposed as a mechanism of formation bacterial
biofilms3, which are sources of infection.

Occurrence of MIPS relies on an argument that ef-
fective velocity of active particles decrease in crowded or
high density regions formed either by explicit dependence
of local density or merely by exclusion. Naturally such
a slowing down of movement further increases the den-
sity of particles and gives rise to a feedback loop allow-
ing the stable high density (liquid-like) regions to form
and coexist with a low density (gas-like) phase elsewhere.
MIPS has been widely investigated in simulations and ap-
parent phase separation has been observed. Theoretical
investigations of this phenomenon have thus far concen-
trated on continuum models8–10 where motility param-
eters, such as particle flux or velocity are characterized
as functions of the coarse-grained local density6,7. Lat-
tice models of active particles have been studied in one
and two dimensions numerically14–16 with run and tum-
ble particles (RTPs). RTPs move at a fixed speed along
the direction of their orientation (a run) until they tumble
and change their orientation. In one dimension (1D), the
two orientations (say, ±) are usually referred to as the
internal degrees of the particle (spin), which flips with
a certain rate. Analytical studies of these lattice mod-
els are limited. Thompson et. al.13 have introduced a
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model of self propelled particles with RTP dynamics; in
1D. These models exhibit inhomogeneous density profiles
when particle velocities depend on their position. Re-
cently Slowman et. al.17,18 have obtained an exact solu-
tion for two RTPs and found jamming induced attraction
between the particles of the opposite spins, which indi-
cates that, for many particle systems, a phase separated
state might originate from these attractive interactions.
Later, Dandekar et. al.19 have obtained a mean-field so-
lution of RTPs in 1D which turned out to be a good
approximation when tumbling rate is large.

An element of surprise in the formation of a phase sep-
arated state without any explicit attractive interaction
has generated much excitement to the study of MIPS
and raised questions about the stability of such states in
1D in absence of any explicit interaction or spatial poten-
tial. Recent works have added to the doubt by showing
that MIPS phase transition in 2D belongs to the Ising
universality class20 which does not have a counterpart in
one dimension. In this article we argue and show explic-
itly using 1D lattice models of RTPs that indeed MIPS
transition can not occur in 1D; the inhomogeneous states
observed in numerical simulations and in hydrodynamic
models are only long lived transient states.

First we introduce a generic model of hardcore RTPs
in 1D with a restricted tumbling dynamics and show that
its coarse-grained dynamics can be mapped to a beads-in-
urn model, namely a misanthrope process21 where beads
hop to their neighbouring urn, situated in the opposite
direction of the particle current, with a rate same as the
magnitude of current. The functional form of hop rate
is determined from the exact steady state results of the
model with only two RTPs. To determine if MIPS tran-
sition is possible, we use the following criterion. If a sys-
tem of hardcore particles phase separates as its density
ρ crosses a threshold ρ∗ then the maximum density at
which it remains homogeneous is ρ∗. Since systems with
homogeneous densities are well described in the grand
canonical ensemble (GCE) by a unique chemical poten-
tial µ (or fugacity z = eµ), we argue that phase separa-
tion transition is possible in a system when its density in
GCE attains a maximum value ρ∗ = Max[ρ(z)] which is
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less than unity (the density of a fully occupied lattice).
Nonexistence of MIPS transition in restricted tumbling
model would imply that MIPS can not occur in any other
RTP model in 1D where tumbling occurs more frequently.

The restricted tumbling model: We introduce a generic
model of RTPs on an one dimensional periodic lattice
with sites labeled by i = 1, 2, . . . L. The sites are either
empty (represented by τi = 0) or occupied by at most
one RTP τi = ± having orientation (spin) ±. Particles
follow a run dynamics,

+0
p+


q+

0+; − 0
p−


q−

0−, (1)

where RTPs move forward or backward with rates p±
and q± respectively. Along with this, they can tumble
and change their spin with rate ω as follows,

+± ω→−± ; −± ω→+± . (2)

Tumbling is restricted here in the sense that only those
particles which are assisted from right by other particles
can tumble their direction. This restriction helps us get-
ting an approximate steady state of the system without
tampering the main aim: the proposition that a stable
MIPS state can not be sustained in 1D. Since frequent
tumbling of particles helps the system to clear jamming,
a proof of nonexistence of MIPS in our model necessarily
guarantees its nonexistence in any other model that has
more liberal tumbling dynamics. Hereafter we refer to
the model following dynamics (1) and (2) as restricted
tumbling model (RTM).

Although RTM is defined for generic rates (p±, q±) we
study the case p± = q∓ where the run dynamics ex-
hibit a symmetry transformation, namely simultaneous
interchange of parity (left 
 right) and spin (+ 
 −),
that keeps the dynamics invariant. This symmetry was
present for both run- and tumble-dynamics in 1D lattice
models studied earlier17,19. When p± = q∓, it is also en-
sured that in the limit when lattice spacing vanishes22,
a single particle dynamics of RTM reduces to that of
a RTP moving in continuum space with same speed
v = p− − q− = q+ − p+ along +ve and −ve x-directions.
Note that, under parity transformation (left 
 right) the
tumbling dynamics of our model is modified as tumbling
now occurs for only those particles which are assisted by
other particles from left. But, for p± = q∓, a left-assisted
tumbling dynamics leads to the same steady state as the
right-assisted tumbling. This can be verified easily from
the exact mapping of these models to the corresponding
bead-in-urn models (see later discussions).

A special case of RTM with p+ = α = q−, p− = 0 = q+

and unrestricted tumbling dynamics +
ω


ω
− was studied

earlier by Slowman et. al.17 and an exact steady state so-
lution was obtained for a system of two RTPs. It turned
out that these two particles experience an effective at-
tractive interaction in the steady state when their spins
are opposite; it is envisaged that this attraction might be
the source of MIPS states observed in corresponding hy-
drodynamic models. In comparison, in Eq. (2) we have

dropped one of the transition +0
ω


ω
−0; as a consequence,

particles do not tumble if they are not assisted by a right
neighbour.

Mapping to beads-in-urn model: Any microscopic con-
figurations {τi} of RTM can be viewed as urns containing
beads –each particle is an urn that contains beads which
are uninterrupted sequence of 0s (vacancies) to the right
of the particle (as described in Fig. 1(a)). The spin ± of
the particle is termed as the internal degree of the urn.
Thus we have a beads-in-urn model of N urns indexed by
k = 1, 2, . . . N, each carrying an internal degree σk = ±
and mk = 0, 1, 2 . . . beads. The dynamics (1) and (2)
now translate to hopping of a bead from urn k to k + 1
(k− 1) with rate qσk+1

(pσk
), and flipping of internal de-

grees σk → −σk with rate ωδmk,0. The total number of

beads
∑N
k=1mk = L − N ≡ M is conserved by the dy-

namics. Like particle density ρ = N
L , the bead density

η = M
N = 1−ρ

ρ is also conserved.

Note that in this beads-in-urn model the internal de-
grees of the urns can flip only when they are empty; this
restriction forces k-th urn either to transfer a bead (when
mk > 0)or to change the internal degrees (when mk = 0)
and help us getting an exact steady state. It is easy
to see that a left-assisted tumbling dynamics with same
rate ω will also map to the same beads-in-urn dynamics
when particles are identified as urns containing number
of beads same as the consecutive vacancies to their left
and the hope rates are p± = q∓.

The mapping of RTM to beads-in-urn model is exact
but its steady-state could not be obtained analytically.
We proceed to develop a coarse-grained picture. In the
steady state of the urn model, the local bead current
J (summed over ± degrees) effectively transports the
beads from one urn to its neighbour situated along the
direction of total current. Since hop-rates (qσk+1

, pσk
)

in the original bead-in-urn model were dependent on
spins of neighbouring urns it is expected that the lo-
cal bead current must depend on the number of beads
present in neighbouring urns, i.e. J ≡ J(mk,mk+1).
This current can be set as the effective hop-rate of a
coarse-grained model where urns lose their internal de-
grees and a single bead hops from urn k to (k + 1) with
rate u(mk,mk+1) = J(mk,mk+1); rightward hopping (k
to (k + 1)) is considered assuming that the current is
flowing in +ve x-direction. Thus, in this coarse-grained
picture (see Fig 1(b)), all urns are equivalent (as they
lose their internal degrees) and the hop-rate depends on
the number of beads present in the departure and the ar-
rival urn; such a process is called a misanthrope process
(MAP)21.

In fact, mapping of hardcore particle systems to urn
model with an exact or effective coarse-grained dynamics,
similar to the dynamics of a zero range process (ZRP)23

are quite reliable and have helped researchers24 earlier to
establish non-existence of phase separation transition in
certain lattice models25 where rigorous numerical simu-
lations have exhibited apparent phase separated states.
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FIG. 1. (a) Mapping lattice model of RTPs to an urn model.
(b) Effective coarse-grained dynamics: hop rate of a bead
u(mk,mk+1) from urn k (with mk particles) to k + 1 (with
mk+1 particles) is assumed to be same as the local bead
current J(mk,mk+1) averaged over internal degrees σk, σk+1.

It also helped in predicting true phase separation transi-
tion in many other models24,26,27. In contrast, mapping
to that of misanthrope process, that we introduce here,
provides a better coarse-grained picture as steady-state
correlation between neighbouring urns are retained here.

The bead-current J(mk,mk+1) flowing across the urns
can be computed from numerical simulations (will be
discussed later), but that does not help us to compute
ρ(z) in grand canonical ensemble. To calculate ρ(z) we
need functional form of J(m1,m2) which can be calcu-
lated exactly using matrix product ansatz (MPA)28 for a
system of two urns containing M number of beads (i.e.,
L = M + 2), each one following the dynamics described
in Fig. 1(a).

For urn models, a matrix product steady state (MPSS)
can be obtained following Ref.29. We now consider RTM
model, which is mapped exactly to the urn model de-
scribed in Fig. 1(a). The steady state probability of a
generic configuration {σkmk}, where kth urn (spin σk)
has mk beads, is given by a matrix product ansatz,

P ({σkmk}) ∼ Tr[
N∏
k=1

Xσk
(mk)]δ

(
N∑
k=1

mk −M

)
(3)

where matrix Xσk
(mk) represents the kth urn having in-

ternal degree σk and mk beads. The δ-function here en-
sures that the total number of beads M are conserved.
These matrices are constrained to follow a matrix alge-
bra so that P ({σkmk}) defined above must satisfy the
steady state condition dP

dt = 0 for the dynamics in Fig
1(a). We find (see Appendix) that for N = 2, matrices
Xσ(m) have a 2× 2 representation (for any ω > 0),

X+(m) =

[
1 0
1 0

]
, X−(m) = γm

[
0 1
0 1

]
; γ =

p+ + q−
p− + q+

. (4)

The steady state probabilities of two urns con-
taining m1, m2 beads are then, Pσ1σ2

(m1,m2) =
1
QM

Tr[Xσ1
(m1)Xσ2

(m2)]δ(m1 + m2 −M) where QM =∑
σ1,σ2

∑M
m1=0 Tr[Xσ1

(m1)Xσ2
(M −m1)]. Explicitly,

Pσ1σ2
(m1,m2) =

1

QM
γ

1
2 (1−σ1)m1+

1
2 (1−σ2)m2 , (5)

with m2 = M − m1. Thus, the average local current
carried by the beads when the two urns have (m1,m2)
particles is

J(m1,m2) =
∑
σ1,σ2

Pσ1σ2
(m1,m2)(qσ1

− pσ2
)

=
1

Qm1+m2

[(q+ − p+) + (q+ − p−)γm1

+ (q− − p+)γm2 + (q− − p−)γm1+m2 ]

For RTPs, which need to satisfy the condition p± = q∓,

J(m1,m2) = v
1− γm1+m2

Qm1+m2

, (6)

where v = p− − q− = q+ − p+ and γ = p+
p−

(as in Eq.

(4)). Note that J(m1,m2) depends only on the sum of its
arguments, i.e., J(m1,m2) ≡ J(m1 + m2). We will now
set J(m1 + m2) as the hop-rate of beads in the coarse-
grained model, i. e., u(mk,mk+1) = J(mk+mk+1). This
urn model is a misanthrope process where hop-rate is a
function of total number of beads present in the depar-
ture and the arrival site. It turns out that the steady
state of this specific misanthrope process has a factor-
ized form,

P ({mk}) ∼
N∏
k=1

f(mk) with f(m) =

m∏
n=1

u(1, n− 1)

u(n, 0)
= 1.

The grand partition function with a fugacity y that con-

trols the total number of beads M
∑N
k=1mk is

QN (y) =
∑
{mk}

P ({mk})ymk = F (y)N ;

F (y) =
∑
m

f(m)ym =
1

1− y
. (7)

In RTM, both N,M =
∑N
k=1mk vary keeping the system

size L fixed. To account for that we introduce another
fugacity z, so that the new partition function is,

Z(z, y) =

∞∑
N=0

QN (y)zN =
1

1− zF (y)
(8)

which gives rise to 〈N〉 = z ∂
∂z lnZ(z, y) and 〈M〉 =

y ∂
∂y lnZ(z, y). We now set 〈N〉 + 〈M〉 ≡ L to obtain

z in terms of y, z = L
(1+L)F (y)+yF ′(y) . Then,

ρ(y) ≡ 〈N〉
L

=
F (y)

F (y) + yF ′(y)
= 1− y. (9)
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FIG. 2. Simulation of RTM model with dynamics (1) and
(2) (equivalently an urn model described in Fig. 1(a)). (a)
Hop rate u(m)−1 obtained from numerical simulations (solid
line) for γ = 0, 0.4 and ω = 0.005 to 1 (top to bottom) are
compared with Eq. (10) (dashed line) when ρ = 0.02. All the
curves approach linearly to the asymptotic value (1−γ)−1, as
predicted. (b) Marginal distribution p(m) of the separation m
are compared for γ = 0 and ρ = 0.1, 0.3, 0.9 in semi-log scale.
Solid lines (results from simulations for ω = 0.2 to 10 (right to
left) are shown along with dashed lines, ρ(y)m with y = 1− ρ
obtained from coarse-grained description of the model. The
inset shows the same for ρ = 0.1 but smaller ω = 0.005 to 1
(right to left). In all cases p(m) shows exponential behaviour;
but for small ω, y differs substantially from the predicted
value (1 − ρ). Here, p+ = γ = q−, p− = 1 = q+, L = 104.
In each case, statistical averaging is done for more than 107

samples.

The maximum value of the RTP density, obtained when
y → 0, ρ∗ = 1 (fully occupied lattice). Thus the sys-
tem remains homogeneous for any density 0 < ρ < 1
and it can not phase separate (following the criterion we
discussed).

The above argument is based on a coarse-grained pic-
ture where the hop rate u(m,n) ≡ u(m + n) is taken
same as the average local current of beads. In the fol-
lowing we employ a method to calculate J(.) numerically
from Monte Carlo simulations of the model and compare
it with Eq. (6).

To simulate the dynamics we must set p± = q∓ re-
quired for the system to have a valid RTP dynamics,
which gives γ = p+

p−
in Eq. 4. Without loss of gener-

ality we can set p− = 1 = q+, by choosing a suitable
time unit; then, p+ = q− = γ and the speed of RTPs
v = q+ − p+ = 1 − γ. We also consider γ ≤ 1 (γ > 1
case can be explored directly by using left/right and +/−
symmetry). From Eq. (6), J(m) = v

Qm
(1 − γm), which

has an asymptotic form (for large m),

J(m) ≡ u(m) ' m 1− γ
m+ c

; c =
3− γ
1− γ

. (10)

This implies that u(m)−1 is a linear function of m−1

with slope c(1−γ)−1 and y-intercept (1−γ)−1, which we
verify from the Monte Carlo simulations of the urn model
(Fig 1(a)). For a given value of γ, ρ, ω first we allow the
system to relax for a long time starting from a random
initial configuration. The system may take a very long
time to reach a true phase separated state when it exists,
but the hoping dynamics in the coarsening regime given
by u(m1,m2) = J(m1,m2) can predict, well in advance,

if the system is approaching towards a inhomogeneous
(MIPS) or a homogeneous state.

In the coarsening regime we consider a large time in-
terval and calculate (Fr(m1 + m2), Fl(m1 + m2)), the
number of times beads move to (right, left) when the
departure and arrival urns have exactly m1 and m2

beads respectively (internal degree of the urns are ig-
nored). Also, we keep track of F (m1 +m2), the number
of jump-events attempted during that interval. Clearly,
u(m) = (Fr(m) − Fl(m))/F (m). In Fig. 2(a) we plot
u(m)−1 versusm−1 for γ = 0, 0.4, ρ = 0.02 and ω = 0.005
to 1; in all cases, u(m)−1 is found to be linear for large
m as expected from Eq. (10). The y- intercepts also ap-
proach to the known value (1−γ)−1 but the slopes differ
a bit. Further, in Fig. 2(b) we plot the marginal distribu-
tion p(m) of number beads m for γ = 0, ρ = 0.1, 0.3, 0.9,
ω = 0.2 to 10. The dashed line corresponds to the the-
oretical curve obtained from the coarse-grained picture:
p(m) = ymf(m)/F (y) = ρym where y = 1 − ρ. In all
cases, as shown Fig. 2(b), p(m) exhibits exponential dis-
tributions that match very well with the prediction when
ω is large. As ω → 0 the exponential feature remains
persistent but the value of y differs substantially from
the theoretical value 1 − ρ. This is because ergodicity is
broken at ω = 0; the system there falls into one of the
fully jammed (or absorbing) configuration and remains
there.

In summary, the coarse-grained picture turns out to
be a good description of the RTP model as p(m) decays
exponentially for large m as predicted - rest of the details
are less relevant because an exponential form of p(m) is
enough to assure that the fugacity in GCE can always be
tuned to secure any desired particle density 0 < ρ < 1.
Such a system can not support any stable MIPS phase
and settles to form a homogeneous density profile for all
w > 0, γ ≥ 0.

The above conclusion can also be obtained from us-
ing an approximate matrix product steady state (MPSS).
Matrix representations (4), that provides exact MPSS ex-
clusively for N = 2, are also excellent approximations for
larger N (justified in the Appendix). With these matri-
ces, for N > 2, the grand partition function Z(z, y) and
density ρ(y) are given by Eqs. (17) and (18) respectively,

Z(z, y) =
1

1− zF (y)
; F (y) =

1

1− y
+

1

1− γy

and ρ(y) =
(1− y)(1− γy)(2− y − γy)

(1− γy)2 + (1− y)2
. (11)

Clearly, the maximum density that can be achieved in
GCE by tuning y is ρ∗ = 1 (when y = 0) and thus, this
RTP model can not undergo a phase separation transition
at any ρ < 1. One can safely extend these results for re-
stricted tumbling dynamics to other RTP models where
tumbling occurs more frequently; this is because tum-
bling is generally detrimental to the stability of MIPS.
Our conclusions are consistent with the recent results20

that MIPS transition in 2D belongs to the Ising universal-
ity class that does not have an one dimensional analogue.
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In summary, we show that phase separation of free
hardcore-RTPs with constant run and tumble rates is
not possible in 1D. One may however add some crucial
features which are known to enhance or freshly produce
phase separated states of passive particles, like invoking
explicit attractive interaction24 or making tumbling rates
to decrease with L (so that it vanishes in the thermody-
namic limit)30 or explicitly forcing the run dynamics to
depend on (and reduce substantially with increase of)
local particle density23 or adding impurities31. Then a
phase separation transition may occur, but will it keep
its charm and glory to be identified as the motility in-
duced phase separation, particulary when the transition
is anyway expected for similar system of passive particles
(without motility)? Recently Kourbane-Houssene et.
al.32 have introduced a RTP model where the difference
of run-rates (or effective velocity) are taken proportional
to 1

L and the tumbling rate is proportional to 1
L2 (down-

played by a factor 1/L compared to the run rates); using
an exact coarse-grained hydrodynamic description they
show that a homogeneous phase in 1D loses its stability
in certain parameter regimes. Another way might be to
use strongly biased tumbling rates where, say, + → −
occurs much more frequently than − → +. In this case a
phase separation transition occurs30 when q± = 0, where
the dynamics of RTM reduces to that of a two species
exclusion process33. Its extension to small q± ' 0, is
a RTP model (having a good continuum limit) and it
is reasonable to assume that the phase separation fea-
tures may also survive there. Yet another possibility is
to introduce defects. Recent studies34 have shown that
a jammed phase does exist in RTM like models with de-
fects. More investigations are required in all these direc-
tions to confirm if RTP models in 1D can phase separate.

APPENDIX

The dynamics (1) and (2) of RTM can be mapped ex-
actly to an urn model described in Fig. 1(a) where beads
hop from site k to site k + 1 (or site k − 1) with rates
qσk+1

(or pσk
) respectively. The probability density of a

generic configuration {σkmk} evolves following the Mas-
ter equation,

d

dt
P (. . . , σk−1mk−1, σkmk, σk+1mk+1, . . . )

= −(pσk
+ qσk+1

)P (. . . , σk−1mk−1, σkmk, σk+1mk+1, . . . )
+ qσk

P (. . . , σk−1mk−1 + 1, σkmk − 1, σk+1mk+1, . . . )
+ pσk+1

P (. . . , σk−1mk−1, σkmk − 1, σk+1mk+1 + 1, . . . )
− ωδmk,0P (. . . , σk−1mk−1, σkmk, σk+1mk+1, . . . )
+ ωδmk,0P (. . . , σk−1mk−1,−σkmk, σk+1mk+1, . . . ) (12)

where first three terms in the right hand side corresponds
to the run dynamics and the rest describes tumbling at
a generic site k. In the steady state d

dtP ({σkmk}) must
vanish; this, along with the matrix product ansatz (3)

leads to
∑N
k=1 Tr[HR

k +HT
k ] = 0, where HR

k and HT
k cor-

respond to the run and the tumble dynamics respectively,

HR
k = −(pσk

+ qσk+1
)Xσk−1

(mk−1)Xσk
(mk)Xσk+1

(mk+1)
+ qσk

Xσk−1
(mk−1 + 1)Xσk

(mk − 1)Xσk+1
(mk+1)

+ pσk+1
Xσk−1

(mk−1)Xσk
(mk − 1)Xσk+1

(mk+1 + 1),

and HT
k = ω[X−σk

(0)−Xσk
(0)]Xσk+1

(mk+1). (13)

We now introduce some suitable choice of auxiliary ma-
trices X̃σk,σk+1

(mk,mk+1), yet to be determined along

with Xσk
(mk), so that both

∑
kH

R
k and

∑
kH

T
k vanish

separately; one such cancellation scheme for HR
k is,

HR
k = X̃σk−1,σk

(mk−1,mk)Xσk+1
(mk+1)

− Xσk−1
(mk−1)X̃σk,σk+1

(mk,mk+1). (14)

We find that a choice X̃σ,σ′(m,n) = hσσ′Xσ(m)Xσ′(n)
with some scalar parameter hσσ′ does satisfy the steady
state condition with 2× 2 matrices

X+(m) =

[
1 0
1 0

]
, X−(m) = γm

[
0 1
0 1

]
, (15)

when γ = p++q−
p−+q+

, h+− = 0 = h−+ and

h++ = h−− =

{
qσ(1− γσ) m > 0, n > 0
0 else

. (16)

These matrices also satisfy the condition
∑
k Tr[HT

k ] = 0
set by the tumbling dynamics because Xσ(0)Xσ′(m) =
Xσ′(m) for all σ, σ′,m. The only troubling part is that
hσσs depend implicitly on m,n violating the assumption
that they are constants. This implicit dependence of h++

and h−− on m,n drops out when (i) q± = 0 (all particles
move in the same direction), (ii)γ = 1 (which sets the
speed of RTPs v = 1 − γ = 0 when p± = q∓). In both
cases we have an exact MPSS, but neither of these cases
constitutes the scenario of MIPS. Yet another case is N =
2 where matrices given by Eq. (15) leads to an exact
MPSS. This is because the cancellation scheme in Eq.
(13) acts on product of three consecutive matrices which
are not present when N = 2; thus, one can make hσσ′
independent of m,n by setting safely hσσ′ = 0 for all
σ, σ′. Steady state probabilities for N = 2 is given by Eq.
(5).

Now we proceed for larger N and get an approximate
MPSS while dependence of hσσ′ on m,n are ignored and
both h++ and h−− are taken as qσ(1 − γσ) ∀m,n ≥ 0.
We will see that the matrices (15) provide a MPSS which
are an excellent approximation to the exact ones. The
canonical partition function of the system is

QM,N =
∑
{σkmk}

Tr

[
N∏
k=1

Xσk
(mk)

]
δ

(
N∑
k=1

mk −M

)

and the grand partition function, with fugacities z, y as-
sociated with N,M, is

Z(z, y) =

∞∑
M=0,N=0

zNyMQM,N =

∞∑
N=0

zNF (y)N
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FIG. 3. (a) η+, the density of beads in + urn and (b)
ρ+, the fraction of + urns are shown as a function of γ for
different ρ = 0.1 to 0.9 (top to bottom). Data from Monte
Carlo simulations (solid lines) of RTM model described in Fig.
1(a), averaged over 107 samples are compared with Eqs. (20)
(dashed line). Other parameters are L = 103, p+ = γ = q−,
p− = 1 = q+ and ω = 1.

F (y) =
∑
σ=±

∞∑
m=0

ymTr[Xσ(m)] =
1

1− y
+

1

1− γy
.(17)

Note that F (y)N acts as the partition function of the
system when N is fixed.

From Z(z, y) = 1
1−zF (y) one can calculate 〈N〉 =

z d
dz lnZ(z, y) and 〈M〉 = y d

dy lnZ(z, y) and set 〈N〉 +

〈M〉 to a desired value of L to eliminate z. Particle den-

sity ρ(y) = 〈N〉
L in GCE is then,

ρ(y) =
1

1 + y F
′(y)
F (y)

=
(1− y)(1− γy)(2− y − γy)

(1− γy)2 + (1− y)2
. (18)

To verify if MPSS obtained here is indeed a good ap-
proximation let us calculate and compare from Monte
Carlo simulations, the steady state values of η+, the av-
erage number of beads per + urn and ρ+, the fraction of
urns having internal degree +,

η+ =
1

N

N∑
k=1

〈mkδσk,+〉; ρ+ =
1

N

N∑
k=1

〈δσk,+〉. (19)

Since simulations are done at some specific L,N, we can
use F (y)N as the partition function of the system; thus
p+(m) = ym/F (y) and p−(m) = γmym/F (y) and,

η+ =
1

F (y)

∞∑
m=0

mTr[X+(m)]ym =
y(1− γy)

(1− y)(2− y − γy)
;

ρ+ =
1

F (y)

∞∑
m=0

Tr[X+(m)]ym =
1− γy

2− y − γy
. (20)

Using density-fugacity relation (18), both η+ and ρ+ can
be obtained for different ρ.

In Fig. 3 we plot η+ and ρ+ as a function of γ (dashed
lines), for different ρ in the range (0.1, 0.9), along with
those obtained from the Monte Carlo simulations of the
model (solid lines). They match quite well for all γ <

1, indicating that, the approximate MPSS describes the
RTP model very well.
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