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Abstract

The recent discovery of persistent revivals in the Rydberg-atom quantum sim-
ulator has revealed a weakly ergodicity-breaking mechanism dubbed quantum
many-body scars, which are a set of nonthermal states embedded in otherwise
thermal spectra. Until now, such a mechanism has been mainly studied in Her-
mitian systems. Here, we establish the non-Hermitian quantum many-body
scars and systematically characterize their nature from dynamic revivals, en-
tanglement entropy, physical observables, and energy level statistics. Notably,
we find the non-Hermitian quantum many-body scars exhibit significantly en-
hanced coherent revival dynamics when approaching the exceptional point.
The signatures of non-Hermitian scars switch from the real-energy axis to
the imaginary-energy axis after a real-to-complex spectrum transition driven
by increasing non-Hermiticity, where an exceptional point and a quantum
tricritical point emerge simultaneously. We further examine the stability of
non-Hermitian quantum many-body scars against external fields, reveal the
non-Hermitian quantum criticality and eventually set up the whole phase di-
agram. The possible connection to the open quantum many-body systems
is also explored. Our findings offer insights for realizing long-lived coherent
states in non-Hermitian many-body systems.
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1 Introduction

The quantum ergodicity governed by the eigenstate thermalization hypothesis (ETH) de-
picts most isolated quantum many-body systems locally evolving into an equilibrium sta-
tistical ensemble [1–4], and plays a fundamental role in bridging quantum physics and
statistical mechanics. Due to the quest for realizing long-lived coherent dynamics, tremen-
dous efforts have been devoted to the ergodicity-breaking mechanisms. It is well-known
that, in the presence of an extensive number of conserved quantities, such as the integrable
systems [5–8] and many-body localized (MBL) phase [9], the systems fail to thermalize
and strongly break ergodicity. In contrast, the quantum many-body scar (QMBS) sys-
tems [10–14], which have much fewer numbers of conserved quantities and are free of dis-
order, exhibit a distinct ergodicity breaking mechanism [15–28,28–37,37–44]. The QMBS
system typically consists of both thermal and nonthermal eigenstates, and is distinguished
by specific initial states experiencing periodic revivals, as first observed in an ultra-cold
Rydberg atom chain [45].

Until now, the ergodicity-breaking mechanisms are mainly focused on the ideal isolated
systems with Hermiticity. Nevertheless, perfect Hermiticity can be broken down [46–54].
The non-Hermiticity could either arise from the non-reciprocal process, such as the cold-
atom platforms [55–62] with spontaneous decay or imaginary field, or introduced by the
contact with thermal or nonthermal environments, namely the open quantum systems [63–
71]. Unlike the Hermitian systems, the study of the ergodicity breaking in many-body
non-Hermitian systems remains in the early stage.

The non-Hermiticity hosts many peculiar phenomena [see reviews [53, 71, 72] and ref-
erence therein] beyond the Hermitian framework, including complex-valued energy spec-
tra, a biorthonormal basis, the non-Hermitian quantum criticality and the exceptional
points (EP) with simultaneous coalescence of eigenvalues and eigenstates. In quantum
many-body systems, the interplay between strong interaction and non-Hermiticity may
cause unseen thermodynamic phenomena that are far from equilibrium, and thus it is of
fundamental importance to ask whether the features decisive for the thermalization/non-
thermalization in a Hermitian system still persist when one of the most fundamental
premises in quantum mechanics, i.e., Hermiticity, is broken non-perturbatively.

In a different context, the non-Hermiticity is also closely relevant to open quantum
systems. In reality, perfect isolated systems with Hermiticity hardly exist due to inevitable
contact with the environmental bath. The system coupled to a thermal bath usually relaxes
to a Gibbs ensemble with the temperature of bath [64–67], while the system coupled to a
nonthermal bath may host distinct thermalization mechanisms [68,69] due to the arbitrary
nonunitary process. Theoretically, the open quantum system is commonly described by
the Lindblad master equation [63]. Alternatively, the dynamics of open quantum systems
could also be captured by a non-Hermitian Hamiltonian under certain circumstances, for
instance, when quantum jumps can be neglected under the postselection [70] or in semi-
classical systems [71]. Then the investigation of non-Hermitian many-body Hamiltonian
is insightful for open many-body systems.

Previous studies have made considerable progress on the strong ergodicity breaking and

2



SciPost Physics Submission

⭐⭐

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

h

γ I

Non-Hermitian

QMBS

II

III

Figure 1: Ground-state phase diagram and excited-state properties. We identify three
distinct phases (I, II, III) of model Hamiltonian [5] as a function of γ and h, the phase
boundaries of which are determined by the derivatives of the ground-state energy and the
fidelity susceptibility. The triangles (circles) are quantum critical points of continuous
(first-order) quantum phase transitions driven by the external fields h (strength of non-
Hermiticity γ). The red star denotes the quantum tricritical point, which is an exceptional
point (EP) and also features a real-to-complex energy spectrum transition. Moreover,
by probing the excited-state properties from the dynamics of quantum fidelity for |Z2〉
(Fig. 2a), the entanglement entropy (Fig. 4a), the physical observable (Fig. 4b) and the
energy level statistics (Fig. 5), we identify that the non-Hermitian many-body scarred
states exist in parameter regime (I) with real energy spectra. The phase diagram is
determined with data steps ∆h = 0.005,∆γ = 0.005 for N = 26 system.

non-Hermitian ergodicity [41, 73–79]. However, whether the weak ergodicity breaking ex-
ists in the presence of non-Hermiticity is still elusive both theoretically and experimentally.
Motivated by the above, in this work, we propose a weak ergodicity breaking mechanism in
non-Hermitian systems from QMBS in a non-perturbative way, named the non-Hermitian
QMBS, and characterize their nature via the periodic many-body revivals in dynamics,
the entanglement entropy, the physical observables and the energy-level statistics using
both the bi-orthogonal and self-normal eigenstates [80, 81]. We examine their stability in
the presence of external fields, find their critical features when approaching the excep-
tional point, reveal the non-Hermitian quantum criticality, and finally establish the whole
ground-state phase diagram with corresponding excited-state properties, as illustrated in
Fig. 1. Interestingly, we find that the fingerprints of non-Hermitian scarred states switch
from the real-energy axis to the imaginary-energy axis after a real-to-complex spectra
transition, where an exceptional point and a quantum tricritical point emerge simultane-
ously. In particular, we find that the non-Hermitian QMBS exhibit longer revival periods
and become fragile as the non-Hermiticity strength increases in the real-spectrum region,
but they still exhibit substantial stability. The insights into the scarred dynamics in an
open system are also discussed. Our construction of the non-Hermitian QMBS might be
probed via the newly developed measurement of the non-Hermiticity or future advanced
techniques in ultracold-atom platforms [45,55–61].
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2 Model setup and Methods

Before establishing the non-Hermitian quantum many-body scar, we first introduce the
Hermitian counterparts realized in a Rydberg-atom quantum simulator [45, 82] with the
Hamiltonian

HRyd =

N∑
i=1

(
Ω

2
σxi + ∆ni

)
+
∑
i<j

Vi,jninj . (1)

Here, σxi = |gi〉〈ri|+|ri〉〈gi| couples an atom between the ground state |gi〉 and the Rydberg
excited state |ri〉 at position i, which is realized by a two-photon transition and driven
at Rabi frequency Ω. ∆ denotes the strength of the laser detuning and ni = |ri〉〈ri|.
The potential Vi,j ∝ 1/R6

i,j characterizes the van der Waals interaction between atoms
in Rydberg states at a distance Ri,j . In the limit of strong nearest-neighbor interactions
Vi,i+1 � Ω, the system can be effectively described by

HPXP =
N∑
i

Pi−1σ
x
i Pi+1 , (2)

without simultaneous Rydberg excitations of nearest neighbors [10,11], where Pi = (1− σzi ) /2
is a projection operator with σzi = |ri〉〈ri|−|gi〉〈gi|. Here we introduce the non-Hermiticity
by generalizing the symmetric coupling between |ri〉 and |gi〉 to be non-reciprocal, i.e.,

|gi〉〈ri|+ |ri〉〈gi| → (1− γ) |gi〉〈ri|+ (1 + γ) |ri〉〈gi| , (3)

so as to yield a non-Hermitian many-body Hamiltonian,

HnH-PXP =

N∑
j

Pj−1

(
σxj + iγσyj

)
Pj+1 , (4)

where the parameter γ ∈ R denotes the strength of non-Hermiticity. Incidentally, the
non-Hermitian term in Eq. (4) could also be regarded as the application of an imaginary
magnetic field [62]. In the following, besides establishing and characterizing the non-
Hermitian QMBS states, we will also examine their stability against an external magnetic
field h ∈ R. The whole Hamiltonian can be written as

H = HnH-PXP +

N∑
j

hσzj . (5)

To examine the whole spectrum of the model Hamiltonian (5) as a function of γ, h, we
use the exact diagonalization (ED) approach. We utilize both the translational symmetry
and the spatial inversion symmetry under the periodic boundary condition (PBC), which
enables us to fully diagonalize the Hamiltonian up to N = 32 sites. The quantum number
of the momentum is labelled as k (k = 2πm/N with m = −N/2, · · · , N/2), while the
inversion symmetric or anti-symmetric sector is denoted as I (I = +,−). The quantum
many-body scarred states are located in the (k, I) = (0,+) and (k, I) = (π,−) sectors,
both of which give similar results, we therefore mainly focus on the (k, I) = (0,+) sector
with Hilbert space dimension up to D = 77, 436 for N = 32 system.
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Figure 2: Exceptional points and quantum critical points. a The real part of the gen-
eralized fidelity susceptibility Re (χ0) with respect to the strength of non-Hermiticity γ.
We remark that the real parts of the eigenenergies are all zero for γ > 1 and h = 0.
Thus, to depict the behavior of the imaginary eigenenergies at such parameter region,
here we take the states with the lowest imaginary parts of the eigenenergies as ground
states. The divergence of Re(χ0) towards negative infinity when approaching γc = 1 sig-
nifies an exceptional point (EP). b The first order derivative of the ground-state energy
with different fixed magnetic field h and the singularity characterize the quantum phase
transitions driven by tuning the strength of non-Hermiticity γ. c The real part of the
generalized fidelity susceptibility Re (χ0) as a function of the external fields h. The inset
shows the finite-size scaling of the maxima of Re (χ0), where linear fit suggests the critical
exponent v ≈ 1. d The entanglement entropy of the ground states SvN as a function of the
subsystem length LA for N = 28 system. At the critical points, the numerical data can
be fitted through SvN ∼ c/3 ln(sin(πLA/N))+ const. (dashed gray lines) with the central
charge c = 1/2.

3 Results

3.1 Non-Hermitian quantum criticality

We begin with establishing the ground-state phase diagram using the bi-orthogonal eigen-
states in the γ-h plane before examining the excited-state properties. As shown in Fig. 1,
the black triangles and the circles denote the boundaries of phases (I, II, III). A quan-
tum tricritical point (red star) emerges at (γ, h) = (1, 0), which is also an exceptional
point (EP) and a real-to-complex spectrum transition point simultaneously. Here, for the
consistency of the definition, we define the ground state as the state with the smallest
real eigenenergy like in Hermitian systems unless stated otherwise, and our main focus
phase (I) has fully real eigenvalues. To examine the phase boundaries, we compute both
the derivatives of the ground-state energy and the fidelity susceptibility. We adopt the
generalized fidelity F ,

F(λ, δλ) = 〈ψL(λ)|ψR(λ+ δλ)〉〈ψL(λ+ δλ)|ψR(λ)〉 , (6)
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Figure 3: The quantum fidelity in dynamics. a The fidelity dynamics of initial |Z2〉 state
f(t) = |〈Z2|Z2(t)〉|2 exhibits coherent periodic revivals with period T in phase (I) (green)
but collapses abruptly in phase (II) (yellow). The Hermitian case (blue) is depicted for
comparison. b The revival period T as a function of the non-Hermiticity strength γ at
h = 0, which exhibits divergent behavior when approaching the exceptional point (γ, h) =
(1, 0). c The overlap between eigenstates and the |Z2〉 state with respect to eigenenergies.
Red dots denote non-Hermitian quantum many-body scarred states with approximate
equal energy spacing ∆E = 2π/T . Data shown are for N = 26 and γ = 0.5, h = 0 in the
zero and π-momentum sector.

where |ψL〉 (|ψR〉) is the bi-orthogonal left (right) eigenvectors satisfying

H |ψR〉 = E|ψR〉, H† |ψL〉 = E∗|ψL〉. (7)

The corresponding fidelity susceptibility χ can be obtained via

χ(λ) ≈ (1−F) /δλ2. (8)

Physically, the divergence of χ towards negative infinity signifies EPs [83–85].
We first probe the quantum phase transitions when tuning the non-Hermiticity strength

γ. At h = 0, as shown in Fig. 2a, the real parts of the ground-state fidelity susceptibility
Re (χ0)→ −∞ with increasing system length when approaching γc = 1 from its two sides,
which demonstrates an EP. The first-order derivative curve dE0/dγ also displays a singu-
larity at γc (see Fig. 2b). These observations of EP are consistent with the evolution of
the energy spectra, where the whole real spectra at γ < 1 develop into complex conjugate
pairs at γ > 1, separated by a transition at γc = 1. The quantum phase transitions at
other fixed fields h can also be identified similarly [see Fig. 2b], as denoted by the circles
in Fig. 1.

By contrast, we find the Hamiltonian exhibits a continuous phase transition when
tuning the magnetic field h at γ < 1. Figure 2c shows Re (χ0) as a function of h for
different system lengths N , where the smooth curve as well as the increasing maximal
values of Re (χ0) with N indicate the continuity of such a phase transition, which can also
be confirmed by the absence of singularities in the first-order derivative curve dE0/dh. We
further analyze the critical exponent ν and the central charge c. The critical exponent
ν can be directly extracted from the fidelity susceptibility via Re (χ0)max = L2/ν−1 [81,
86], as shown in the inset of Fig. 2c, where the linear fitting demonstrates ν = 1. The
central charge can be obtained from the generalized bipartite von Neumann entanglement
entropies (definition see below) with different subsystem length LA through

SvN ∼ c/3 ln (sin(πLA/N)) + const . (9)

The logarithmic fitting in Fig. 2d indicates a finite central charge c = 1/2. Here we notice
that the critical exponent ν and the central charge c are the same as the phase transition
reported in the Hermitian limit (i.e., γ = 0) [87–90], indicating the same universality
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class might be generalized to the non-Hermitian case. When γ = 0 and h → ∞, the
ground states are two-fold degenerate due to the projection constraint, both breaking the
Z2 symmetry and violating thermalization. In particular, we find a quantum tricritical
point when the above two phase transitions meet at the EP (γ, h) = (1, 0).

3.2 The periodic revivals and overlaps of specific states

We have established the ground-state phase diagram in the above. Below we further
examine the excited-state properties and show that the non-Hermitian QMBS states exist
in the parameter regime of phase (I).

The existence of many-body scarred states in the phase (I) can be inferred by the
periodic revival of the quantum fidelity for the experimentally realizable antiferromagnetic
state |Z2〉 ≡| r1g2r3g4 . . .〉 (c.f. Fig. 3a), manifesting a long-time memory of the initial
state in the non-Hermitian many-body systems. The revival period T corresponds to a
characteristic energy interval ∆E of the scarred states through the relation T = 2π/∆E.
Strikingly, we find such revival period T tends to diverge when approaching the exceptional
point (γ, h) = (1, 0), as depicted in Fig. 3b. This observation suggests the enhanced
coherence time in revival dynamics with increasing the non-Hermiticity strength towards
an exceptional point.

Moreover, the eigenstates that have large overlap with the initial product state |Z2〉 in
Fig. 3a are embedded in the energy spectrum with approximate same energy spacing ∆E,
as depicted by red dots in Fig. 3c. The number of such states is equal to the system size
N . Since the features of these eigenstates in the non-Hermitian many-body system are
similar to the Hermitian QMBS, we dub them non-Hermitian QMBS. Besides exhibiting
a longer revival period T compared to the Hermitian PXP model at (γ, h) = (0, 0), the
non-Hermitian QMBS in phase (I) also become more fragile against the external field h
with increasing non-Hermitian strength γ. In contrast to phase (I), such revivals of the
initial product state |Z2〉 are absent in phase (II), exhibiting distinct features of excited
states in these two phases.

3.3 Entanglement entropy and physical observables

Below we will show that the non-Hermitian QMBS can also be characterized by the abnor-
mally low entanglement entropy and the eigenstate expectations of physical observables
that deviate from those in the bulk spectrum.

In Hermitian many-body systems, entanglement entropy is a complementary way to
examine thermalization. We generalize the von Neumann entanglement entropy to non-
Hermitian many-body systems. We consider the non-Hermitian density matrix of the nth
state ρn defined by

ρn = |ψR,n〉 〈ψL,n| (10)

with the biorthonormal relation 〈ψL,n|ψR,m〉 = δnm [80], and study a generic complex
entanglement entropy

SvN = −TrA (ρA,n ln |ρA,n|) , (11)

in the non-Hermitian many-body system [91–93]. Here, ρA,n is the reduced density matrix
for subsystem A after tracing out the rest of the system. Figure 4a shows one typical
example of the generalized SvN in the phase (I) at γ = 0.1 and h = 0. In contrast to the
highly entangled state, there are a set of eigenstates exhibit abnormally low entanglement
with approximately equal energy difference, as marked by the red dots. Here, we point out
that these non-Hermitian scarred states are all located at the k = 0, π momentum sectors,
which also resemble the Hermitian counterparts. Notably, we find large overlaps between
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Figure 4: Entanglement entropies and physical observables. Panels (a, c, e) show the
generalized bipartite von Neumann entanglement entropies SvN (a, c) and SR

vN (e) with re-
spect to eigenenergies for all eigenstates. The non-Hermitian quantum many-body scarred
states exhibit lower entanglement entropy and are highlighted by red dots. The values
of overlaps between scar states at γ = 0 and the corresponding left (right) scar states at
γ = 0.1 are written in black (green) color in a alongside the associated states. Panels (b,
d, f) show the generalized expectations of local observables 〈mz〉 (b, d) and 〈mz〉R (f),
the scarred states (red dots) are clearly distinct from other states and are exactly the ones
identified from the entanglement entropy. All the calculations presented here are for the
systems with length N = 28 in the momentum sector k = 0 at h = 0.
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Figure 5: Typical examples of energy level spacing statistics for three phases. a Phase
(I) with h = −0.3, γ = 0.5. b Phase (II) with h = −0.7, γ = 0.5 c Phase (III) with
h = 0, γ = 1.2. As comparison, Wigner-Dyson (WD) statistics of the Gaussian orthogonal
ensemble (GOE) πs/2e−πs

2/4 (dashed black), semi-Poisson (SP) statistics 4s−2s (dashed
red) and Poisson (P) statistics e−s (dashed blue) are plotted. Here, we consider the zero-
momentum inversion-symmetric (k, I) = (0,+) sector under periodic boundary condition
(PBC), for which we eliminate 20% of the eigenenergies found at the spectrum’s edges and
perform the spectrum unfolding. d Density plot of the complex ratio z at h = −0.3, γ = 1.2
in the complex plane for the systems with length N = 32, the suppressed ratio density
around the origin and for small angles of z suggests the significant level repulsion.

the scarred states at γ = 0 and the corresponding left (right) scarred states at γ = 0.1, the
values of which are indicated in black (green) color in Fig. 4a. When approaching the EP
(γ, h) = (1, 0) along h = 0, such typical entanglement entropy structure of non-Hermitian
QMBS still persistent. As for the self-normal assumption 〈ψR,n|ψR,n〉 = 1, Fig. 4e shows
the self-normal entanglement entropy

SR
vN = −TrA

(
ρR
A,n ln

∣∣ρR
A,n

∣∣) , (12)

with ρR
n = |ψR,n〉〈ψR,n| at (h, γ) = (0, 0.5), where the typical low entanglement outliers

with nearly equal energy difference (marked by red dots) are still existent. These results
illustrate that the features of QMBS states are relatively robust over the non-Hermitian
parameter space with both biorthonormal and self-normal assumption.

Physical observables can also identify the violation of the thermalization for these
non-Hermitian scarred states. We examine the expectation value of the magnetization
mz ≡

∑
i σ

z
i /N of all eigenstates. Here, both the expectation value with the biorthonormal
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Table 1: Averaged 〈r〉 and 〈cos θ〉 for different system sizes N . Typical values of Gini-
bre and Poisson distribution are also given. The averaged values converge to Ginibre
distribution with an increasing N .

N = 32 N = 30 N = 28 Ginibre Poisson

〈r〉 0.737 0.753 0.737 0.74 2
3 ≈ 0.667

〈cos θ〉 −0.181 −0.150 −0.119 −0.24 0

eigenvectors 〈mz〉 ≡ 〈ψL |mz|ψR〉 and self-normal eigenvectors 〈mz〉R ≡ 〈ψR |mz|ψR〉 are
considered. Due to the translation symmetry, we have 〈mz〉 = 〈ψL |σz1 |ψR〉 and 〈mz〉R =
〈ψR |σz1 |ψR〉. As shown in Fig. 4b, f, we find that a series of states (denoted by red dots)
with maximal 〈mz〉 and 〈mz〉R have approximately equal energy-level spacing, and are
distinct from other states clearly, similar to the violation of ETH in Hermitian systems. In
particular, these special states are exactly the non-Hermitian QMBS states characterized
by the low entanglement entropy in Fig. 4a,e. Thus, these eigenstate characters decisive
for the weak ergodicity breaking in a Hermitian system still exist in non-Hermitian many-
body physics.

Interestingly, in case of complex energy spectra at γ > 1, h = 0, we also find a set of
eigenstates (marked as red dots in Fig. 4c,d) with low entanglement entropy and maximal
expectation values of 〈mz〉 but with respect to the imaginary part of eigenenergy. These
states are analogous to the non-Hermitian scarred states at γ < 1.

3.4 Energy level statistics

Besides the above-mentioned characteristics of the non-Hermitian QMBS, in this section,
we further reveal their chaotic nature by the eigenenergy level-spacing distributions and
ratios.

Figures 5a-c show the nearest-level-spacing distribution P (s) of the statistics parameter
sn = |En+1 − En| for real or imaginary spectrum, where the En are increasingly ordered
according to the real or imaginary part, respectively. In phase (I) with non-Hermitian
QMBS, as shown in Fig. 5a, although the scarred states have low entanglement entropy,
the bulk of the unfolded level statistics displays a Wigner-Dyson (WD) distribution [94,95],
indicating a prominent feature of the quantum chaos, which rules out the previously known
examples of non-ergodic cases in non-Hermitian systems [73]. Here, we remark that a
chaotic non-Hermitian system is expected to follow Ginibre statistics [75]. However, when
the complex spectra become totally real, one may still expect the WD distribution for a
chaotic system [75], as in our phase (I) case.

In phase (II), we find the level-spacing statistics resemble semi-Poisson (SP) statistics
near the criticality [c.f. Fig. 5b], at least for the largest system we have reached. As non-
universal statistics, SP distribution displays the intermediate statistics between Poisson
and WD, and it is typical of the pseudointegrable systems [96]. Here the slight deviation
from SP might be induced by the finite size effect. Remarkably, when the whole spectra
become imaginary at γ > 1, h = 0 in phase (III), Fig. 5c shows that the level statistics
tend to approach the WD distribution, exhibiting the same feature as the phase (I) with
non-Hermitian QMBS.

The energy spectra become complex at finite external field h. To avoid the ambiguity
of unfolding complex spectrum, we instead consider the complex level-spacing ratios [97]

zn =
ENN
n − En

ENNN
n − En

. (13)
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Figure 6: Quantum fidelity by the Lindblad master equation. Evolution of the quantum
fidelity f(t) exhibits pronounced revivals for initial product state |Z2〉, similar to the
periodic revivals obtained by the non-Hermitian model in Eq. (5). By contrast, other
initial states like |Z3〉 and |Z4〉 show a complete absence of quantum revivals. Here,
parameters are γ = 0.5 and h = 0 for N = 14 system with periodic boundary condition.

Here, En is referred to as the nth real or complex eigenenergy, of which the nearest neigh-
bor and next-to-nearest neighbor in the complex plane are ENN

n and ENNN
n respectively.

Moreover, when the distribution of z is anisotropic, we also consider the radial and angu-
lar marginal distribution with the relation z ≡ reiθ. We calculate the radial and angular
marginal distributions of the complex ratio z based on

P (r) =

∫
dθrP (r, θ), P (θ) =

∫
drrP (r, θ) (14)

to get the means

〈r〉 =

∫
drP (r)r, 〈cos θ〉 =

∫
dθP (θ) cos θ . (15)

Here, statistics of the complex ratio z are taken from eigenenergies lying within 80% of
the real and imaginary parts from the middle of the spectrum in the zero-momentum
inversion-symmetric (0,+) sector. As shown in Fig. 5d for (h, γ) = (−0.3, 1.2), we find
strongly suppressed ratio density around the origin and for small angles of z, demonstrating
the significant level repulsion in this phase. We further compare the averaged 〈r〉 and
〈cosθ〉 with Ginibre and Poisson distributions. As shown in Table 1, there is an apparent
convergence of our results to the average values of Ginibre distribution with the increase
of N . Our results of the complex level spacing ratios numerically demonstrate that the
energy spectrum in phase III shows Ginibre distribution, a key feature of quantum chaos
in systems with complex spectra.

3.5 Connection to open quantum many-body systems

Now we discuss the potential connection of the non-Hermitian QMBS to the open quantum
many-body systems. We will show that, the weak ergodicity breaking in our non-Hermitian
model is insightful for slow relaxation dynamics of certain initial states in open quantum
many-body systems [98] under certain circumstance.

Generally, an open quantum many-body system can be described by the Lindblad
master equation [63,70]

ρ̇ = −i(HnHρ− ρH†nH)+D(ρ) , (16)
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where D(ρ) =
∑

j LjρL
†
j denotes quantum jumps and HnH corresponds to an effective

non-Hermitian Hamiltonian. The Lindblad operators Li are related to the non-Hermitian
terms in HnH via (details see Appendix)

− i
2
L†jLj = iγ

(
g − Pj−1σ

y
jPj+1

)
, (17)

where g is a purely imaginary constant to ensure the semi-positive definiteness. We com-
pute the evolution of quantum fidelity for certain initial states by the Lindblad mas-
ter equation and compare their relaxation dynamics with those obtained from our non-
Hermitian model in Eq. (5). Remarkably, as shown in Fig. 6 for γ = 0.5, the experi-
mentally realizable |Z2〉 initial product state [45, 82] exhibits long-time periodic revivals
when a constant shift g is large, similar to the behavior of quantum many-body scars
shown in Fig. 3a. By contrast, for other initial states like |Z3〉 and |Z4〉, we do not find
any pronounced revivals in the fidelity. To understand such observations, we provide an
alternative interpretation based on a perturbative analysis in the large g limit, where the
quantum jumps and non-Hermicity get suppressed (see Appendix for details), leading to
an effective description of open quantum systems in the weak non-Hermiticity limit of
Eq. (5).

4 Summary and Discussion

In this work, we study the exemplary mechanism of the weak ergodicity breaking in non-
Hermitian many-body systems, named as non-Hermitian QMBS, in a non-perturbative
manner. Using both the bi-orthogonal and self-normal eigenstates, we systematically
characterize the non-Hermitian QMBS from the perspectives of the quantum revivals
in dynamics, the eigenstate entanglement entropy in quantum information, the physical
observables measurable in quantum simulation, and quantum chaos in statistical physics.
Moreover, we also illustrate the robustness of non-Hermitian QMBS both against external
field and the influence of EP, reveal the non-Hermitian quantum criticality and establish
the whole ground-state phase diagram. Notably, in contrast to the Hermitian QMBS, we
find the enhanced coherent revival dynamics of non-Hermitian QMBS near the exceptional
point. Finally, the instructive insights on scarred quantum dynamics in open quantum
many-body systems are provided and the connection is analyzed in the perturbative limit.

For the Hermitian QMBS realized in the Rydberg-atom quantum simulator [45], the
symmetric coupling between the ground state and the Rydberg state is induced by a
two-photon process via an intermediate level. Recently, much effort has been devoted to
realizing the non-Hermiticity in cold-atom platforms [55–61], notably the Rydberg atoms
[58, 59]. By tuning the coupling non-symmetrically [61], or by applying the imaginary
magnetic field [62], our results are likely to be verified in recent experimental platforms
or in future developed platforms. The non-Hermitian QMBS proposed in this work may
also stimulate more experimental activities to realize long-lived coherent states storing the
initial quantum information in open quantum many-body systems.

Our work might serve as a starting point to investigate the weak ergodicity breaking
mechanism in the absence of Hermiticity. It would be interesting to study the quantum
many-body scars in other non-Hermitian many-body systems or models, which may have
distinct mechanisms from the non-Hermitian PXP model. Further investigations on the
connections of non-Hermitian QMBS to open systems beyond the perturbative limit is also
fundamentally important to deepen our understanding. In addition, it may also stimulate
future studies on the interplay among thermalization, the non-Hermiticity, and the strong
correlations in many-body systems.
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In this appendix, we give details for the correspondence between the non-Hermitian
Hamiltonian and a master equation of Lindblad form

A Correspondence to a master equation of Lindblad form.

We present the explanatory details on the correspondence between the non-Hermitian
model in Eq. (5) and an open system whose dynamics can be described by a master
equation of the Lindblad form.

A master equation of the Lindblad form describes quantum dynamics of an open system
that is bathed in an environment under Markov approximation. In general, we can write
the master equation as (with } = 1)

ρ̇ = −i
(
HnHρ− ρH†nH

)
+D(ρ) , (18)

where HnH is a non-Hermitian Hamiltonian and is composed of two parts: the Hermitian
H0 and the non-Hermitian − i

2L
†
jLj ,

HnH = H0 −
∑
j

i

2
L†jLj (19)

with Lj being the Lindblad operators. The last term D(ρ) =
∑

j LjρL
†
j in Eq. (18) are

quantum jump terms. When the quantum jump term can be neglected, the HnH will play
a role in dominating the dynamical processes.

The main step towards the correspondence is to construct the Lindblad operator with
respect to the non-Hermitian Hamiltonian in Eq. (5) in the main text. For this purpose,
we can introduce a constant shift term g to our model in Eq. (5) in the main text to ensure
g − Pj−1σ

y
jPj+1 semi-definite, and then the Lindblad operators Lj can be determined by

the following equation,

−iγ
(
g − Pj−1σ

y
jPj+1

)
= − i

2
L†jLj (20)

We remark that the constant shift term g imposes no influence on the eigenstates. When
g > 1, we can express the Lindblad operators Lj perturbatively. For the leading orders,
we have

Lj =
√

2gγ

[
1− 1

2g

(
1 +

1

8g2

)
Pj−1σ

y
jPj+1

− 1

8g2
Pj−1Pj+1

]
+O

(√
g

g3

)
.

(21)

As a directed consequence, the quantum jump termsD(ρ) further make extra contributions
to non-Hermitian terms by observing

D(ρ) = γ
∑
j

[
2gρ−

{
(1 +

1

8g2
)Pj−1σ

y
jPj+1

+
1

4g
Pj−1Pj+1, ρ

}
+

1

2g
Pj−1σ

y
jPj+1ρPj−1σ

y
jPj+1

]
, (22)

where {·, ·} is an anti-communication bracket and the last term in Eq. (A5) instead is the
leading effective jump term. By ignoring the new quantum jump terms in Eq. (A5), we
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obtain an effective non-Hermitian Hamiltonian

Heff =
∑
i

(Pi−1σ
x
i Pj+1 − i

γ

8g2
Pi−1σ

y
i Pi+1

− i γ
4g
Pi−1Pi+1 + hσzj ) .

(23)

Clearly, non-Hermiticity gets suppressed when g increases. Thus, the corresponding open
system can show a significant weak-ergodicity breaking with a long-time revival of an
initial state in Fig. 6 of the main text. In this sense, we conclude that the non-Hermitian
Hamiltonian in Eq. (5) of the main text offers instructive insights for understanding the
quantum many-body scarred dynamics in an open system based on the well-established
correspondence.
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