
SciPost Physics Core Submission

Excitation transfer in disordered spin chains with long-range
exchange interactions

Nikolaos E. Palaiodimopoulos1⋆, Maximilian Kiefer-Emmanouilidis2 Gershon Kurizki3 and
David Petrosyan1

1 Institute of Electronic Structure and Laser, FORTH, GR-70013 Heraklion, Greece
2 Department of Physics and Research Center OPTIMAS, University of Kaiserslautern,

D-67663 Kaiserslautern, Germany
3 Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot

7610001, Israel
⋆ nikpalaio@iesl.forth.gr

September 15, 2022

Abstract1

We examine spin excitation or polarization transfer via long-range interacting spin chains2

with diagonal and off-diagonal disorder. To this end, we determine the mean localization3

length of the single-excitation eigenstates of the chain for various strengths of the disor-4

der. We then identify the energy eigenstates of the system with large localization length5

and sufficient support at the chain boundaries that are suitable to transfer an excitation6

between the sender and receiver spins connected to the opposite ends of the chain. We7

quantify the performance of two transfer schemes involving weak static couplings of the8

sender and receiver spins to the chain, and time-dependent couplings realizing stimu-9

lated adiabatic passage of the excitation via the intermediate eigenstates of the chain10

which exhibits improved performance.11
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1 Introduction23

Excitation or polarization transfer in interacting few- and many-body quantum systems plays24

a key role in many brunches of science and technology, ranging from photosynthesis, where25

photon energy is transferred from a light-absorbing center to a reaction center via collections26

of near-resonant two-level systems (spins) [1], nuclear magnetic resonance of large molecules27

involving many interacting spins [2], or quantum state transfer in various spin chains realized,28

e.g., by dopants in solids [3–5], arrays of polar molecules [6, 7], superconducting qubits [8],29

ions in traps [9,10] or Rydberg atoms in microtraps [11]. Whereas spin chains are commonly30

described in the nearest-neighbour approximation, experimentally relevant systems often pos-31

sess long-range exchange interactions scaling with distance r as J ∼ 1/rν with the resonant32

dipole-dipole interaction, ν= 3, being most frequently the case.33

Many of such systems are inherently disordered. Diagonal disorder leads to exponen-34

tial (Anderson) localization of all the eigenstates of one-dimensional systems [12–14], which35

would suppresses excitation transfer in sufficiently long spin chains. Off-diagonal disorder36

also leads to localization which, however, may be weaker than exponential [15–17]. In the37

presence of long-range exchange interactions, the (single-excitation) localization properties of38

the system are more subtle [18–23] and many features still merit further investigation, which39

is one of the motivations of the present work.40

Specifically, we study long-range interacting disordered spin chains – collection of two-level41

atoms, molecules or spins arranged in nearly periodic quasi one-dimensional array and coupled42

with each other by the resonant dipole-dipole exchange interaction. We raise the questions43

whether or not, and to what degree, such a disordered system can serve for excitation or spin44

polarization transfer between the sender and the receiver spins coupled to the opposite ends45

of the chain in a controllable way. To that end, we first determine the localization properties46

of the system and their dependence on the energy, comparing and contrasting the long-range47

and nearest-neighbor interacting spin systems. Obviously, only chains of length smaller or48

comparable to the longest localization length can transfer excitation between the two ends.49

Next we identify the energy eigenstates of the chain that have sufficient support at the two50

ends of the chain to strongly couple to the sender and receiver spins. We then explore two51

excitation transfer protocols, one that involves static resonant couplings of the sender and52

receiver spins to the most suitable eigenstate of the chain [24,25,25], and the other inspired53

by stimulated Raman adiabatic transfer [26–28] that involves counterintuitive time-dependent54

couplings of the sender and receiver spins to the corresponding eigenstate of the chain. We55

find that the adiabatic coupling, despite being slower than the static coupling scheme, leads56

to a much higher probability of excitation transfer as it is more robust to various sources of57

disorder.58

The paper is organized as follows. in Sec. 2 we introduce the Hamiltonian of the system59

involving a collections of spins (two-level systems) with long-range resonant dipole-dipole60

interactions. In Sec. 3 we consider disordered spin chains and numerically determine the61

localization lengths for different single-excitation eigenstates of the system in the presence of62

energy (diagonal) and position (off-diagonal) disorder. In Sec. 4 we present two excitation63

transfer protocols between the sender and receiver spins resonantly coupled to a suitable en-64

ergy eigenstate of the disordered spin chain. In Sec. 5 we extract the mean transfer probability65

for chains of different length with different strength and type of disorder. Our conclusions are66

summarized in Sec. 6.67
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Figure 1: Schematic of a position (and energy) disordered chain of spins
i, j, . . . , m, . . . in the x y plane. The spin chain is coupled with rates Js,r to the sender
(s) and receiver (r) spins having energies εs,r .

2 The system68

We consider a chain of N spins – two-level systems – interacting with each other via the long-69

range exchange interactions Ji j = C3(1 − 3 cos2 θi j)/
�

�r⃗i j

�

�

3
, where C3 ∝ |℘⃗|2 is the electric70

or magnetic dipole-dipole interaction coefficient, r⃗i j is the position vector between spins i71

and j, and θi j is the angle between the direction of the dipole moments ℘⃗ and the position72

vector between the spins. We account only for the near-field part of the total dipole-dipole73

interaction potential and neglect the retardation and spontaneous radiative decay of the spin74

excitations [29,30], assuming that the typical distance between the spins is much smaller than75

the wavelength of the transition between the spin-up and spin-down states. The Hamiltonian76

of the system is77

H = 1
2

N
∑

i=1

εiσ̂
z
i +

N
∑

i ̸= j

Ji j(σ̂
+
i σ̂
−
j + σ̂

+
j σ̂
−
i ), (1)

where εi is the excitation energy of spin i, σ̂x ,y,z
i are the Pauli spin operators and σ̂±i =

1
2(σ̂

x
i ±iσ̂ y

i )78

are the raising and lowering operators. We assume that all the spins are positioned in one79

(x y) plane (see Fig. 1) and their dipole moments (℘⃗ ∥ ẑ) are perpendicular to that plane,80

θi j = π/2 ∀ i, j, thus Ji j = C3/
�

�r⃗i j

�

�

3
.81

We assume that a sender and a receiver spins are coupled in controllable way to the oppo-82

site ends of a finite spin chain, see Fig. 1. In order to transfer an excitation between the sender83

and a receiver spins, the disordered chain should possess extended eigenstates having support84

at its two ends. To selectively couple the sender and receiver spins to the suitable eigenstates85

of the chain, we assume that their energies εs, εr and couplings Js, Jr to the first and last spins86

of the chain can be precisely controlled, unlike the energies and couplings of the spins in the87

disordered chain. Initially, the excitation is localized at the sender spin, while the spin chain88

contains no excitations, and our aim will be to retrieve the excitation from the receiver spin at89

a specific time τ to be determined below.90

We next examine the localization length of the single-excitation eigenstates of spin chains91

in the presence of diagonal disorder corresponding to energy disorder of individual spins, and92

off-diagonal disorder in the interspin couplings stemming from the position disorder of the93

spins.94

3 Localization lengths in disordered spin chains95

We impose diagonal disorder corresponding to random variations of the spin excitation en-96

ergies ε j = ε0 + δε j around some ε0 (which can be set to 0) with δε j having a Gaussian97

probability distribution P(δε) = 1p
2πσ2

ε

e
− δε

2

2σ2
ε with the mean 〈δε〉 = 0 and variance σ2

ε. Next,98

the position of each spin j is given by the coordinates (x j , y j). In an ideal 1D lattice with period99

a, we would have x j = a j and y j = 0 for all spins j = 1, 2, . . . , N , and the exchange interaction100

3



SciPost Physics Core Submission

strength between the nearest-neighbor spins would be J = C3/a
3, the next-nearest neighbors101

J/23, etc. We impose the position disorder via x j → a j + δx j and y j → δ y j , where the102

random variables δx j and δ y j have a Gaussian probability distribution P(δµ) = 1
q

2πσ2
µ

e
− δµ

2

2σ2
µ

103

(µ = x , y) around mean 〈δµ〉 = 0 with variance σ2
µ. The position disorder then translates to104

off-diagonal (interspin coupling) disorder in the Hamiltonian (1).105

In the limit of N →∞, disorder leads to (Anderson) localization of all the eigenstates of106

the system [12–14]. The wavefunction ψk(x) of each single-excitation eigenstate |ψk〉 is then107

localized around some position µk with the localization length ξk. An important characteristic108

of the system is the dependence of the localization length ξk on the energy Ek of the eigenstates109

to be used for the excitation transfer. To determine the localization length, we numerically110

diagonalize the Hamiltonian for sufficiently long chains (N = 1000 spins) to neglect the finite111

size effects, and then for each eigenstate we identify the position µk corresponding to the112

maximum (in absolute value) of the wavefunction ψk(x) and subsequently fit an exponential113

function114

|ψk(x)| ∝ e−
|x−µk |
ξk (2)

to the spatial profile of the eigenstate, extracting thereby the localization length ξk. We note115

that the thus obtained localization length is a convenient measure of the spatial extent of the116

wavefunction even if it is not exponentially localized (see below).117

A more common measure to quantify the localization properties of the eigenstates is the118

inverse participation ratio (IPR) [31]. It is, however, not suitable for our purposes, since IPR119

cannot determine whether a wavefunction is spatially localized on a number of neighboring120

sites or is delocalized on a similar number of remote sites [32]. We use, therefore, an alterna-121

tive method to verify that the localization length ξk extracted from the exponential fit (2) is122

a reliable quantity to characterize our system. We can partition the chain into two halves and123

for each eigenstate |ψk〉=
∑N

i=1 v(k)i |i〉 calculate the excitation number variance in one of the124

halves [33],125

∆n2
k =



n̂2
�

− 〈n̂〉2 , (3)

where n̂ =
∑N/2

i=1 σ̂
+
i σ̂
−
i is the excitation number operator with eigenvalues n = 0, 1 since we126

consider only single-excitation states. The variance is therefore given by127

∆n2
k = pk − p2

k , (4)

where pk =
∑N/2

i=1 |v
(k)
i |

2 is the probability to find the excitation in the left half of the chain.128

Clearly, for a strongly localized state with ξ/a≪ N/2, the probability p is either close to129

0 or close to 1 (unless the wavefunction is localized near the center of the chain, µ/a ≃ N/2,130

the probability of which is 2ξ/(aN)≪ 1), and the number variance is small, ∆n2→ 0. In the131

opposite limit of a completely delocalized wavefunction ξ/a > N , the probability is p ≃ 1/2132

and the number variance approaches the maximum ∆n2 → 1/4. Assuming an exponentially133

localized wavefunction ψ(x) of the form (2), we can calculate p for any position of the peak134

µ, and upon averaging over the peak positions µ/a ∈ [1, N] we obtain a relation between135

∆n2 and ξ/N shown in the inset of Fig. 2. For small ξ/a < N/2, the number variance grows136

approximately linearly with the localization length as ∆n2 ≈ 3
8
ξ

aN , and it starts to saturate137

thereafter.138

In Fig. 2 (left panels: a1, b1, c1), we show the mean localization length 〈ξk〉 versus the139

mean energy 〈Ek〉 of the eigenstate for three different cases: (a) diagonal (energy) disorder, (b)140

off-diagonal (position) disorder, and (c) combination of diagonal and off-diagonal disorders.141

The corresponding mean excitation number variances 〈∆n2
k〉 are shown in Fig. 2 (right panels:142
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Figure 2: Mean localization length 〈ξk〉 (in units of lattice spacing a = 1) [left panels
(a1), (b1), (c1)], and mean excitation number variance 〈∆n2

k〉 [right panels (a2),
(b2), (c2)] vs the mean energy 〈Ek〉 (in units of J = C3/a

3) of the k-th eigenstate of
a chain of N = 1000 spins obtained upon averaging over 1000 independent realiza-
tions of disordered chains with long-range interactions (solid lines with filled circles)
and nearest-neighbor interactions (dashed lines), for (a) energy (diagonal) disorder
with standard deviation σε, (b) position (off-diagonal) disorder with standard devia-
tion σx ,y or σJ , and (c) combination of energy and position disorder. For illustrative
purposes, we use in (a) and (b) the strength of the diagonal σε and off-diagonal
σx ,y (or σJ) disorders that lead to comparable localization lengths. Inset shows the

averaged number variance ∆n2 vs ξ/N , as described in the text.
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a2, b2, c2). For each case we consider two different strengths of the disorder determined by143

the standard deviations σε and σx ,y .144

For comparison, we also consider chains with nearest-neighbor interactions and the same145

effective disorder as described by Hamiltonian146

Hnn =
1
2

N
∑

i=1

εiσ̂
z
i +

N−1
∑

i=1

Ji(σ̂
+
i σ̂
−
i+1 + σ̂

+
i+1σ̂

−
i ), (5)

where εi are the random spin energies as above, while Ji = J+δJi are the exchange couplings147

with J = C3/a
3 and δJi being Gaussian random variables with the mean 〈δJ〉= 0 and standard148

deviation determined by the error propagation formula149

σJ ≈ |∂x D(x , y)|σx +
�

�∂y D(x , y)
�

�σy ,

where D(x , y) = C3/(x2 + y2)3/2.150

Note that, in an ideal lattice with no disorder, the single excitation spectrum of Hamilto-151

nian (1) is given by152

Ek = 2
N
∑

m=1

J
m3

cos
πkm
N + 1

, (6)

while the spectrum of the system with only the nearest-neighbor interactions, Eq. (5), corre-153

sponds to the m= 1 term in the above sum, i.e. E(nn)
k = 2J cos πk

N+1 ∈ [−2J , 2J]. One can treat154

perturbatively the m > 1 terms of Eq. (6) near the band edges and deduce [34, 35] that the155

lower edge of the energy band is shifted from −2J to approximately −1.8J while upper edge156

is shifted from 2J to approximately 2.4J . Thus, the long-range character of the interaction157

affects the energy band structure and the density of states.158

Diagonal disorder. Consistent with the above discussion, for a chain with long-range in-159

teractions and diagonal disorder, we observe in Fig. 2(a1) and (a2) that the profile of the160

mean localization length 〈ξk〉 and the nearly identical profile of the mean excitation num-161

ber variance 〈∆n2
k〉 are shifted and skewed towards the higher energies 〈Ek〉, as compared162

to the nearest-neighbor interacting chains. For the presently considered dipole-dipole inter-163

actions, Ji j ∝ 1/|ri j|3, the localization length 〈ξk〉 remains finite for all energies 〈Ek〉. We164

note, however, that for power-law interaction Ji j∝ 1/|ri j|ν with decreasing ν a localization-165

delocalization transition occurs at ν = 3/2 near the (shifted) upper edge of the energy band166

〈Ek〉 ≈ 5J [36].167

Off-diagonal disorder. Even though the wavefunctions of the eigenstates of a chain with168

off-diagonal disorder may not be exponentially localized for all energies, for consistency and169

comparison with diagonal disorder, we still use the exponential fit of Eq. (2) to deduce the170

localization length and verify its applicability by the corresponding excitation number variance.171

For the nearest-neighbor interacting chain with only off-diagonal disorder, the first feature to172

note in Fig. 2(b1, b2) is the sharp peak of the localization length at zero energy. This peak is173

related to the well-known divergence of the density of states ρ(E)∼ 1
E|ln E|3

[37,38] leading to174

the localization length divergence as ξ ∼ |ln E| that follows from the Thouless relation [39].175

But unlike the case of diagonal disorder, the eigenstates near zero energy are localized as176

|ψ(x)| ∝ e−
p

x/ζ rather than exponentially [15–17]. We note the relevant early studies of177

Dyson [40,41] and the insightful connection to the graph theoretical concepts [16,42].178

The long-range interactions in the chain with off-diagonal disorder [35,43,44] lead to cer-179

tain modification of the localization spectrum. The zero-energy peak of the nearest-neighbor180
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interacting chain is now displaced to 〈Ek〉 ≃ −0.22J , which follows from the perturbative treat-181

ment of Eq. (6) near the center of the band [35], and is suppressed, since the underlying lattice182

is weakly non-bipartite due to the weak next-nearest-neighbor interactions [42], which is in183

complete agreement with our numerical results in Fig. 2(b1, b2). We note again that the use184

of IPR [32] is inadequate to quantify the localization length in the vicinity of 〈Ek〉 ≃ −0.22J ,185

as it would indicate more, rather than less, localized states [35]. That is why we still use the186

localization length 〈ξk〉 obtained from the exponential fit of Eq. (2) and verify its applicability187

by the corresponding excitation number variance 〈∆n2〉.188

Another feature is that, perhaps counterintuitively, disordered chains with long-range in-189

teractions exhibit shorter localization length in the central part of the spectrum, as compared190

to chains with only nearest-neighbor interactions [18, 20, 21]; in effect the long-range inter-191

actions amplify the disorder. But for larger energies the localization length 〈ξk〉 (and the192

excitation number variance 〈∆n2
k〉) gradually increases [35, 45] and it exhibits a sharp peak193

near the upper edge of the energy band, 〈Ek〉 ≈ 2.4J . The states near the upper edge of194

the energy band are in fact completely delocalized, 〈ξk〉 ≈ N/2, at least for not too strong195

off-diagonal disorders that we consider. This behaviour is reminiscent to the emergence of196

extended states at the band edge for spin chains with diagonal disorder and long-range inter-197

actions Ji j ∝ 1/|ri j|ν with decreasing power ν, but for our case of off-diagonal disorder and198

ν= 3, the sharp peak is much more pronounced.199

Combined diagonal and off-diagonal disorder. Finally in Fig. 2(c1, c2) we show the mean200

localization length and the mean excitation number variance versus the mean energy for the201

chains with both diagonal and off-diagonal disorders that concurrently localize the system202

eigenstates. Now the (shifted) zero-energy peak is completely suppressed [42]while the eigen-203

states with the longest localization length reside between the center and the upper edge of the204

band skewed by the long-range interactions.205

To summarize, the important information gained by our analysis of the localization lengths206

in disordered spin chains is the maximum length of a finite chain that can support excitation207

transfer through an extended eigenstate. Conversely, when the chain length exceeds the maxi-208

mum localization length of the eigenstates, we expect the transfer to be completely suppressed.209

We note that in all cases when the obtained mean localization length is sufficiently shorter than210

the chain length, 〈ξk〉 < aN/2, the relation 〈∆n2
k〉 ≈

3
8
〈ξk〉
aN holds to a very good approxima-211

tion, which justifies our approach to characterizing the localization properties of disordered,212

long-range interacting spin chains.213

4 Excitation Transfer schemes214

The large localization length in a disordered spin chain is necessary but not yet sufficient215

to ensure efficient transfer of excitation between the sender and receiver spins. Rather, the216

extended eigenstates of the chain should have sufficient support at the two ends of the chain217

in order to strongly couple to the sender and receiver spins.218

Consider again the spin chain with long-range interactions and no disorder. Solving the219

eigenvalue problem220

H |ψk〉= Ek |ψk〉 , (7)

we obtain the eigenstates |ψk〉 =
∑

i v(k)i |i〉 which couple to the sender and receiver spins at221

the two ends of the chain with the corresponding strengths222

Ω(k)s = Jsv
(k)
1 , Ω(k)r = Jr v(k)N , (8)

7
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Figure 3: Absolute value of the product |v(k)1 v(k)N | of the boundary amplitudes of k-th
eigenvector of the chain vs the eigenenergy Ek (in units of J), for a chain of N = 61
spins with no disorder.

where Js and Jr are the coupling strength of the sender and receiver spins to the first and the223

last spins of the chain. Hence, in order to efficiently transfer the excitation from the sender224

to the receiver spin via a particular eigenstate |ψk〉 of the chain, this eigenstate should have225

large amplitudes |v(k)1,N | at both ends of the chain.226

In Fig. 3 we show the absolute value of the product |v(k)1 v(k)N | of the boundary amplitudes227

of the different energy eigenstates |ψk〉 of the chain with no disorder. This figure reveals that228

the eigenstates most suitable for the transfer are in the middle of the spectrum, Ek ∼ 0, while229

the eigenstates at the upper edge of the spectrum, Ek ≲ 2.4J , would only weakly couple to the230

sender and receiver spins and are thus unsuitable for the excitation transfer, despite having231

large (or even divergent) localization length in disordered chains. Having in mind the chains232

with both diagonal and off-diagonal disorder exhibiting the localization peak in the vicinity of233

E = −0.22J , we shall tune the energies of the sender and receiver spins to εs,r ≈ −0.22J .234

Another critical issue for the efficient transfer via the selected eigestates of the chain is the235

small leakage of excitation, initially at the sender spin, to all other non-resonant eigenstates of236

the chain [24,25]. In a chain of N spins, the average distance between the energy eigenstates237

is ∆E ≃ 4J/N . Therefore, the coupling strength of the sender and receiver spins, tuned to238

resonance to a particular eigenstate, should satisfy Ωs,r < ∆E. Since the amplitudes of the239

edge states for the most delocalized eigenstates are v(k)1,N ∼ 1/
p

N , we obtain from (8) that the240

coupling rates should satisfy Js,r ≲ J/
p

N in order to avoid the leakage of the excitation to the241

undesired states of the chain and attain high transfer probability [46].242

Static coupling to the chain. To illustrate the ongoing discussion, in Fig. 4 we show the243

dynamics of excitation transfer between the sender and receiver spins via spin chains of dif-244

ferent length N with no disorder. For convenience, we chose chains with odd number of spins,245

N = 11,21, . . ., and tune the energies of the sender and receiver spins εs,r to the energy of the246

“fittest” eigenstate closest to E = −0.22J .247

The state of the system in the single excitation subspace can be written as |Ψ〉= αs |s〉+
∑N

i=1αi |i〉+αr |r〉,248

where α j are the amplitudes and | j〉 denotes the state with the excitation at position j = s, r249

or i ∈ [1, N]. Initially the excitation is localized at the sender spin, |Ψ(0)〉 = |s〉, and the250

couplings Js,r are set to the constant values Js,r ≃ 0.5J/
p

N . The state of the system |Ψ(t)〉251

evolves according to the Hamiltonian (1), and the transfer probability to the receiver spin252

Pr(t) = |〈r|Ψ(t)〉|
2 is shown in Fig. 4(a). In a three-state system, complete transfer would253

8
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Figure 4: Excitation transfer via static couplings of the sender and receiver spins
with rates Js,r = 0.49J/

p
N to the chain of N spins with no disorder. (a) Transfer

probability Pr(t) vs time t (in units of 1/J) for different chain lengths N . The energies
of the sender and receiver spins εs,r are tuned to the energy of the eigenstate of the
chain closest to E = −0.22J . (b) Transfer time τ (gray filled circles), corresponding
to the first peak of the transfer probability in (a) for each chain length N . Dashed line
shows the linear fit τJ = 3.2N +2.3. (c) Time-evolution of the excitation probability
for the sender Ps(t), receiver Pr(t) and intermediate chain Pc(t), for a chain of N = 11
spins.

occur at time τ= π/(2
p

2Ωs,r). Our multilevel system now behaves as an effective three-state254

system with a single intermediate eigenstate of the chain, and the transfer time scales as τ∝ N255

consistently with Ωs,r∝ 1/N , see Fig. 4(b). In Fig. 4(c) we show the dynamics of probabilities256

of excitation of the sender spin, Ps(t) = |〈s|Ψ(t)〉|
2, the chain, Pc(t) =

∑N
i=1 |〈i|Ψ(t)〉|

2, and257

the receiver spin, Pr(t), during one full transfer cycle.258

Time-dependent adiabatic couplings. In a three-state system, a more efficient excitation259

transfer can be achieved using an analog of stimulated Raman adiabatic passage (STIRAP)260

[26–28]. It involves time-dependent couplings and must be sufficiently slow in order to be261

adiabatic, but is robust and avoids populating the intermediate – here the spin-chain – state(s).262

Consider an effective three-state system |Ψ〉 = αs |s〉 + αk |ψk〉 + αr |r〉 governed by the263

Hamiltonian264

Heff =∆εk |ψk〉 〈ψk|+ (Ω(k)s |s〉 〈ψk|+Ω(k)r |r〉 〈ψk|+H.c.) (9)

where ∆εk = Ek − εs,r is a possible energy mismatch between the selected eigenstate of the265

chain |ψk〉 and the sender and receiver spins. This Hamiltonian has a zero-energy coherent266

population trapping (or dark) eigenstate |Ψ0〉 ∝ Ω(k)r |s〉 − Ω
(k)
s |r〉 that does not involve the267

intermediate state |ψk〉 of the spin chain. With the excitation initially localized on the sender268

spin, we set the coupling |Ω(k)r | ≫ |Ω
(k)
s | such that the dark state coincides with the initial state,269

|Ψ0〉 = |s〉. We then slowly switch off Ω(k)r and switch on Ω(k)s , which results in an adiabatic270

rotation of the dark state |Ψ0〉 towards |r〉, and at the final time τ, when |Ω(k)r | ≪ |Ω
(k)
s |, we271

obtain |Ψ0〉 ≃ |r〉. To realize this so-called counterintuitive pulse sequence, we use the time-272

9
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Figure 5: Stimulated adiabatic transfer of excitation between the sender and re-
ceiver spin using time-dependent couplings of Eq. (10), for a chain with no disor-
der. (a) Transfer probability Pr(t) vs time t (in units of 1/J) for chains of different
length. (b) Transfer time τ (gray filled circles) as a function of N , and the linear fit
τJ = 14.1N + 6.9 (dashed line). (c) Top panel shows the time-dependent coupling
rates of rates Js,r(t) of Eq. (10), and the bottom panel shows the dynamics of exci-
tation probabilities of the sender Ps(t), receiver Pr(t) and intermediate chain Pc(t),
for N = 11.

dependent boundary couplings273

Js,r(t) =
Jmax

s,r

2

�

1± tanh (γt/τ− βs,r)
�

, (10)

where Jmax
s,r ≃ 0.5/

p
N as before, while the parameters γ = 6, βs,r = 2.3,3.6 and the process274

duration τ ∝ N are chosen so as to optimize the overlap between the pulses and achieve275

adiabaticity with sufficiently large effective pulse area
∫ τ

0 d t
q

|Ω(k)s (t)|2 + |Ω
(k)
r (t)|2 ≳ 10 [27,276

28]. We note that the adiabatic population transfer has been applied to multilevel systems277

before [47,48].278

In Fig. 5 we illustrate the adiabatic transfer protocol for chains of different length and time-279

dependent couplings of Eq. (10) but otherwise the same parameters as in Fig. 4. We achieve280

nearly perfect population transfer for all considered cases, see Fig. 5(a), at the expense of281

longer duration of the process τ, see Fig. 5(b). Note that during the transfer, as the system282

adiabatically follows the coherent population trapping state |Ψ0〉, the chain contains almost283

no excitation at all times, Fig. 5(c).284

5 Transfer probability in disordered chains285

Having determined the localization lengths ξ in long disordered spin chains in Sec. 3 and po-286

tentially suitable excitation transfer protocols in Sec. 4, we now analyze the mean probability287

〈Pr〉 of excitation transfer between the sender and receiver spins via disordered spin chains of288

finite length N comparable to ξ.289

10



SciPost Physics Core Submission

Figure 6: Mean excitation transfer probability 〈Pr〉 vs chain length N obtained upon
averaging over 1000 independent realizations of disordered chains with long-range
interactions (solid lines with filled circles and diamonds) and nearest-neighbor in-
teractions (dashed lines with light filled symbols) for (a) energy (diagonal) disorder
with standard deviations σε, (b) position (off-diagonal) disorder with standard de-
viation σx ,y or σJ , and (c) combination of energy and position disorder. We use the
static couplings of the sender and receiver spins Js,r = 0.49J/

p
N having energies

εs,r = −0.22J (εs,r = 0 for the nearest-neighbor interacting chains), and the evolu-
tion is terminated at t = τ of Fig. 4(b).

Static coupling to the chain. We first consider the static transfer protocol of Fig. 4 with fixed290

coupling rates Js,r ≃ 0.5J/
p

N of the sender and receiver spins having energies εs,r = −0.22J .291

With the excitation initially localized at the sender spin, we terminate the evolution when the292

excitation probability of the receiver spin attains its first maximum at t = τ of Fig. 4(b). In293

Fig. 6 we show the transfer probabilities 〈Pr〉 averaged over many independent realizations of294

disordered spin chains, involving spin-energy (diagonal) disorder, spin-position (off-diagonal)295

disorder, and the combination of the two. As expected, increasing the chain length N decreases296

the transfer probability which is due to the stronger disorder-induced localization of the eigen-297

states of the chain in the middle of the energy spectrum. We also observe that chains with only298

the nearest-neighbor interaction (with εs,r = 0) lead to better transfer probability, especially299

for the case of off-diagonal disorder, Fig. 6(b), which is consistent with their larger localization300

length under otherwise similar conditions, as discussed in Sec. 3 and seen in Fig. 2(b).301

Time-dependent adiabatic couplings. We finally consider the adiabatic transfer protocol of302

Fig. 5 with the time-dependent coupling rates of Eq. (10) applied to the sender and receiver303

spins in a counterintuitive order. In Fig. 7 we show the results of our numerical simulations304

for the transfer probabilities 〈Pr〉 averaged over many independent realizations of disordered305

spin chains. Compared to the static transfer protocol, the performance of adiabatic transfer is306

11
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Figure 7: Mean stimulated adiabatic excitation transfer probability 〈Pr〉 vs chain
length N obtained upon averaging over 1000 independent realizations of disordered
chains with long-range interactions (green solid lines with filled squares), compared
to the static transfer of Fig. 6 (blue solid lines with filled circles) for (a) energy (di-
agonal) disorder with standard deviations σε, (b) position (off-diagonal) disorder
with standard deviation σx ,y , and (c) combination of energy and position disorder.
We use the time-dependent couplings of Eq. (10) for the sender and receiver spins
having energies εs,r = −0.22J , with the transfer duration τ of Fig. 5(b).

significantly better for all chain lengths and any kind of disorder, be it diagonal, off-diagonal, or307

combination of both. We emphasize that in this study, we have focused on the spin excitation308

or polarization transfer probability. In contrast, coherent quantum state transfer is much more309

sensitive to diagonal disorder leading to larger dephasing during adiabatic transfer that is310

necessarily slower than the static transfer [49].311

6 Conclusions312

We have presented the results of our studies of disordered, one-dimensional, long-range in-313

teracting spin chains and their ability to transfer spin excitation or polarization over long dis-314

tances. We have performed detailed numerical investigations of the localization length in spin315

chains with either or both diagonal and off-diagonal disorder. Many of our results concur with316

the previously known and well-understood properties of disordered spin chains, but we have317

also encountered interesting manifestations of (de)localization of energy eigenstates that, to318

the best of our knowledge, have not been properly addressed before in the context of resonant319

dipole-dipole (1/r3) interactions, and thus may warrant further investigation. These, in par-320

ticular, include delocalization of the eigenstates at the upper edge of the shifted energy band321

in long-range interacting spin chains with off-diagonal disorder, and the modification of the322
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shifted zero-energy Dyson peak of localization length, which we found to be the most suitable323

eigenstate for the excitation transfer between the two ends of the chain.324

We have put forward two excitation transfer protocols: a) static protocol involving selective325

coupling of the sender and receiver spins to the suitable eigenstate of the chain, and b) time-326

dependent adiabatic protocol involving counter-intuitive sequence of couplings of the sender327

and receiver spins to the chain, inspired by stimulated Raman adiabatic passage technique328

widely used in atomic and molecular physics. We have found that the adiabatic transfer of329

excitation via disordered spin chains has much better performance for all chain length and330

any kind of disorder, be it diagonal, off-diagonal, or combination of both. This attests, once331

again, the usefulness of this universal method.332
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