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We derive the response of non-Hermitian topological phases with intrinsic point gap topology to
localized magnetic flux insertions. In two spatial dimensions, we identify the necessary and sufficient
conditions for a flux skin effect that localizes an extensive number of in-gap modes at a flux core.
In three dimensions, we furthermore establish the existence of: a flux spectral jump, where flux tube
insertion fills up the entire point gap only at a single parallel crystal momentum; a higher-order flux
skin effect, which occurs at the ends of flux tubes in presence of pseudo-inversion symmetry; and a
flux Majorana mode that represents a spectrally isolated mid-gap state in the complex energy plane.
We uniquely associate each non-Hermitian symmetry class with intrinsic point gap topology with
one of these cases or a trivial flux response, and discuss possible experimental realizations.

I. INTRODUCTION

Gapped Hermitian topological phases can be differenti-
ated from trivial phases, as well as between each other, by
a quantized response to local magnetic fluxes [1–9]. Such
fluxes take the form of zero-dimensional (0D) flux cores
(vortices) in two dimensions (2D), or one-dimensional
(1D) flux tubes in three dimensions (3D). In particular,
in presence of a symmetry that quantizes the magnetic
flux ϕ through a plaquette (stack of plaquettes) of a 2D
(3D) lattice – most commonly to values ϕ = 0, π – topo-
logical insulators generically host flux-localized bound
states [10]. In 2D, these states may be constrained to
occur at zero energy by a spectral symmetry such as the
particle-hole symmetry of (mean-field) superconductors.
For example, magnetic vortices in a 2D p + ip super-
conductor are known to host unpaired Majorana zero-
modes [11, 12]. Without spectral symmetry, flux bound
states in 2D systems can be moved out of the gap, but
may still contribute to a filling anomaly of the ground
state that cannot be trivialized without breaking a sym-
metry or closing a gap [13]. In 3D, flux bound states fall
into two categories: in the first case, they form a gapless
state localized along the 1D flux tube, as is the case for
π-flux tubes in 3D time-reversal symmetric topological
insulators [3–9]. In the recently discovered second case,
the flux tube ends bind 0D states that give rise to a fill-
ing anomaly or are pinned to zero energy by a spectral
symmetry [14]. This latter case is realized in higher-order
topological phases protected by crystalline symmetries.

The goal of our present work is to generalize the theory
of flux bound states to non-Hermitian (NH) topological
phases that break energy conservation. Such phases have
generated increased interest recently due to their uncon-
ventional bulk-boundary correspondence [15–25]. Fun-
damentally, there exist two kinds of NH systems [15–
18]: Hamiltonians H with a line gap in their complex
energy spectrum can be adiabatically (without closing
the line gap) deformed to purely Hermitian (H† = H)
or anti-Hermitian (H† = −H) Hamiltonians. On the
other hand, Hamiltonians without any line gap may still
host a point gap – a region of complex energy that is

devoid of, but surrounded by, eigenstates. Point-gapped
systems without a line gap cannot be adiabatically de-
formed to any (anti-)Hermitian limit, and therefore re-
alize intrinsically NH topology. A prime example is the
1D Hatano-Nelson chain [26–28] in NH symmetry class
A (no symmetries) whose bulk winding number invari-
ant W ∈ Z in periodic boundary conditions (PBC) re-
sults in the NH skin effect under open boundary condi-
tions (OBC): when W ̸= 0, an extensive number of (al-
most all) OBC eigenstates accumulate at only one edge
of the system [29–37]. While this observation is remi-
niscent of a bulk-boundary correspondence, it is unclear
how the OBC spectrum may crisply differentiate between
systems with different nonzero W . To alleviate this is-
sue, we here employ the NH pseudospectrum that con-
sists of the collection of spectra associated with all O(ϵ)-
deformed Hamiltonians (see Sec. IIA for details) [38–40].
The pseudospectrum reduces to the spectrum in the Her-
mitian case, but represents the more physically adequate
quantity in the NH case: if a state fails to be an eigen-
state only by O(ϵ) terms, then it behaves as an eigen-
state with respect to realistic measurements. Moreover,
the pseudospectrum restores the full bulk-boundary cor-
respondence of NH point-gapped systems: for instance,
a Hamiltonian with nonzero bulk winding number W
has a pseudospectrum that fills the point gap and is
W -fold degenerate in presence of boundaries [39]. In
the thermodynamic limit, the pseudospectrum is equiv-
alent to the spectrum in semi-infinite boundary condi-
tions (SIBC) [38–40]. Correspondingly, we characterize
the flux response of NH systems by their SIBC spectrum
in presence of flux defects. We exclusively focus on NH
phases with intrinsic point gap topology, which were clas-
sified in all 38 NH symmetry classes in Refs. 16 and 39:
in addition to stability under manipulations preserving
point gap and symmetry class, these phases cannot be
trivialized even when coupling with arbitrary NH line-
gapped phases is allowed.

We find that, depending on the NH symmetry class,
the flux response of intrinsically NH point-gapped phases
falls into one of 5 classes:
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(1) No flux response: Some NH phases have a trivial
flux response even when their bulk is topologically
nontrivial.

(2) Flux skin effect: Inserting a π-flux core in a 2D NH
system can induce a skin effect response where a
macroscopic number of OBC eigenstates localizes at
the flux core [39]. Concomitantly, the SIBC spectrum
in presence of flux fills up the entire point gap in the
complex energy plane. This effect is similar to the
dislocation skin effect of Refs. 41 and 42, with the
important distinction that it does not rely on (dis-
crete) translational symmetry and therefore probes
strong instead of weak NH topology [14].

(3) Flux spectral jump: Threading a 1D π-flux tube
through a 3D NH system with nontrivial point gap
topology can result in a spectral jump as the momen-
tum coordinate k∥ along the flux tube is varied. In
particular, the SIBC spectrum in presence of flux re-
mains gapped at generic values of k∥, but completely
fills up with an extensive number of states at one of
the two special points k∥ = 0, π. Such a gapless NH
dispersion cannot be realized in any purely 1D lat-
tice system, and therefore represents an intrinsically
NH anomalous 1D state. We note that a purely 1D
system cannot realize a filled point gap at a single
momentum, as there is only a finite Hilbert space
available at any given momentum. Instead, the dis-
continuity in the 1D flux tube dispersion described
here capitalizes on a topologically nontrivial 2D bulk.

(4) Higher-order flux skin effect: Even when the SIBC
spectrum of a 3D NH phase in presence of a 1D
flux tube is fully gapped (does not exhibit a spec-
tral jump), preserving crystalline pseudo-inversion
symmetry [43–51] may result in a nontrivial higher-
order response. In this case, an extensive number
of eigenstates accumulates at the ends of flux tubes
when these terminate at sample surfaces. Concomi-
tantly, the SIBC spectral point gap remains empty
with PBC along the flux tubes, but is completely
filled up in OBC when a surface termination perpen-
dicular to the flux tubes is introduced.

(5) Flux Majorana modes: In just two NH symmetry
classes, intrinsic 3D point gap topology furthermore
manifests itself in an unpaired flux Majorana mode
pinned to the center of the SIBC spectral point gap.
For the case of NH class D, this mode is localized
along the entire 1D length of the flux tube. Such lo-
calization is impossible in Hermitian systems where
energetically isolated bound states must be pointlike.

In Tab. I, we identify the flux response of each NH sym-
metry class that allows for intrinsic point gap topology
with one of the 5 possible NH flux responses. In Sec. II
we outline the formalism that we use to derive the flux
responses, before discussing the individual effects: in
Sec. III we highlight the flux skin effect, Sec. IV presents
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FIG. 1. NH bulk-boundary correspondence. The NH
skin effect, which corresponds to a nonzero topological invari-
ant W (E) [Eq. (1)], induces a spectral collapse of the point
gap under OBC. However, the resulting OBC spectrum does
not uniquely specify the nonzero value ofW (E). This ambigu-
ity is resolved in the SIBC spectrum, which restores the NH
bulk-boundary correspondence: surface states fill the point
gap, and their degeneracy corresponds to W (E).

the flux spectral jump, in Sec. V we introduce the higher-
order flux skin effect, and finally Sec. VI unveils the flux
Majorana modes. We close by discussing potential exper-
imental realizations in Sec. VII. The appendices contain
exhaustive auxiliary derivations and toy model Hamilto-
nians.

II. FORMALISM

We begin by pedagogically reviewing the concepts
needed to characterize flux responses in the NH context.

A. NH Bulk-boundary correspondence

NH systems can differ dramatically in their spectra un-
der PBC and OBC. One of the prime examples of this fea-
ture is the NH skin effect, whereby a point-gapped bulk
collapses to a line under OBC (see Fig. 1). Connected
with this is a pile-up of all states at a single boundary.
In 1D, this effect is associated with a winding number
W (E) [39],

W (E) =

∫ 2π

0

dk

2πi

d

dk
log det[H(k)− E], (1)

where the Bloch HamiltonianH(k) is point-gapped about
the reference energy E. In particular, if W (E) ̸= 0, the
NH skin effect must occur. However, it is important to
note that W (E) ∈ Z is an integer-valued invariant, while
the presence or absence of a skin effect only provides a
Z2 quantifier. This observation raises the question of how
the OBC spectrum of two systems with nonzero but dif-
ferent W (E) can be crisply distinguished. The problem
is further compounded by the dramatic sensitivity of the
OBC spectrum [52] to small changes of the Hamiltonian.

To solve both issues, the ϵ-pseudospectrum of NH sys-
tems was introduced in Refs. 38–40. It describes the
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change in the spectrum under a small perturbation ϵ,

σϵ(H) = {E ∈ C| ||(H − E) |v⟩ || < ϵ

for at least one |v⟩ with ⟨v|v⟩ = 1}.
(2)

This definition is practical: if a state is just O(ϵ) away
from being an eigenstate, it will still behave as one with
regards to realistic measurements, which always include
a small error. In contrast to other approaches reestab-
lishing the NH bulk-boundary correspondence, for in-
stance the OBC treatment of Ref. 53, the pseudospec-
trum, therefore, does not suffer from a sensitivity to in-
finitesimal errors. The pseudospectrum is particularly
useful because it can be related to the spectrum in SIBC
σSIBC(H), which is the spectrum in presence of just a
single boundary in the thermodynamic limit (system size
L→ ∞). In particular, it holds that [38–40]

lim
ϵ→0

lim
L→∞

σϵ(H) = σSIBC(H). (3)

This correspondence between pseudospectrum and
SIBC spectrum allows for a precise definition of a NH
bulk-boundary correspondence. In particular, in the
SIBC spectrum of a 1D system with nonzero W (E), the
point gap fills completely with boundary localized states
whose degeneracy equals W (E) (see Fig. 1).

B. Extended Hermitian Hamiltonian

To find the flux response of NH systems, we rely on
the topological equivalence between a NH HamiltonianH
and an extended Hermitian Hamiltonian (EHH) H̄ [54,
55], defined as

H̄ =

(
0 H − E0

H† − E∗
0 0

)
. (4)

By construction, H̄ enjoys a chiral symmetry,

Σ̄CH̄Σ̄†
C = −H̄, Σ̄C =

(
1 0
0 −1

)
. (5)

The presence of a point gap of H around E = E0 trans-
lates into a gapped spectrum of H̄ about zero energy.
Conversely, exact topological zero-energy eigenvalues of
H̄ correspond to protected E = E0 states within the NH
point gap, because

det(H̄) = −det(H − E0) det(H
† − E∗

0 ) = 0

→ det(H − E0) = 0.
(6)

Consequently, we can predict the presence of protected
in-gap modes from the EHH spectrum.

C. Flux defects in NH systems

Flux defects are routinely employed as probes of bulk
topology in Hermitian systems [1–9, 56]. For instance,
π-flux cores in 2D topological insulators bind a single

a b
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e−iϕ

eiϕ

s1

s2y y

x x

FIG. 2. Implementation of flux defects. a Periodic sys-
tems must contain pairs of flux defects ±ϕ. b These can be
implemented by multiplying all hoppings from sites s1 to s2
by eiϕ, and by e−iϕ in the opposite direction.

Kramers pair of midgap states [2–4]. While general de-
fects [57], dislocations [41, 42], and disclinations [58] have
been investigated in the NH context, a systematic un-
derstanding of the flux response of all intrinsically point-
gapped NH symmetry classes has been absent until now.

Any topological flux response relies on a quantization
of the admissible values of flux ϕ. Restricting to local NH
symmetries corresponding to one of the 38 NH symmetry
classes [16] – potentially taken together with a crystalline
symmetry like pseudo-inversion – we find that, depend-
ing on the symmetry class, flux is either unquantized or
must take values ϕ = 0, π in PBC. In the cases where
ϕ = 0, π, the NH symmetry class must either contain a
time-reversal (TRS) or particle-hole (PHS) symmetry, or
include crystalline pseudo-inversion symmetry.

Here, we focus on PBC in order to cleanly separate
the NH flux response from boundary states or skin ef-
fects. The PBC geometry requires (at least) two flux
cores/tubes with strength ±ϕ [14]. Such a pair of fluxes
can be introduced by the Peierls substitution: the hop-
pings encircling each flux must accumulate a phase e±iϕ

(see Fig. 2a). A convenient electromagnetic gauge choice
is then to multiply all hoppings across the line (plane)
connecting the two fluxes in a 2D (3D) system by a fac-
tor of eiϕ in one direction (s1 → s2, see Fig. 2b) and
by e−iϕ in the other direction (s2 → s1), where we de-
note the sites above the line (plane) as s1 and the ones
beneath as s2. We choose the orientation of this line
(plane) along the x- (x- and z-)direction in 2D (3D), re-
spectively. SIBC corresponds to the idealized limit where
only one flux (= only one “boundary”) is present, while
the second flux is infinitely far away. In our conventions,
a system with SIBC then has a single flux core/tube at
x = 0, is infinitely extended in the x-direction, and is
finite with PBC in all remaining directions (but poten-
tially still thermodynamically large).

We derive the flux response for all NH symmetry
classes with intrinsic point gap topology from their re-
spective EHH. The EHH experiences the same flux defect
as the NH Hamiltonian: In the gauge described above,
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FIG. 3. NH flux skin effect in 2D. a Spectrum in the complex energy plane under PBC (blue) and SIBC in presence of
π-flux cores (blue and red) for a model exhibiting nontrivial point gap topology in NH class AII† [Eq. (E1)]. Flux-localized
states fill the point gap in the SIBC spectrum, showing the flux skin effect. b The energy spectrum of the EHH for NH class
AII† [Eq. (E1)] shows four topological zero energy modes within the bulk energy gap, caused by two π-flux cores. c The
flux skin effect localizes an extensive number of eigenmodes at the fluxes, indicated by two peaks of the summed density
ρ(r) =

∑
α,i |⟨ri|ψα⟩|2, where α ranges over all eigenstates ψα of the Hamiltonian with flux defect, r denotes the lattice site,

and the summation i runs over sublattice degrees of freedom.

Peierls substitution implies

⟨s1|Hϕ|s2⟩ = eiϕ⟨s1|Hϕ=0|s2⟩. (7)

The corresponding matrix element for the EHH reads

⟨sα1 |H̄ϕ|sβ2 ⟩, where α, β = 1, 2 label the two sublattices in-
troduced by the Hermitian extension. The only nonzero
contributions are

⟨sα=1
1 |H̄ϕ|sβ=2

2 ⟩ = eiϕ⟨s1|Hϕ=0|s2⟩, (8)

and

⟨sα=2
1 |H̄ϕ|sβ=1

2 ⟩ = eiϕ⟨s1|H†
ϕ=0|s2⟩, (9)

where, importantly, the flux enters in both cases as eiϕ.
The reason is that Hermitian conjugation in Eq. (9) not
only flips the sign of the flux, but also transposes the
matrix elements s1 → s2 to s2 → s1. In Eq. (7) we have
used that E0 multiplies an identity matrix in Eq. (4) and
therefore remains unaffected under flux insertion.

In summary, our strategy for determining the flux
response of a given NH symmetry class X is to:

(1) Find the corresponding Hermitian symmetry class X̄
of the EHH.

(2) Derive the flux response of X̄ using the Dirac formal-
ism detailed in the appendices.

(3) Infer the topological properties of the NH SIBC spec-
trum that result from exact EHH zeromodes.

III. NH FLUX SKIN EFFECT

We begin our survey of NH flux responses with 2D
systems. Here we first consider a specific example in
NH class AII† (see App. E 1 a for details). Point-gapped

systems in NH class AII† are classified by a Z2 invariant
ν ∈ {0, 1}, defined in Ref. 16. In order to derive the flux
response of the nontrivial phase where ν = 1, we rely on
the EHH for a given energy E0 inside the point gap (see
Sec. II B). Irrespective of the choice of E0, the EHH for
NH class AII† enjoys the symmetries of Hermitian class
DIII (see App. B 4 a and Tab. II therein). Moreover, since
Hermitian class DIII is likewise Z2-classified in 2D, the
EHH associated with a nontrivial NH phase in class AII†

must itself realize a nontrivial topological insulator phase
in Hermitian class DIII. For this phase, it was shown in
Ref. 10 that flux cores bind two degenerate zero-energy
states (a Kramers pair). In the NH SIBC spectrum, these
modes then correspond to a single flux localized state at
complex energy E0 in the point gap [39]. Since we can
perform this construction for all E0 inside the point gap,
we obtain an extensive number of modes localized at the
flux core (see Fig. 3a,b). Such an extensive accumulation
of states defines the NH flux skin effect [39].

In a PBC geometry with two flux cores, this response
is topologically equivalent to the Z2 skin effect [39]
of a 1D model in NH class AII† situated on the line
terminated by the two flux cores (see Fig. 3c). Indeed,
the number of flux-localized modes scales with the length
of the 1D edge connecting the two defects, denoted by
L⊥ (see App. C 1 for details on the finite-size scaling).
The equivalence of the flux skin effect and the 1D NH
bulk-boundary correspondence is consistent with the
fact that point gap topology in 1D and NH class AII†

is Z2-classified [16]. This observation leads us to the
following generalizing hypothesis, which we prove in
App. B by exhaustion:

(I) A 2D system with nontrivial intrinsic
point gap topology in NH symmetry class
X, where X pins ϕ = 0, π, exhibits a flux
skin effect for ϕ = π iff X also has a



5

1

6

-1

2 4-2-4
Re(E)

Im(E)

0.5

-0.5
-6

a b

c

E

3

0.5

-0.5

-1

1

21-1-2-3

k∥

π flux
π flux

1

L⊥

ρ(r)/ρmax

L

k∥ ≠ 0

0.6

π flux
π flux

1

L⊥

ρ(r)/ρmax

L

k∥ = 0

0.6

FIG. 4. NH flux spectral jump in 3D. a Spectrum in the
complex energy plane under PBC (blue) and SIBC in pres-
ence of π-flux tubes (blue and red) for a model exhibiting
nontrivial point gap topology in NH class AII† [Eq. (E7)].
Flux-localized states fill the SIBC spectral point gap at a
single momentum k∥ = 0 along the flux tube. b At this mo-
mentum, the EHH spectrum exhibits a helical crossing at zero
energy for any E0 located in the central point gap. c The flux
spectral jump localizes an extensive number of eigenmodes at
the flux tubes, indicated by two peaks of the summed density
ρ(r) =

∑
α,i |⟨ri|ψα⟩|2, where α ranges over all eigenstates ψα

of the Hamiltonian with flux defect, r denotes the lattice site
and the summation i runs over sublattice degrees of freedom.

nontrivial point gap classification in 1D.

The flux response of the complete set of NH symmetry
classes with nontrivial intrinsic point gap topology [39]
is summarized in Tab. I. Only the classes satisfying the
above condition, including NH class AII†, realize a flux
skin effect. An exhaustive collection of model Hamilto-
nians can be found in App. E 1.

We note in closing that there is a fundamental differ-
ence between crystal dislocations and flux defects [14]:
Whereas lattice Burgers vectors are integer-valued, flux
is only defined mod 2π. Consequently, since ϕ = +π and
ϕ = −π are physically equivalent, both fluxes ϕ = ±π
of a PBC geometry have to collect skin modes, which is
compatible only with a Z2-skin effect but not a Z-skin
effect [39]. In contrast, dislocations can give rise to both
the Z and the Z2-skin effect [41].

IV. NH FLUX SPECTRAL JUMP

We now study the π-flux response of intrinsically NH
topological phases in 3D [39] in presence of TRS(†) or

PHS(†). We begin with the example of a point-gapped
NH system in class AII†, which is classified by a nontriv-
ial 3D winding number W3D(E) ∈ Z [16] (see App. E 2 a
for details). We derive the flux response of the simplest
nontrivial case, where W3D(E0) = 1 for a given energy
E0 inside the point gap, from the corresponding EHH
(see Sec. II B and Fig. 4a). Irrespective of the choice
of E0, this EHH enjoys the symmetries of Hermitian
class DIII (see App. B 5 b and Tab. III therein), which is
also Z-classified in 3D. Hence, the EHH associated with
W3D(E) = 1 corresponds to a nontrivial topological insu-
lator phase [59]. For this phase, it was shown in Ref. 10
that flux tubes with ϕ = π bind a 1D helical Majorana
mode. This mode crosses zero energy at a single fixed
TRS-invariant momentum, k∥ ∈ {0, π}, contributing two
exact zero-energy states (see Fig. 4b). Importantly, no
symmetry allowed perturbation is able to move these flux
localized states away from zero energy at k∥ = 0, π. Cor-
respondingly, there is a single flux-localized state at com-
plex energy E0 in the NH SIBC spectrum [39]. Repeating
this construction for all E0 inside the NH point gap yields
an extensive number of states localized along the 1D flux
tube for a single momentum k∥ ∈ {0, π} (see Fig. 4c).
Away from this momentum, the EHH remains gapped,
corresponding to the absence of in-gap modes in the NH
SIBC spectrum. The extensive pile-up of flux-localized
states only for a single value of k∥ constitutes a novel
type of NH bulk-defect correspondence, which we term
NH flux spectral jump.

In a PBC geometry with two flux tubes, this response
is equivalent to that of a nontrivial 2D NH phase situated
in the plane separating the flux tubes: NH class AII† is
Z2 classified in 2D [16] and protects an OBC spectral
jump, i.e. the extensive accumulation of edge states only
at a single momentum [60]. The number of flux localized
modes scales with L⊥, the distance between the two de-
fects (see App. C 2 for details on the finite-size scaling).
For OBC in the z−direction, where k∥ is not conserved,
the NH flux spectral jump still implies an accumulation
of states at the flux tube. There may potentially also be
surface states contributed by a surface skin effect. Next
to their different real-space localization, the two effects
can be distinguished in terms of the scaling with system
size: whereas the surface skin effect is expected to local-
ize O(L∥ = Lz) modes, the flux spectral jump localizes
O(L⊥) modes.

We note that all NH phases with nontrivial point gap
topology are Z2-classified in 2D. On the other hand,
they may be Z2- or Z-classified in 3D. In the latter case,
the flux spectral jump only arises when the Z-valued
invariant is odd. In our example of NH class AII†, this
means that only systems where W3D(E) mod 2 ̸= 0
exhibit a flux response (see Tab. I). Additional responses
would be needed to probe the Z nature of W3D(E). The
above observations lead us to the following hypothesis,
which we prove in App. B by exhaustion:



6

(II) A 3D system with nontrivial intrinsic
point gap topology in NH symmetry
class X and invariant w ∈ Z2 or Z,
where X pins ϕ = 0, π, shows a flux
spectral jump for ϕ = π iff class X
has a nontrivial point gap classifica-
tion in 2D and w mod 2 ̸= 0.

The flux response of the complete set of NH symmetry
classes with nontrivial intrinsic point gap topology [39]
is summarized in Tab. I. Only classes fulfilling the above
condition, including NH class AII†, realize a flux spectral
jump. An exhaustive collection of model Hamiltonians
can be found in App. E 2.

V. NH HIGHER-ORDER FLUX SKIN EFFECT

We next study the π-flux response of intrinsically NH
topological phases in 3D [39] in the absence of TRS(†) or
PHS(†). In order to still obtain a quantized flux response,
we consider the presence of pseudo-inversion symmetry
(see also App. A 1),

IH(k)†I† = H(−k), (10)

which, in contrast to normal inversion symmetry, en-
tails a Hermitian conjugation of the Hamiltonian H(k).
As explained in App. D 2, pseudo-inversion represents
the simplest crystalline symmetry that is compatible
with nontrivial point-gap topology. In a PBC geome-
try with two inversion-related flux tubes, this symmetry
implies that the magnitude of the two fluxes is the same:
ϕ1 = ϕ2. At the same time, PBC leads to the constraint
ϕ1 + ϕ2 mod 2π = 0, thereby recovering the quantiza-
tion of magnetic flux to ϕ = 0, π. This argument only
requires PBC in the direction separating the flux tubes
(i.e. in our case in the x-direction); in fact, we will con-
sider OBC in the direction along the flux tubes later
on [61]. We note that the addition of pseudo-inversion
symmetry may change the classification of NH point gap
topology. However, in this work, we are only concerned
with the flux response of point-gapped systems with lo-
cal NH symmetries that are enriched by pseudo-inversion
(see App. D 2).

We begin by considering the NH system discussed in
Sec. IV and App. E 2 a in absence of TRS†. Recall that,
in that section, we studied NH symmetry class AII† which
exhibits a flux spectral jump. Upon the relaxation of
TRS†, we obtain NH symmetry class A, which is still clas-
sified by the same topological invariant W3D(E) ∈ Z [16]
(see App. E 2 b for details). Our present example there-
fore again yields W3D(E0) = 1 for any given energy E0

inside the point gap. As explained above, we furthermore
assume pseudo-inversion symmetry.

We derive the flux response for this phase from the cor-
responding EHH (see Sec. II B). The EHH for NH class
A retains the symmetries of Hermitian class AIII, irre-
spective of the choice of E0 (see App. B 5 c and Tab. III

therein). Additionally, NH pseudo-inversion symmetry
induces a Hermitian inversion symmetry of the EHH.
Hermitian class AIII is also Z-classified in 3D, such that
the EHH associated with a nontrivial point-gapped phase
in NH class A must itself realize a nontrivial topological
insulator phase in Hermitian class AIII [59]. Importantly,
this class does not protect gapless modes along 1D flux
tubes [10]. Hence, the PBC spectrum of the EHH in pres-
ence of two π-flux tubes is gapped (see Fig. 5a), where
here we assume PBC both along and perpendicular to
the flux tube directions. Correspondingly, the NH point
gap shows no SIBC spectral in-gap modes. However, in-
version symmetry can protect a flux response as soon as
OBC are introduced in the direction of the flux tubes.

To derive this response, we first note that Ref. 44
showed that W3D(E0) = 1 is indicated by a double
band inversion in the corresponding EHH when pseudo-
inversion symmetry is present: to obtain a trivial (atomic
limit) state, two occupied EHH inversion eigenvalues
must flip sign at high-symmetry momenta in the 3D Bril-
louin zone. Without chiral symmetry (Hermitian class
A), a double band inversion induces a higher-order topo-
logical (axion insulator) phase protected solely by inver-
sion symmetry [62, 63]. Such axion insulators exhibit
a higher-order flux response: Ref. [14] derived that lo-
calized states appear at alternating ends of the two flux
tubes, resulting in one state per flux tube for the EHH.
In Hermitian class A, these states are generally not zero-
modes, but instead contribute to a filling anomaly of
the full inversion-symmetric system. Returning to the
present case of Hermitian class AIII, chiral symmetry en-
forces that such flux end states arise at zero energy.

Besides pinning flux end states to zero energy, Hermi-
tian class AIII differs in another important aspect from
class A: it protects surface Dirac cones [59] that render
the EHH OBC spectrum gapless even in absence of flux
tubes (see Fig. 5b, left inset). However, the presence of
such 2D surface states does not, in general, result in a
skin effect in NH class A: The EHH surface Dirac cones
are located at arbitrary surface momenta, which are in
general not sampled over in the discrete surface Brillouin
zone associated with any finite system size. Hence, there
are no exact zero-energy states in the EHH spectrum [64].
Instead, each EHH Dirac cone implies a single excep-
tional point or single sheet of eigenvalues in the NH sur-
face dispersion [21]. On the other hand, each flux tube
introduces a single exact zero-mode per flux tube in the
EHH. This constitutes a fractional flux response, since
there exists no 1D Hermitian model with a single end
state under OBC (see also App. D 1). The zero-energy
flux end state of the EHH then corresponds to a flux-
localized SIBC spectral in-gap state at complex energy
E0. Repeating this construction for all E0 inside the NH
point gap yields an extensive number of modes localized
at the end of a flux tube (see Fig. 5c). In a finite system,
the number of localized modes scales with the length of
the flux tube, denoted by L∥ (see App. C 2 for details on
the finite-size scaling). This extensive pile-up of states on
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TABLE I. Flux response of all NH symmetry classes with intrinsic point gap topology in d = 2, 3. These are a subset of the 38
NH symmetry classes [16, 39]. Class labels refer to the Altland-Zirnbauer (AZ) classes, their AZ† counterparts, and additional
sublattice symmetry (SLS) [16]. The subscript of SLS, S±, determines whether SLS commutes (+) or anticommutes (-) with
time-reversal symmetry (TRS) and/or particle-hole symmetry (PHS). For the NH symmetry classes with both TRS and PHS
(BDI, DIII, CII, and CI), the first subscript refers to TRS and the second one to PHS. All classes are identified by the square

of TRS(†), PHS(†) and chiral symmetry CS. The topological classification is reproduced from Ref. 39, with dℓ,1D denoting the
1D line gap classification for the cases with trivial point-gapped phases in both 1D and 2D. I† denotes the additional presence
and form of pseudo-inversion symmetry that, in NH symmetry classes without an anti-unitary operation, is needed to protect
a topological flux response. The subscript of SLS/TRS next to the pseudo-inversion symmetry I†, S±/T±, determines whether
SLS/TRS commutes (+) or anticommutes (-) with I†. L⊥ denotes the distance between the flux tubes in a finite system, and
L∥ their length. We distinguish the flux skin effect (FSE) in 2D, the flux spectral jump (FSJ), higher-order flux skin effect
(HO-FSE), the flux Majorana mode (FMM) and the higher-order flux Majorana mode (HO-FMM) in 3D.

dim class symmetry classification I† π-flux response # modes App.

d TRS(†) PHS(†) CS d d− 1 d− 2 dℓ,1D

2 AII† -1 - - Z2 Z2 0 - FSE (Sec. III) O(L⊥) B 4 a
2 DIII† -1 +1 1 Z2 Z2 0 - FSE (Sec. III) O(L⊥) B 4 b
2 AIIIS− - - 1 Z2 0 Z2 - - - B 4 c
2 BDIS+− +1 +1 1 Z2 Z2 Z2 - FSE (Sec. III) O(L⊥) B 4 d
2 DS− - +1 - Z2 Z2 0 - FSE (Sec. III) O(L⊥) B 4 e
2 DIIIS+− -1 +1 1 Z2 0 Z2 - - - B 4 f
2 CIIS−+ -1 -1 1 Z2 0 Z2 - - - B 4 g
2 CIIS+− -1 -1 1 Z2 0 0 - - - B 4 h
2 CIS−+ +1 -1 1 Z2 0 Z2 - - - B 4 i

3 AI† +1 - - 2Z 0 0 0 - - - B 5 a
3 AII† -1 - - Z Z2 Z2 - FSJ (Sec. IV) O(L⊥) B 5 b
3 A - - - Z 0 Z I† HO-FSE (Sec. V) O(L∥) B 5 c
3 AS - - - Z 0 Z I†,S− HO-FSE (Sec. V) O(L∥) B 5 d
3 D - +1 - Z 0 0 Z2 - FMM (Sec. VI) O(1) B 5 e
3 DS+ - +1 - Z 0 0 Z I†,S− HO-FMM (Sec. VI) O(1) B 5 f
3 DS− - +1 - Z Z2 Z2 - FSJ (Sec. IV) O(L⊥) B 5 g
3 DIIIS+− -1 +1 1 Z2 Z2 0 - FSJ (Sec. IV) O(L⊥) B 5 h
3 AIIS+ -1 - - Z2 0 Z I†,S−,T− HO-FSE (Sec. V) O(L∥) B 5 i
3 C - -1 - 2Z 0 0 0 - - - B 5 j
3 CS+ - -1 - Z 0 Z2 I†,S− HO-FSE (Sec. V) O(L∥) B 5 k
3 CS− - -1 - Z 0 0 0 - - - B 5 l

a region of dimension d− 3 represents a NH higher-order
flux skin effect.

Interestingly, the flux skin modes appear at the same
end for both flux tubes, highlighting a uniquely NH fea-
ture (see Fig. 5c): if a right eigenstate skin mode localizes
on the top of one flux tube, pseudo-inversion symmetry
maps it to the bottom of the other flux tube. Due to
the Hermitian transpose contained in the definition of
pseudo-inversion (see App. A 1), this state is a left eigen-
state of the NH Hamiltonian (see Fig. 5c, top-right). The
corresponding right eigenstate is localized at the top end
of the same flux tube [39] (see Fig. 5c, bottom-right).

Consequently, when the plane spanned between the
two π-flux tubes is interpreted as a 1D NH system
aligned along the flux tube direction, and with an
extensively large unit cell along the perpendicular direc-
tion [65], the higher-order flux skin effect is equivalent
to the skin effect of a nontrivial 1D system [39] in NH
class A. Due to pseudo-inversion symmetry, which maps
between the two flux tubes, the resulting extensive
number of end-localized modes is evenly distributed

between the two flux tube ends, so that each flux tube
on its own realizes half of a conventional 1D skin effect.
On the other hand, the 2D point-gap classification of
NH symmetry class A is trivial. This observation leads
us to the following hypothesis, which we prove in App. B
by exhaustion:

(III) A 3D system with nontrivial point
gap topology in NH symmetry
class X and with pseudo-inversion
symmetry exhibits a higher-order
flux skin effect for ϕ = π iff the
point gap classification of X is
trivial in 2D but nontrivial in 1D.

The flux response of the complete set of NH symmetry
classes with nontrivial intrinsic point gap topology [39]
is summarized in Tab. I. Only classes fulfilling the above
condition, including NH class A, show a NH higher-order
flux skin effect. An exhaustive collection of model Hamil-
tonians can be found in App. E 2.
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FIG. 5. NH higher-order flux skin effect in 3D. a The energy spectrum of the EHH for a system with higher-order flux
skin effect shows a gap for PBC along the flux tubes, here using a model in NH class A [Eq. (E8)]. b Under OBC in the flux
tube direction, the presence of a nontrivial flux ϕ = π introduces two exact zero-energy states in addition to the gapless Dirac
cone surface dispersion, one for each flux tube. c In the NH system, the resulting flux skin modes are localized at the same
ends of the two flux tubes. As explained in Sec. V, this is a consequence of pseudo-inversion symmetry I†, which maps states
between the two flux tubes, but also changes their chirality. Only states with more than 85% support at the flux tubes are
shown. All panels are generated for a model of size 20 × 20 × 20 unit cells in NH class A with additional pseudo-inversion
symmetry (see Sec. E 2 b).

We note in closing that the higher-order flux skin ef-
fect realizes a novel flavour of NH topology that is fun-
damentally different from the Hermitian case: In a Her-
mitian system with gapless surface states, it is impossi-
ble to resolve a higher-order response to flux defects, be-
cause the nontrivial surface state would obscure any flux-
localized modes. On the contrary the NH higher-order
flux skin effect is observable: In addition to O(L⊥ ×L⊥)
NH surface modes deriving from gapless surface states,
flux tubes induce a skin effect in z-direction, localizing
another O(L∥) modes on the surface, only at the flux
tube ends (see App. C 2 for details on the finite-size scal-
ing and App. D 3 for the implications on the EHH spec-
trum). Alternatively, one could reduce the extent of the
flux tubes in the z−direction, thereby separating the flux
response from the surface states.

VI. ISOLATED FIRST- AND HIGHER-ORDER
FLUX MAJORANA MODES

All NH flux responses discussed so far have led to a
SIBC spectrum with a completely filled point gap in pres-
ence of π-flux defects. Surprisingly, it is also possible to
obtain isolated flux modes at specific energies within the
point gap. These are similar to Hermitian bound states,
but associated with NH point gap topology.

To understand this phenomenon, we consider NH sys-
tems in class D, which are classified by the Z-valued
3D winding number W3D(E) [16] (see App. E 2 d for de-
tails). We derive the flux response for a given energy
E0 inside the nontrivial point gap, in the simplest case
with W3D(E0) = 1, from the corresponding EHH (see
Sec. II B). The EHH for E0 = 0 of NH class D retains the
symmetries of Hermitian class DIII (see App. B 5 e and
Tab. III therein). Hermitian class DIII is also Z-classified
in 3D, such that the EHH associated with a nontrivial NH
phase in class D must itself realize a nontrivial topologi-

cal insulator phase in Hermitian class DIII [59]. For this
phase, it was shown in Ref. 10 that flux tubes bind two
degenerate zero-energy states (see Fig. 6a), correspond-
ing to a single flux-localized state at E0 = 0 in the NH
SIBC spectrum (see Fig. 6b). Away from E0 = 0, the
EHH retains only a chiral symmetry, resulting in Her-
mitian class AIII (see App. B 5 e). The flux response of
the EHH in Hermitian class AIII is trivial, such that the
point gap remains empty for E0 ̸= 0 (see Fig. 6c).

We diagnose the nature of the unpaired NH flux state
at E0 = 0 by investigating (in a gedankenexperiment)
its stability under coupling with a 1D line-gapped phase
spanned between the two flux tubes. 1D line gap topol-
ogy in NH class D is Z2-classified (see Tab. I). The non-
trivial phase is nothing but the NH generalization of the
1D Kitaev chain [39, 66], which hosts a single Majorana
zero-mode at each end. Two zero-modes – the end state
of the 1D line gap phase combined with the flux localized
mode – are not protected. Consequently, the flux state
must be a Majorana mode as well, and flux defects in
NH class D can only probe W3D(E) mod 2. An unpaired
flux Majorana mode remains pinned at zero complex en-
ergy. It is localized along the entire length of the flux
tube (see Fig. 6d), highlighting another NH peculiarity:
in Hermitian systems, spectrally isolated bound states
are pointlike.

We next study NH class DS+ , which is also classified
by a Z invariant [16], the 3D winding numberW3D(E) re-
stricted to even values (see App. E 2 e for details). Choos-
ing an energy E0 inside the nontrivial point gap with
W3D(E0) = 2 allows to construct an EHH: for E0 = 0
the EHH contains two interdependent unitary subspaces
in Hermitian class AIII (see App. B 5 f and Tab. III
therein). Due to the Z-classification of Hermitian class
AIII in 3D, the EHH associated with a nontrivial phase
in NH class DS+ must itself realize a nontrivial topolog-
ical insulator phase per unitary subspace in Hermitian
class AIII. However, without additional crystalline sym-
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FIG. 6. NH flux Majorana modes in 3D. a The energy spectrum of the EHH for NH class D realizes a helical metal for
E0 = 0. b This corresponds to a single Majorana mode at E0 = 0 in the NH point gap. c Away from E0 = 0, the EHH
is gapped. This implies that the NH point gap does not fill up with flux-localized states, but only pins the Majorana mode.
d The Majorana mode is localized along the entire flux defect (k∥ = 0), a scenario that is not possible for a single mode in a

Hermitian system. e The energy spectrum of the EHH for NH class DS+ with pseudo-inversion symmetry is gapped in presence
of two PBC-preserving π-fluxes. f This results in an empty point gap in the NH spectrum. g When terminating the system
along a surface perpendicular to the flux tubes, the EHH features four exact zero modes at E0 = 0, which are absent when
the flux tubes are removed. (Note that in this limit, approximate zero-modes remain due to the gapless surface states in this
symmetry class, highlighted in the inset for ϕ = 0.) h The two resulting NH higher-order Majorana modes are then localized
at the ends of the flux defects. Panels a-d are generated for a model of size 20× 20 (×20 in OBC) unit cells in NH class D (see
Sec. E 2 d), panels e-h for a model of size 20× 20 (×20 in OBC) unit cells in NH class DS+ (see Sec. E 2 e).

metries, the zero energy modes arising in the flux Dirac
theory of systems in Hermitian class AIII are not pro-
tected [10] (see Fig. 6e). Adding an inversion symmetry
(corresponding to pseudo-inversion in the NH Hamilto-
nian, App. D 2) quantizes the flux and allows for a stable
flux response [14]: under OBC, each flux tube now hosts
one zero energy mode per unitary subspace of the EHH.
These flux end states then correspond to flux-localized
NH SIBC spectral in-gap states at E0 = 0 (see Fig. 6f
and g). Away from E0 = 0, the EHH is situated in Her-
mitian class CI: due to the absence of Kramers theorem,
pairs of zero-energy states are no longer protected (see
App. B 5 f). Consequently, the flux modes in each uni-
tary subspace can be gapped, so that the higher order
flux response persists only at E0 = 0. The resulting NH
higher-order Majorana mode localizes at the ends of the
flux tubes (see Fig. 6h). Detecting its presence in a real
system is, however, intricate, as it will in general be ob-
scured by the NH surface state that is already present
for ϕ = 0.

We can understand the existence of (higher-order)
flux Majorana modes by noting that, among all NH

symmetry classes that do not exhibit a flux spectral
jump or higher-order flux skin effect in 3D, NH class D
and DS+ are the only ones with a nontrivial line gap
classification (see Tab. I) in 1D. As line-gapped phases
are adiabatically deformable to Hermitian systems, flux
tubes in these classes can only cause the presence of
isolated modes (similar to the end states of 1D Hermitian
topological insulators) instead of NH skin effects.

VII. EXPERIMENTAL REALIZATION OF NH
FLUX RESPONSE

In a solid-state setting, we usually assume isolated
systems that are governed by a Hermitian Hamiltonian.
Most meta-material platforms are however either acci-
dentally or tunably lossy, such that the description with
an effective Hamiltonian involves NH terms. The same
holds for interacting electronic quantum systems in which
quasiparticles acquire a finite lifetime. Such a scenario
equips the single-electron Green’s function with a com-
plex self-energy, leading to an effective NH Hamilto-
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nian [67–72]. Consequently, NH systems appear quite
naturally in experimental settings.

We now outline the NH platforms in which flux
defects can be studied experimentally. Superconductors
are natural starting points for studying flux defects,
as magnetic fields penetrate samples as flux vortices.
Consequently, superconducting NH systems in 2D or
those in direct proximity to a superconductor may
experience a flux skin effect in presence of vortices.
The size of vortices should be matched with the lattice
scale by the use of moire substrates/potentials, allowing
for precisely localized defects and quantized responses.
However, in general we expect flux localized states to
not disappear immediately with increasing vortex size,
but rather to spread out over the vortex region. In
3D, the prototypical NH point-gapped phase is the
exceptional topological insulator (ETI) [21]. The ETI
emerges naturally from a Hermitian 3D topological
insulator or Weyl semimetal, if quasi-particles acquire
a finite lifetime. This could for instance be caused by
electron or electron-phonon interactions [21]. As the
ETI does not require any symmetry to be stabilized,
it is naturally situated in NH class A. With additional
pseudo-inversion symmetry, it can thus give rise to a
higher-order flux skin effect upon flux insertion. Addi-
tionally, the ETI phase was shown to arise in NH class
AII† [21], thereby allowing for the flux realization of the
NH flux spectral jump. Consequently, the ETI serves as
the ideal platform to investigate 3D flux defects. Due
to their versatility, meta-materials provide convenient
classical analogs to quantum mechanical topological
states. A flux defect can for instance be realized in elec-
trical meta-materials [35, 73] by introducing operational
amplifiers. These equip arbitrary hoppings t with a tune-
able phase t → teiϕ, thereby allowing to implement ϕ
flux tubes [74]. Alternatively, one might realize effective
magnetic fluxes in photonic [75], mechanical [76], and
ultra-cold atom systems [77, 78]. Additionally, one can
envision a realization in NH superconductors [79–81].
Such systems, for instance in NH class CS+ and DIIIS+− ,
can give rise to both higher-order flux skin effect and
flux spectral jump upon flux insertion, respectively.
Similarly, the NH flux Majorana mode appears in a NH
superconductor in class D.

VIII. DISCUSSION

We have derived the flux response of all NH symmetry
classes with intrinsic point gap topology in 2D and 3D.
In 2D, we found the NH flux skin effect, in which a
macroscopic number of states localizes at the flux core.
We identified the necessary conditions for its emergence
and predict its occurrence for four NH symmetry classes.
In 3D, we discovered the flux spectral jump, where a
π-flux tube causes a NH skin effect only at a single
momentum along the flux tube direction. This response
derives from a corresponding novel 2D phase exhibiting
the NH spectral jump, where an extensive number of

states collapses to the boundary at a single momen-
tum. Developing a physical understanding for this
phenomenon, including a field-theoretical description, is
an important future endeavor. Additionally, we found
NH symmetry classes giving rise to a higher-order flux
skin effect, which occurs at the ends of flux tubes. Being
a higher-order response, it relies on the presence of a
crystalline symmetry. We here considered the case of
pseudo-inversion symmetry, but expect further exciting
responses for other crystalline symmetries. Finally, we
identified the presence of flux Majorana modes, forming
spectrally isolated mid-gap states in the NH point
gap. Realizing such modes in open quantum systems
is an interesting question for future theoretical and
experimental research.
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Appendix A: Symmetries in NH systems

This section defines symmetries in NH systems and
their relation to the corresponding symmetries of the
EHH. Hermitian quantities are denoted with an overline.
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1. NH symmetries

The Hermitian time-reversal symmetry given as

ŪT H̄(k)∗Ū†
T = H̄(−k), ŪT Ū

∗
T = ±1, (A1)

is generalized to a NH time-reversal symmetry TRS

UT H(k)∗U†
T = H(−k), UT U

∗
T = ±1, (A2)

as well as a pseudo time-reversal symmetry TRS†

UT H(k)TU†
T = H(−k), UT U

∗
T = ±1. (A3)

The Hermitian particle-hole symmetry given as

ŪPH̄(k)∗Ū†
P = −H̄(−k), ŪP Ū

∗
P = ±1, (A4)

is generalized to a NH particle-hole symmetry PHS

UPH(k)TU†
P = −H(−k), UPU

∗
P = ±1, (A5)

as well as a pseudo particle-hole symmetry PHS†

UPH(k)∗U†
P = −H(−k), UPU

∗
P = ±1. (A6)

The Hermitian chiral symmetry given as

ŪCH̄(k)Ū†
C = −H̄(k), Ū2

C = 1, (A7)

is generalized to a NH chiral symmetry CS

UCH(k)†U†
C = −H(k), U2

C = 1. (A8)

Additonally, one can have sublattice symmetry SLS,
defined by

SH(k)S† = −H(k), S2 = 1, (A9)

as well as pseudo-Hermiticity

ηH(k)†η† = H(k), η2 = 1. (A10)

Finally, we investigate the presence of inversion

IH(k)I† = H(−k), (A11)

and pseudo-inversion symmetry

IH(k)†I† = H(−k). (A12)

2. Appearance of NH symmetries in the EHH

The presence of symmetries for the NH Hamiltonian
H(k) imposes constraints on the EHH H̄(k),

H̄(k) =

(
0 H(k)− E0

H†(k)− E∗
0 0

)
. (A13)

Specifically, for E0 = 0, it holds:

ŪT H̄(k)∗Ū†
T = H̄(−k), (A14)

with

ŪT =

(
UT 0
0 UT

)
(A15)

for TRS and

ŪT =

(
0 UT
UT 0

)
(A16)

for TRS† of the NH Hamiltonian.

ŪPH̄(k)∗Ū†
P = −H̄(−k), (A17)

with

ŪP =

(
0 UP
UP 0

)
, (A18)

for PHS and

ŪP =

(
UP 0
0 UP

)
, (A19)

for PHS† of the NH Hamiltonian. Additionally we have

ŪCH̄(k)Ū†
C = −H̄(k), ŪC =

(
0 UC
UC 0

)
, (A20)

S̄H̄(k)S̄† = −H̄(k), S̄ =

(
S 0
0 S

)
, (A21)

η̄H̄(k)†η̄† = H̄(k), η̄ =

(
0 η
η 0

)
. (A22)

By construction, H̄(k) enjoys an additional chiral (sub-
lattice) symmetry for arbitrary E0:

Σ̄CH̄(k)Σ̄†
C = −H̄(k), Σ̄C =

(
1 0
0 −1

)
. (A23)

Besides the chiral symmetry introduced in (A23), sub-
lattice symmetry S and PHS UP allow a TRS

ŪT H̄(k)∗Ū†
T = H̄(−k), (A24)

with

ŪT =

(
0 SUP

SUP 0

)
(A25)

and a PHS

ŪPH̄(k)∗Ū†
P = −H̄(−k), (A26)

with

ŪP =

(
0 SUP

−SUP 0

)
. (A27)
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For daggered NH symmetry classes, TRS†

ŪT H̄(k)∗Ū†
T = H̄(−k), (A28)

with

ŪT =

(
0 UT
UT 0

)
(A29)

can be combined with (A23) to a PHS

ŪPH̄(k)∗Ū†
P = −H̄(−k), (A30)

with

ŪP =

(
0 UT

−UT 0

)
. (A31)

Appendix B: Classification of flux response in all
NH point-gapped symmetry classes

We classify the flux response of all NH systems with
nontrivial intrinsic point gap topology. Since topologi-
cal zero energy eigenvalues of the EHH H̄(k) correspond
to states at E0 within the NH point gap, we first in-
vestigate the flux response of Hermitian systems. This
procedure relies on a Dirac treatment of the flux defect,
introduced in App. B 1. We employ this procedure for
all relevant Hermitian symmetry classes in 2D (App. B 2)
and 3D (App. B 3). The corresponding NH flux response
follows from protected EHH zero energy modes, derived
in App. B 4 for 2D and App. B 5 for 3D.

1. Dirac theory of Hermitian flux response

For a Hermitian topological insulator in one of the 10
Altland-Zirnbauer (AZ) symmetry classes [82, 83], we can
derive the response for a ϕ = π flux using the Dirac
theory of its edge states [84].

To derive the flux response of 2D (3D) topological insu-
lators, we first cut the 2D (3D) bulk in half (see Fig. 7a)
to create two sets of edge (surface) states, one for the top
layer and one for the bottom layer. In general, these will
be described by a 1D (2D) Dirac Hamiltonian

H̄1D(k) = τz ⊗ h̄(k) +M, (B1)

H̄2D(k) = τz ⊗ h̄(k) +M, (B2)

where k is the momentum along the edge and k the mo-
menta on the surface, with τz a Pauli matrix acting on
layer space. In the presence of N edge (surface) states,
h̄(k) is a N×N matrix capturing the edge (surface) state
dispersion, and M is a 2N × 2N mass matrix that cou-
ples the edge (surface) states to yield a gapped bulk. The
insertion of a flux core (flux tube) ϕ can be viewed as a

=

gapped 
bulk

gapless edge 
states

+

bulk mass

M

= +

mass domain 
wall

M
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FIG. 7. Dirac theory of flux response. a The gapped
bulk of a topological insulator can be viewed as a combination
of two subsystems, whose edge states are gapped by a bulk
mass term. b Bound states localized at π-fluxes in Hermitian
insulators can be viewed as domain wall bound states of the
Dirac mass associated with a pair of edge states [14]. c In 3D,
π-fluxes similarly bind 1D states.

modification of all hoppings crossing a line (plane) ema-
nating from the flux core (flux tube), multiplying all such
hopping amplitudes with a Peierls phase t → teiϕ. For
a flux of ϕ = π, this corresponds to a sign flip [14]. The
mass term M coupling the two layers therefore changes
sign at the flux tube, forming a domain wall binding
point-like (line-like) states (see Fig. 7b,c). In the fol-
lowing, we therefore consider a flux-Dirac theory for all
relevant Altland-Zirnbauer classes.

2. 2D systems, symmetry classes of H̄(k)

In 2D, the EHH H̄(k) for nontrivial intrinsic point-
gapped NH models resides in Hermitian classes A,
AII, D, DIII or C (see Tab. II). In the following, we
investigate whether a flux induced mass domain wall
leads to zero energy modes of H̄(k).

a. Class A

The prototypical model in Hermitian class A in 2D is
a Chern insulator, whose edge Hamiltonian is described
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TABLE II. NH symmetry classes with intrinsic point gap
topology in 2D and the corresponding Hermitian classes of
the EHH.

dim class H class H̄ class H̄ App.
(E0 = 0) (E0 ̸= 0)

2 AII† DIII DIII B 4 a
2 DIII† D DIII B 4 b
2 AIIIS− A ⊕ A AIII B 4 c
2 BDIS+− D ⊕ D DIII B 4 d
2 DS− DIII ⊕ DIII DIII B 4 e
2 DIIIS+− AII ⊕ AII DIII B 4 f
2 CIIS−+ A DIII B 4 g
2 CIIS+− C ⊕ C CI B4h
2 CIS−+ A DIII B 4 i

in the nontrivial phase by

h̄(k) = k, (B3)

where k is the momentum along the edge. The 1D Dirac
Hamiltonian can then be written as

H̄(k) = τz ⊗ h̄(k) +mxτx + δτy, (B4)

where mx implements the flux core induced domain
wall in the mass term at x = 0, τµ are Pauli matri-
ces (µ = 0, x, y, z) and δ multiplies a symmetry allowed
perturbation. In order to derive the presence of topo-
logical zero energy states, we consider OBC along the
edge (x−direction) and solve for boundary-localized zero-
energy states determined by the Hamiltonian

H̄x = −iτz
∂

∂x
+mxτx + δτy. (B5)

For δ = 0 we can find one normalizable zero energy solu-
tion |ψ⟩, H̄x|ψ⟩ = 0, given by

|ψ⟩ = 1

N
e−

1
2mx

2

(
i
1

)
. (B6)

To study the effect of the perturbation δ, we rely on first-
order perturbation theory

⟨ψ|H̄x|ψ⟩ = −δ. (B7)

Consequently, the EHH for flux cores in Hermitian class
A (d = 2) has no zero energy mode, as any finite δ is
able to remove the in gap state. This means the flux
response of 2D NH systems that lead to Hermitian class
A for H̄(k) is trivial. Note that additional crystalline
symmetries do not change this statement, contrary to
the case of 3D.

b. Class AII

Hermitian class AII has a TRS with ŪT Ū
∗
T = −1, de-

scribing 2D topological insulators. As such, the surface
Hamiltonian of the nontrivial phase is gapless,

h̄(k) = kσx, (B8)

where k is the momentum along the edge and mass terms
are forbidden by the presence of TRS ŪT = σy. The 1D
Dirac Hamiltonian can then be written as

H̄(k) = τz ⊗ h̄(k) +mxτxσ0 + δO, (B9)

where mx implements the flux core induced domain wall
in the mass term at x = 0, τµ, σµ are Pauli matrices
(µ = 0, x, y, z) and δ multiplies a collection of symme-
try allowed perturbation terms O. In order to derive
the presence of topological zero energy states, we con-
sider OBC along the edge (x−direction) and solve for
boundary-localized zero-energy states determined by the
Hamiltonian

H̄x = −iτzσx
∂

∂x
+mxτxσ0 + δO. (B10)

For δ = 0 we can find two normalizable zero energy so-
lutions |ψ⟩, H̄x|ψ⟩ = 0, given by

|ψ1⟩ =
1

N
e−

1
2mx

2

i
0
0
1

 , |ψ2⟩ =
1

N
e−

1
2mx

2

0
i
1
0

 . (B11)

In order to reveal that symmetry allowed perturbations
O are able to gap out these modes, we rely on degenerate
first-order perturbation theory in δ. Fixing O = τ0σ0 as
one symmetry preserving choice under TRS ŪT = τ0σy,
we obtain[

H̄flux

]
mn

= ⟨ψm|H̄x|ψn⟩ = [δσ0]mn . (B12)

Consequently, the EHH for flux cores in Hermitian class
AII (d = 2) is gapped and hosts no zero energy modes.
This means the flux response of 2D NH systems that
lead to Hermitian class AII for H̄(k) is trivial.

c. Class D

Hermitian class D describes the thermal quantum Hall
effect, with a PHS with ŪP Ū

∗
P = +1. The surface Hamil-

tonian for the nontrivial phase is gapless,

h̄(k) = k, (B13)

where k is the momentum along the edge. The 1D Dirac
Hamiltonian follows as

H̄(k) = τz ⊗ h̄(k) +mxτx, (B14)

where mx implements the flux core induced domain
wall in the mass term at x = 0, τµ are Pauli matrices
(µ = 0, x, y, z) and further symmetry allowed perturba-
tion terms O are not allowed by the presence of ŪP = τz.
In order to derive the presence of topological zero energy
states, we consider OBC along the edge (x−direction)
and solve for boundary-localized zero-energy states de-
termined by the Hamiltonian

H̄x = −iτz
∂

∂x
+mxτx. (B15)
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We can find one normalizable zero energy solutions |ψ⟩,
H̄x|ψ⟩ = 0, given by

|ψ⟩ = 1

N
e−

1
2mx

2

(
i
1

)
. (B16)

Consequently, the EHH for flux cores in Hermitian
class D (d = 2) is gapless, and hosts one topologically
protected zero mode localized at the flux core.

d. Class DIII

In Hermitian symmetry class DIII, the surface Hamil-
tonian along the edge h̄(k) is gapless in the nontrivial
phase and assumes the form

h̄(k) = kσx, (B17)

where k is the momentum along the edge and mass terms
are forbidden by the presence of TRS, PHS and chiral
symmetry. Choosing chiral symmetry as ŪC = τzσz, the
1D Dirac Hamiltonian can be written as

H̄(k) = τz ⊗ h̄(k) +mxτxσ0 + δO, (B18)

where mx implements the flux core induced domain wall
in the mass term at x = 0, τµ, σµ are Pauli matrices
(µ = 0, x, y, z) and δ multiplies a collection of symme-
try allowed perturbation terms O. In order to derive
the presence of topological zero energy states, we con-
sider OBC along the edge (x−direction) and solve for
boundary-localized zero-energy states determined by the
Hamiltonian

H̄x = −iτzσx
∂

∂x
+mxτxσ0 + δO. (B19)

For δ = 0 we can find two normalizable zero energy so-
lutions |ψ⟩, H̄x|ψ⟩ = 0, given by

|ψ1⟩ =
1

N
e−

1
2mx

2

i
0
0
1

 , |ψ2⟩ =
1

N
e−

1
2mx

2

0
i
1
0

 . (B20)

In order to reveal that symmetry allowed perturba-
tions O are not able to gap out these modes, we rely on
degenerate first-order perturbation theory in δ. Fixing
O = τyσz as the only symmetry preserving choice under
TRS ŪT = τ0σy and PHS ŪP = τzσx, we obtain[

H̄flux

]
mn

= ⟨ψm|H̄x|ψn⟩ = 0. (B21)

Consequently, the EHH for flux cores in Hermitian class
DIII (d = 2) is gapless, and hosts two topologically
protected zero modes localized at the flux cores.

e. Class C

In Hermitian symmetry class C with ŪP Ū
∗
P = −1, the

surface Hamiltonian along the edge h̄(k) is gapless in the
nontrivial phase and assumes the form

h̄(k) = kσ0 + m̃1σx + m̃2σy + m̃3σz, (B22)

where k is the momentum along the edge and the terms
multiplied by m̃1,2,3 only shift the zero energy crossing.
Using ŪP = τzσy, the 1D Dirac Hamiltonian can then be
written as

H̄(k) = τz ⊗ h̄(k) +mxτxσ0 + δO, (B23)

where mx implements the flux core induced domain wall
in the mass term at x = 0, τµ, σµ are Pauli matrices
(µ = 0, x, y, z) and δ multiplies a collection of symme-
try allowed perturbation terms O. In order to derive
the presence of topological zero energy states, we con-
sider OBC along the edge (x−direction) and solve for
boundary-localized zero-energy states determined by the
Hamiltonian

H̄x = −iτzσ0
∂

∂x
+mxτxσ0 + δO. (B24)

For δ = 0 we can find two normalizable zero energy so-
lutions |ψ⟩, H̄x|ψ⟩ = 0, given by

|ψ1⟩ =
1

N
e−

1
2mx

2

0
i
0
1

 , |ψ2⟩ =
1

N
e−

1
2mx

2

i
0
1
0

 . (B25)

To study the influence of symmetry allowed perturba-
tions O, we rely on degenerate first-order perturbation
theory in δ. Fixing O = τ0σz as one symmetry preserv-
ing choice under PHS ŪP = τzσy, we obtain[

H̄flux

]
mn

= ⟨ψm|H̄x|ψn⟩ = [−δσz]mn (B26)

Consequently, the EHH for flux cores in Hermitian class
C (d = 2) is gapped, and hosts no zero modes localized
at the flux cores. This is a consequence of PHS being
able to protect only a single state, not two.

3. 3D systems, symmetry classes of H̄(k)

In 3D, the EHH H̄(k) for nontrivial point-gapped NH
models resides in Hermitian classes AII, AIII, DIII, CI
or CII (see Tab. III). In the following, we investigate
whether a flux induced mass domain wall leads to zero
energy modes of H̄(k).

a. Class AII

In App. B 2 b we derived the absence of zero energy
modes at flux defects in 2D Hermitian class AII. In 3D,
the edge Hamiltonian in the nontrivial phase is given as

h̄(k1, k2) = k1σx + k2σy, (B27)
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TABLE III. NH symmetry classes with intrinsic point gap
topology in 3D and the corresponding Hermitian classes of
the EHH.

dim class H class H̄ class H̄ App.
(E0 = 0) (E0 ̸= 0)

3 AI† CI CI B 5 a
3 AII† DIII DIII B 5 b
3 A AIII AIII B 5 c
3 AS AIII ⊕ AIII AIII B 5 d
3 D DIII AIII B 5 e
3 DS+ AIII CI B 5 f
3 DS− DIII ⊕ DIII DIII B 5 g
3 DIIIS+− AII ⊕ AII DIII B 5 h
3 AIIS+ CII ⊕ CII AIII B 5 i
3 C CI AIII B 5 j
3 CS+ AIII DIII B 5 k
3 CS− CI ⊕ CI CI B 5 l

where k1 is the momentum along the edge, k2 the mo-
mentum along the flux tube, we obtain the 1D Dirac
Hamiltonian as

H̄(k1, k2) = τz ⊗ h̄(k1, k2) +mxτxσ0 + δO, (B28)

with the Pauli matrices τµ, σµ (µ = 0, x, y, z). For
k2 = δ = 0 we still find the two normalizable zero energy
solutions given by (B11). In order to derive the effec-
tive Hamiltonian along the flux tube, we rely on degen-
erate first-order perturbation theory in k2 and δ. Using
δO =

∑
i=x,y,z δiτyσi+ δ4τ0σ0 + δ5τzσ0 as the symmetry

preserving choices under TRS ŪT = τ0σy, we obtain[
H̄flux(k2)

]
mn

= ⟨ψm|H̄x(k2)|ψn⟩
= [k2σy + (δ4 − δ1)σ0]mn .

(B29)

Since the identity matrix constitutes just a trivial
spectral shift, the Hamiltonian along the flux tube is
still gapless. Consequently, flux tubes in Hermitian class
AII (d=3) form a helical metal, with zero modes of H̄(k)
appearing at k2 = 0.

b. Class AIII

Hermitian class AIII contains a chiral (sublattice) sym-
metry, such that the edge Hamiltonian for the nontrivial
phase appears in (B2) as

H̄(k1, k2) = τz ⊗ (k1σx + k2σy) +M + δO, (B30)

where k1 is the momentum along the edge, k2 the
momentum along the flux tube, M the mass matrix
that couples the edge states to yield a gapped bulk,
τµ, σµ Pauli matrices (µ = 0, x, y, z) and δ multiplies a
collection of symmetry-allowed perturbation terms O.
The insertion of a π−flux tube forms a mass domain
wall, causing a sign change in M . Note however that
Hermitian class AIII does not contain a symmetry fixing
the flux to zero or π. In order to derive the presence of

topological zero energy states, we consider OBC along
the edge (x−direction). Without further symmetries,
there exists an ambiguity in the suitable mass domain
wall, which can equivalently be realized as τyσ0 or τxσ0.
Therefore there exists no bound state without additional
(crystalline) symmetries. Adding for instance inversion
symmetry Ī, realized here as Ī = τxσ0, removes the
ambiguity by rendering τyσ0 an incompatible choice.
However, our current single mass domain wall inherently
breaks inversion symmetry. We therefore have to
introduce a second flux tube, representing the opposite
mass domain wall. A corresponding 2D-Dirac theory
is discussed in Ref. 14, showing that each flux tube
localizes one zero energy mode under OBC.

c. Class DIII

Since the DIII 3D topological insulator can be under-
stood as a pumping cycle of the corresponding 2D system
along a third momentum direction, the flux response fol-
lows directly from the respective case in 2D. In App. B 2 d
we derived the presence of two zero modes under π-flux
insertion. Accounting for the additional dimension by
using

h̄(k1, k2) = k1σx + k2σy, (B31)

where k1 is the momentum along the edge, k2 the mo-
mentum along the flux tube, we obtain the 2D Dirac
Hamiltonian as

H̄(k1, k2) = τz ⊗ h̄(k1, k2) +mxτxσ0 + δO, (B32)

with the Pauli matrices τµ, σµ (µ = 0, x, y, z). For
k2 = δ = 0 we still find the two normalizable zero energy
solutions given by (B20). In order to derive the effective
Hamiltonian along the flux tube, we rely on degenerate
first-order perturbation theory in k2 and δ. Using again
O = τyσz as the only symmetry preserving choice under
TRS ŪT = τ0σy and PHS ŪP = τzσx, we obtain[

H̄flux(k2)
]
mn

= ⟨ψm|H̄x(k2)|ψn⟩ = [k2σy]mn . (B33)

Consequently, flux tubes in Hermitian class DIII (d=3)
form a gapless helical metal, with zero modes of H̄(k)
appearing at k2 = 0.

d. Class CI

Hamiltonians in Hermitian symmetry class CI possess
TRS, chiral and PHS, where only the latter squares to
minus one. The corresponding surface Hamiltonian along
the edge h̄(k1, k2) is gapless in the nontrivial phase and
assumes the form

h̄(k1, k2) = k1ρyσx + k2ρ0σy, (B34)

where k1 is the momentum along the edge, k2 the mo-
mentum along the flux tube, ρµ, τµ, σµ Pauli matrices



16

(µ = 0, x, y, z) and allowed mass terms only constitute
trivial shifts of the location of the zero energy mode in
momentum space. Using ŪT = τ0ρ0σ0, ŪP = τzρyσz,
ŪC = τzρyσz the 1D Dirac Hamiltonian can then be writ-
ten as

H̄(k) = τz ⊗ h̄(k) +mxτxρ0σ0 + δO, (B35)

where mx implements the flux tube induced domain wall
in the mass term at x = 0 and δ multiplies a collection
of symmetry allowed perturbation terms O. In order to
derive the presence of topological zero energy states, we
consider OBC along the edge (x−direction) and solve for
boundary-localized zero-energy states determined by the
Hamiltonian

H̄x = −iτzρyσx
∂

∂x
+k2τzρ0σy+mxτxρ0σ0+ δO. (B36)

For k2 = δ = 0 we can find four normalizable zero energy
solutions |ψ⟩, H̄x|ψ⟩ = 0, given by

|ψ1⟩ =
1

N
e−

1
2mx

2



0
1
0
0
0
0
0
1


, |ψ2⟩ =

1

N
e−

1
2mx

2



−1
0
0
0
0
0
1
0


,

|ψ3⟩ =
1

N
e−

1
2mx

2



0
0
0
1
0
1
0
0


, |ψ4⟩ =

1

N
e−

1
2mx

2



0
0
−1
0
1
0
0
0


.

(B37)
In order to derive the effective Hamiltonian along the
flux tube, we rely on degenerate first-order perturbation
theory in k2 and δ. Using O = τyρyσ0 as one symmetry
preserving choice, we obtain[

H̄flux(k2)
]
mn

= ⟨ψm|H̄x(k2)|ψn⟩
= [k2ρ0σy − δρzσz]mn .

(B38)

Consequently, flux tubes in Hermitian class CI (d=3) are
gapped, and also host no zero energy end states under
OBC.

e. Class CII

In Hermitian symmetry class CII, the surface Hamilto-
nian along the edge h̄(k1, k2) is gapless for the nontrivial
phase and assumes the form

h̄(k1, k2) = k1ρ0σx + k2ρ0σy, (B39)

where k1 is the momentum along the edge, k2 the mo-
mentum along the flux tube, ρµ, σµ are Pauli matrices
(µ = 0, x, y, z) and mass terms are forbidden by the pres-
ence of TRS, PHS and chiral symmetry. Choosing chiral
symmetry as ŪC = τzρzσz, the 1D Dirac Hamiltonian
can be written as

H̄(k1, k2) = τz ⊗ (k1ρ0σx + k2ρ0σy) +M + δO, (B40)

where M implements the π−flux tube induced domain
wall in the mass term at x = 0, τµ are Pauli matrices
(µ = 0, x, y, z) and δ multiplies a collection of symmetry
allowed perturbation terms O. Note however that
Hermitian class AIII does not contain a symmetry fixing
the flux to zero or π. Requiring TRS as ŪT = iτ0ρxσy
and PHS as ŪP = iτzρyσx, one can find two possible
mass terms M , τxρ0σ0 or τyρzσ0. Due to this ambi-
guity there exists no bound state without additional
(crystalline) symmetries. Adding for instance inversion
symmetry Ī, realized here as Ī = τxρ0σ0, removes the
ambiguity by rendering τyρzσ0 an incompatible choice.
We therefore choose the mass domain wall to be realized
as M = mxτxρ0σ0. However, the single mass domain
wall again breaks inversion symmetry. We therefore
have to introduce a second flux tube, representing the
opposite mass domain wall. Using again the results of
the 2D-Dirac theory discussed in Ref. 14, one obtains
two zero energy modes per flux tube, localized at the
flux tube ends.

4. NH flux response in 2D

Zero modes of the EHH and NH point gap states
are in one-to-one correspondence. Using the Hermitian
flux Dirac theory, we here derive the flux response and
the corresponding topological properties of the SIBC
spectrum of all intrinsically nontrivial 2D point-gapped
NH symmetry classes, summarized in Tab. II.

a. Class AII†

NH class AII† has a TRS† squaring to minus one,
which quantizes the flux ϕ = 0, π. As outlined in A2,
the corresponding EHH introduces a chiral symmetry
Σ̄C , which combines with TRS to form a PHS with
ŪP Ū

∗
P = −ŪT Ū

∗
T = +1. Consequently, the EHH is in

Hermitian class DIII, which is Z2 classified for both 1D
and 2D [83].

The flux response of the EHH in Hermitian class DIII
shows two zero energy modes for each flux core (see
App. B 2 d). As the construction of the EHH can be
repeated for every complex energy inside the point gap,
the point gap of a corresponding NH system fills with
flux core localized modes. Consequently, models in NH
class AII† show a flux skin effect for ϕ = π. A periodic
system contains two flux cores ϕ = ±π, each localizing
an extensive number of modes. This number scales
with the extension of the system along the direction
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containing the two defects, denoted by L⊥ (see App. C 1).

b. Class DIII†

The NH class DIII† possesses TRS, PHS and chiral
symmetry with (UT U

∗
T , UPU

∗
P) = (−1, 1), where UC =

UT UP . As outlined in App. A 2, the corresponding EHH
at E0 = 0 obtains TRS ŪT , PHS ŪP and two chiral
symmetries {ŪC , Σ̄C} = 0. Both chiral symmetries can
be combined to a unitary symmetry Ū = ŪCΣ̄C with
Ū2 = −1.

Since Ū has an imaginary spectrum and [ŪT , Ū ] = 0,
the eigenspaces of Ū are exchanged by anti-unitary TRS.
Since {ŪP , Ū} = 0, we retain anti-unitary PHS in each
eigenspace, corresponding to Hermitian class D which has
a Z classification in 2D [83]. After modding out line-gap
phases, this is reduced to a Z2 classification [39]. Since
1D Hermitian class D is also Z2 classified, we expect that
a π-flux induces a single bound state per Ū eigensector
(see App. B 2 c). Hence, the full Hermitian spectrum
hosts a zero-energy Kramers pair per flux.

Away from E0 = 0, we retain only ŪT Ū
∗
T = −1 where

ŪT and Σ̄C anti-commute, resulting in Hermitian class
DIII. Due to TRS and chiral symmetry, the flux-bound
Kramers pair cannot move away from zero energy. Hence
the entire point gap of a corresponding NH system fills
with flux core localized modes. Consequently, models in
NH class DIII† quantize the flux to ϕ = 0, π and show a
flux skin effect for ϕ = π.

c. Class AIIIS−

Models in NH class AIIIS− possess chiral symmetry
UC and sublattice symmetry S, with {UC ,S} = 0. As
outlined in A 2, the corresponding EHH at E0 = 0 ob-
tains three chiral symmetries ŪC , Σ̄C , S̄, which can be
combined to two unitary symmetries Ū1 = ŪCS̄ with
Ū2
1 = −1 and Ū2 = S̄Σ̄C with Ū2

2 = +1. Due to the
anti-commutation of Ū1 with the chiral symmetries, the
eigenspaces of Ū1 are exchanged by ŪC , Σ̄C , S̄. Since
[Ū1, Ū2] = 0, we retain Ū2 in each subspace. However,
each eigenspace of Ū2 has no symmetry left, correspond-
ing to Hermitian class A⊕A.
In App. B 2 a, we derived the flux response of EHHs

in Hermitian class A, which did not yield protected zero
energy modes pinned to the flux defects. Consequently,
NH systems in class AIIIS− do not show flux induced
states within the NH point gap. Therefore, the flux
response for this NH symmetry class is trivial.

d. Class BDIS+−

The NH class BDIS+− possesses TRS, PHS and chi-
ral symmetry with (UT U

∗
T , UPU

∗
P) = (1, 1), where UC =

UT UP , as well as sublattice symmetry S. As outlined
in A 2, the corresponding EHH at E0 = 0 obtains TRS
ŪT , PHS ŪP and three chiral symmetries ŪC , Σ̄C , S̄. The
chiral symmetries can be combined to two commuting

unitary symmetries Ū1 = ŪCΣ̄C with Ū2
1 = −1 and

Ū2 = S̄Σ̄C with Ū2
2 = +1.

Since Ū1 has an imaginary spectrum and [ŪT , Ū1] =
{ŪP , Ū1} = {ŪC , Ū1} = {Σ̄C , Ū1} = {S̄, Ū1}, the
eigenspaces of Ū1 are not independent and individu-
ally enjoy ŪP and Ū2 symmetry. Moreover, we have
[ŪT , Ū2] = [ŪP , Ū2] = [S̄, Ū2] = [ŪC , Ū2] = [Σ̄C , Ū2] = 0,
so that the Ū2 eigenspaces are independent and individu-
ally preserve ŪP symmetry. They therefore lie in Hermi-
tian class D and yield a Z⊕Z classification in 2D [83] that
is reduced to Z2 by line gap phases [39]. The nontrivial
point gap phase is the one where only one Ū2 subspace is
nontrivial, corresponding to a single p+ip superconductor
per Ū1 eigenspace (see App. B 2 c). The full Hermitian
spectrum will therefore contain two exact zeromodes in
presence of a π-flux.
Away from E0 = 0, we can only form the TRS

Ū ′
T = S̄ŪP with Ū ′

T Ū
′∗
T = −1 and PHS Ū ′

P = Σ̄CŪ
′
T

with Ū ′
P Ū

′∗
P = +1 (see App. A 2). This results in

Hermitian class DIII, such that due to TRS and chiral
symmetry, the flux-bound Kramers pair cannot move
away from zero energy. Hence the entire point gap of a
corresponding NH system fills with flux core localized
modes. Consequently, models in NH class BDIS+−

quantize the flux to ϕ = 0, π and show a flux skin effect
for ϕ = π.

e. Class DS−

Models in NH class DS− possess PHS UP (UPU
∗
P =

+1) and sublattice symmetry S, with {UP ,S} = 0. As
outlined in App. A 2, the corresponding EHH introduces
a chiral symmetry Σ̄C , which combines with sublattice
symmetry to form a unitary symmetry Ū = S̄Σ̄C with
Ū2 = +1. The unitary Ū satisifies [ŪP , Ū ] = [S̄, Ū ] =
[Σ̄C , Ū ] = 0. We may furthermore define a TRS ŪT =
ŪP Σ̄C which satisfies ŪT Ū

∗
T = −1. Hence we obtain

Hermitian class DIII in each Ū subspace, giving a Z2 ⊕
Z2 classification in 2D [83]. By modding out line-gap
phases, this is reduced to a Z2 classification where the
nontrivial element corresponds to having only a single Ū
subspace being nontrivial [39]. Hence the full Hermitian
spectrum hosts a single zero-energy Kramers pair under
π-flux insertion (see App. B 2 d).

Away from E0 = 0, we can only form the TRS
Ū ′
T = S̄ŪP with Ū ′

T Ū
′∗
T = −1 and PHS Ū ′

P = Σ̄CŪ
′
T

with Ū ′
P Ū

′∗
P = +1 (see Sec. A 2). This results in

Hermitian class DIII, such that the flux-bound Kramers
pair cannot move away from zero energy. Hence the
entire point gap of a corresponding NH system fills with
flux core localized modes. Consequently, models in NH
class DS− quantize the flux to ϕ = 0, π and show a flux
skin effect for ϕ = π.

f. Class DIIIS+−

The NH class DIIIS+− possesses TRS, PHS and chiral
symmetry with (UT U

∗
T , UPU

∗
P) = (−1, 1), where UC =
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UT UP , as well as sublattice symmetry S. As outlined in
App. A 2, the corresponding EHH at E0 = 0 obtains TRS
ŪT , PHS ŪP and three chiral symmetries ŪC , Σ̄C , S̄. The
chiral symmetries can be combined to two commuting
unitary symmetries Ū1 = ŪCΣ̄C with Ū2

1 = −1 and Ū2 =
S̄Σ̄C with Ū2

2 = +1.
Since Ū1 has an imaginary spectrum and

{ŪT , Ū1} = [ŪP , Ū1] = {ŪC , Ū1} = {Σ̄C , Ū1} = {S̄, Ū1},
the eigenspaces of Ū1 are not independent and individ-
ually enjoy ŪT and Ū2 symmetry. Moreover, we have
[ŪT , Ū2] = [ŪP , Ū2] = [S̄, Ū2] = [ŪC , Ū2] = [Σ̄C , Ū2] = 0,
so that the Ū2 eigenspaces are independent and indi-
vidually preserve ŪT symmetry. They therefore lie in
Hermitian class AII and yield a Z2 ⊕ Z2 classification
in 2D [83] that is reduced to Z2 by line-gap phases [39].
The nontrivial element corresponds to having only a
single Ū2 subspace nontrivial. In App. B 2 b, we derived
the flux response of EHHs in Hermitian class AII, which
did not yield protected zero energy modes pinned to the
flux defects. Consequently, systems in NH class DIIIS+−

do not show flux induced states within the NH point
gap. Therefore, the flux response for this NH symmetry
class is trivial.

g. Class CIIS−+

The NH class CIIS−+ possesses TRS, PHS and chiral
symmetry with (UT U

∗
T , UPU

∗
P) = (−1,−1), where UC =

UT UP , as well as sublattice symmetry S. As outlined in
App. A 2, the corresponding EHH at E0 = 0 obtains TRS
ŪT , PHS ŪP and three chiral symmetries ŪC , Σ̄C , S̄. The
chiral symmetries can be combined to two commuting
unitary symmetries Ū1 = ŪCΣ̄C with Ū2

1 = −1 and Ū2 =
S̄Σ̄C with Ū2

2 = +1.
Since Ū1 has an imaginary spectrum and

[ŪT , Ū1] = {ŪP , Ū1} = {ŪC , Ū1} = {Σ̄C , Ū1} = {S̄, Ū1},
the eigenspaces of Ū1 are not independent and individ-
ually enjoy ŪP and Ū2 symmetry. Moreover, we have
{ŪT , Ū2} = {ŪP , Ū2} = [S̄, Ū2] = [ŪC , Ū2] = [Σ̄C , Ū2] =
0, so that the Ū2 eigenspaces are exchanged by ŪP
symmetry. This leaves us with Hermitian class A, which
has a Z classification in 2D [83] that is reduced to Z2 by
line-gap phases [39]. In App. B 2 a, we derived the flux
response of EHHs in Hermitian class A, which did not
yield protected zero energy modes pinned to the flux
defects. Consequently, systems in NH class CIIS−+ do
not show flux induced states within the NH point gap.
Therefore, the flux response for this NH symmetry class
is trivial.

h. Class CIIS+−

The NH class CIIS+− possesses TRS, PHS and chiral
symmetry with (UT U

∗
T , UPU

∗
P) = (−1,−1), where UC =

UT UP , as well as sublattice symmetry S. As outlined in
App. A 2, the corresponding EHH at E0 = 0 obtains TRS
ŪT , PHS ŪP and three chiral symmetries ŪC , Σ̄C , S̄. The
chiral symmetries can be combined to two commuting

unitary symmetries Ū1 = ŪCΣ̄C with Ū2
1 = −1 and Ū2 =

S̄Σ̄C with Ū2
2 = +1.

Since Ū1 has an imaginary spectrum and
[ŪT , Ū1] = {ŪP , Ū1} = {ŪC , Ū1} = {Σ̄C , Ū1} = {S̄, Ū1},
the eigenspaces of Ū1 are not independent and individ-
ually enjoy ŪP and Ū2 symmetry. Moreover, we have
[ŪT , Ū2] = [ŪP , Ū2] = [S̄, Ū2] = [ŪC , Ū2] = [Σ̄C , Ū2] = 0,
so that the Ū2 eigenspaces are independent and indi-
vidually preserve ŪP symmetry. We therefore obtain
Hermitian class C, giving a Z ⊕ Z classification in
2D [83]. This is reduced to Z2 under the addition of
line-gap phases, and the nontrivial element corresponds
to only having one Ū2 eigenspace nontrivial [39]. Since
the 1D classification of Hermitian class C is trivial and
App. B 2 e showed no protected zero energy modes, we
do not expect a stable flux response. Therefore, the flux
response for systems in NH class CIIS+− is trivial.

i. Class CIS−+

The NH class CIS−+ possesses TRS, PHS and chiral
symmetry with (UT U

∗
T , UPU

∗
P) = (1,−1), where UC =

UT UP , as well as sublattice symmetry S. As outlined in
App. A 2, the corresponding EHH at E0 = 0 obtains TRS
ŪT , PHS ŪP and three chiral symmetries ŪC , Σ̄C , S̄. The
chiral symmetries can be combined to two commuting
unitary symmetries Ū1 = ŪCΣ̄C with Ū2

1 = −1 and Ū2 =
S̄Σ̄C with Ū2

2 = +1.

Since Ū1 has an imaginary spectrum and
{ŪT , Ū1} = [ŪP , Ū1] = {ŪC , Ū1} = {Σ̄C , Ū1} = {S̄, Ū1},
the eigenspaces of Ū1 are not independent and individ-
ually enjoy ŪT and Ū2 symmetry. Moreover, we have
{ŪT , Ū2} = {ŪP , Ū2} = [S̄, Ū2] = [ŪC , Ū2] = [Σ̄C , Ū2] =
0, so that the Ū2 eigenspaces are exchanged by ŪT
symmetry. This leaves us with Hermitian class A, which
has a Z classification in 2D [83] that is reduced to Z2 by
line-gap phases [39]. In App. B 2 a, we derived the flux
response of EHHs in Hermitian class A, which did not
yield protected zero energy modes pinned to the flux
defects. Consequently, systems in NH class CIS−+ do
not show flux induced states within the NH point gap.
Therefore, the flux response for this NH symmetry class
is trivial.

5. NH flux response in 3D

Similar to the case of 2D, we rely on the Hermitian flux
Dirac theory to derive the flux response of all nontrivial
3D point-gapped NH symmetry classes, summarized in
Tab. III.

a. Class AI†

NH class AI† has a TRS† squaring to plus one. As
outlined in App. A 2, the corresponding EHH introduces
a chiral symmetry Σ̄C , which combines with TRS to form
a PHS with ŪP Ū

∗
P = −ŪT Ū

∗
T = −1. Consequently, the
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EHH for all energies inside the point gap E0 is in Hermi-
tian class CI.

The flux response of the EHH in Hermitian class CI
shows no protected zero energy modes (see App. B 3 d).
Consequently, systems in NH class AI† do not show flux
induced states within the NH point gap. Therefore, the
flux response for this NH symmetry class is trivial.

b. Class AII†

As for the case of 2D, NH class AII† has a TRS† squar-
ing to minus one, which quantizes the flux ϕ = 0, π. As
outlined in App. A 2, the corresponding EHH introduces
a chiral symmetry Σ̄C , which combines with TRS to form
a PHS with ŪP Ū

∗
P = −ŪT Ū

∗
T = +1. Consequently, the

EHH is in Hermitian class DIII, which is Z classified for
3D and hosts a Z2 index for 2D [83].

The flux response of the EHH in Hermitian class DIII
forms a gapless helical metal along the flux tube (see App.
B 3 c). As the construction of the EHH can be repeated
for every complex energy inside the point gap, the point
gap of a corresponding NH system fills with an extensive
number of states at a single momentum k∥. This is the
defining signature of the NH flux spectral jump, discussed
in Sec. IV. Therefore, systems in NH class AII† show a
NH flux spectral jump when introducing a flux defect.
Note that due to the Z2-classification in 2D, flux defects
only probe the Z2 nature of the 3D Z invariant in NH
class AII†.

c. Class A+I†

As NH class A does not contain any symmetries, the
corresponding EHH only introduces a chiral symmetry
Σ̄C (see App. A 2). Consequently, the EHH is in Hermi-
tian class AIII, which is Z classified for 3D and 1D while
being trivial in 2D [83].

Without additional crystalline symmetries, the zero
energy modes arising in the flux Dirac theory of sys-
tems in Hermitian class AIII are not protected (see
App. B 3 b). This indicates the absence of a NH flux
spectral jump, but allows for a different, higher order
phase. Adding a crystalline symmetry I† serves two
purposes: first, it should fix the flux to be either zero
or π, to allow for a topological flux response. Second,
it should protect zero energy states from being gapped
by perturbations. A crystalline symmetry fixing the flux
requires the presence of at least two defects, resulting in
a 2D Hermitian flux Dirac theory. The results derived in
App. B 3 b show the presence of zero energy states under
OBC along the flux tubes, which can be distinguished
from the surface signature for ϕ = 0. Consequently,
these zero modes appear extensively in the point gap
of the NH model. This constitutes a higher order skin
effect, with skin modes appearing at the ends of the flux
tubes in a finite geometry. The precise localization of
skin modes is then determined by the present pseudo
inversion symmetry I†. This is the defining signature of

the NH higher-order flux skin effect, discussed in Sec. V.

d. Class AS + I†,S−

NH class AS possesses a sublattice symmetry S, which
combines with the chiral symmetry Σ̄C in the correspond-
ing EHH (see App. A 2) to form a unitary symmetry
Ū = S̄Σ̄C with Ū2 = +1. The unitary Ū satisifies
[S̄, Ū ] = [Σ̄C , Ū ] = 0. Hence we obtain Hermitian class
AIII in each Ū subspace, giving a Z ⊕ Z classification in
3D and 1D, while 2D is trivial [83]. By modding out line-
gap phases, this is reduced to a Z classification where the
nontrivial element corresponds to having only a single Ū
subspace being nontrivial [39].
Away from E0 = 0, we are only left with the chiral

symmetry Σ̄C , resulting in Hermitian class AIII. Without
additional crystalline symmetries, the zero energy modes
arising in the flux Dirac theory of systems in Hermitian
class AIII are not protected (see App. B 3 b). Adding
a crystalline symmetry I†,S− , however, quantizes the
flux and allows for a stable flux response. The results
derived in App. B 3 b show the presence of zero energy
states under OBC along the flux tubes, which can be
distinguished from the surface signature for ϕ = 0.
Consequently, these zero modes appear extensively in
the point gap of the NH model, constituting a higher-
order flux skin effect (see Sec. V) for NH class AS+I†,S− .

e. Class D

Models in NH class D possess a PHS UP with UPU
∗
P =

+1, yielding a Z classification in 3D, while lower dimen-
sions are trivial. As outlined in App. A 2, the corre-
sponding EHH introduces a chiral symmetry Σ̄C , which
combines with PHS to a TRS ŪT = ŪP Σ̄C which satis-
fies ŪT Ū

∗
T = −1. Hence we obtain Hermitian class DIII,

giving a Z classification in 3D [83]. The flux response of
the EHH in Hermitian class DIII forms a gapless helical
metal along the flux tube (see App. B 3 c).
Away from E0 = 0, we are only left with the chiral

symmetry Σ̄C , resulting in Hermitian class AIII. Her-
mitian class AIII allows to gap the helical metal by
introducing suitable mass terms. Consequently, only at
E0 = 0 we expect flux localized modes to appear in the
NH point gap. The number of modes does not scale
extensively with the system size, the NH system only
pins the Hermitian surface state of the extended model.
This surface state is a Majorana, models in NH class D
therefore show a flux Majorana mode, as introduced in
Sec. VI. Note that due to the Z2 line gap classification
in 1D, flux defects only probe the Z2 nature of the 3D Z
invariant in NH class D.

f. Class DS+ + I†,S−

Models in NH class DS+ possess PHS UP (UPU
∗
P =

+1) and sublattice symmetry S, with [UP ,S] = 0. As
outlined in App. A 2, the corresponding EHH introduces
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a chiral symmetry Σ̄C , which combines with sublattice
symmetry to form a unitary symmetry Ū = S̄Σ̄C with
Ū2 = +1. The unitary Ū satisifies {ŪP , Ū} = [S̄, Ū ] =
[Σ̄C , Ū ] = 0. We may furthermore define a TRS ŪT =
ŪP Σ̄C which satisfies ŪT Ū

∗
T = −1 and anti-commutes

with Ū . Hence the eigenspaces of Ū are not indepen-
dent and individually enjoy a chiral symmetry, leading
to Hermitian class AIII with a Z classification in 3D [83].
Without additional crystalline symmetries, the zero en-
ergy modes arising in the flux Dirac theory of systems in
Hermitian class AIII are not protected (see App. B 3 b).
Adding a crystalline symmetry I†,S− , however, quantizes
the flux and allows for a stable flux response. The re-
sults derived in App. B 3 b show the presence of one zero
energy mode per flux under OBC, occurring in each Ū
subspace.

Away from E0 = 0, we can only form the TRS
Ū ′
T = S̄ŪP with Ū ′

T Ū
′∗
T = +1 and PHS Ū ′

P = Σ̄CŪ
′
T

with Ū ′
P Ū

′∗
P = −1 (see App. A 2). This results in

Hermitian class CI which does not protect a Kramers
degeneracy. Consequently, the pair of flux modes can
be now gapped, yielding a higher order response only at
E0 = 0. Models in NH class DS+ + I†,S− therefore show
a higher-order Hermitian flux response, the higher-order
flux Majorana mode, as introduced in Sec. VI.

g. Class DS−

As for the case of 2D, models in NH class DS− possess
PHS UP (UPU

∗
P = +1) and sublattice symmetry S, with

{UP ,S} = 0. As outlined in App. A 2, the correspond-
ing EHH introduces a chiral symmetry Σ̄C , which com-
bines with sublattice symmetry to form a unitary sym-
metry Ū = S̄Σ̄C with Ū2 = +1. The unitary Ū satisifies
[ŪP , Ū ] = [S̄, Ū ] = [Σ̄C , Ū ] = 0. We may furthermore
define a TRS ŪT = ŪP Σ̄C which satisfies ŪT Ū

∗
T = −1.

Hence we obtain Hermitian class DIII in each Ū subspace,
giving a Z ⊕ Z classification in 3D [83]. By modding out
line-gap phases, this is reduced to a Z classification where
the nontrivial element corresponds to having only a single
Ū subspace being nontrivial [39]. Hence the full Hermi-
tian spectrum hosts a helical metal under π-flux insertion
(see App. B 3 c).

Away from E0 = 0, we can only form the TRS
Ū ′
T = S̄ŪP with Ū ′

T Ū
′∗
T = −1 and PHS Ū ′

P = Σ̄CŪ
′
T

with Ū ′
P Ū

′∗
P = +1 (see App. A 2). This results in

Hermitian class DIII, such that the flux-bound helical
metal cannot move away from zero energy. Hence the
entire point gap of a corresponding NH system fills with
flux tube localized modes. Consequently, models in NH
class DS− quantize the flux to ϕ = 0, π and show a NH
flux spectral jump, discussed in Sec. IV. Note that due
to the Z2-classification of NH class DS− in 2D, flux
defects only probe the Z2 nature of the 3D Z invariant.

h. Class DIIIS+−

As for the case of 2D, models in NH class
DIIIS+− possess TRS, PHS and chiral symmetry with
(UT U

∗
T , UPU

∗
P) = (−1, 1), where UC = UT UP , as well

as sublattice symmetry S. As outlined in App. A 2, the
corresponding EHH at E0 = 0 obtains TRS ŪT , PHS
ŪP and three chiral symmetries ŪC , Σ̄C , S̄. The chiral
symmetries can be combined to two commuting unitary
symmetries Ū1 = ŪCΣ̄C with Ū2

1 = −1 and Ū2 = S̄Σ̄C
with Ū2

2 = +1.
Since Ū1 has an imaginary spectrum and {ŪT , Ū1} =

[ŪP , Ū1] = {ŪC , Ū1} = {Σ̄C , Ū1} = {S̄, Ū1}, the
eigenspaces of Ū1 are not independent and individu-
ally enjoy ŪT and Ū2 symmetry. Moreover, we have
[ŪT , Ū2] = [ŪP , Ū2] = [S̄, Ū2] = [ŪC , Ū2] = [Σ̄C , Ū2] = 0,
so that the Ū2 eigenspaces are independent and individu-
ally preserve ŪT symmetry. They therefore lie in Hermi-
tian class AII and yield a Z2⊕Z2 classification in 3D [83]
that is reduced to Z2 by line-gap phases [39]. The non-
trivial element corresponds to having only a single Ū2

subspace nontrivial. In App. B 3 a, we derived the flux
response of EHHs in Hermitian class AII, which shows a
helical metal pinned to the flux defects.

Away from E0 = 0, we can only form the TRS
Ū ′
T = S̄ŪP with Ū ′

T Ū
′∗
T = −1 and PHS Ū ′

P = Σ̄CŪ
′
T

with Ū ′
P Ū

′∗
P = +1 (see App. A 2). This results in

Hermitian class DIII, such that the flux-bound helical
metal cannot move away from zero energy. Hence the
entire point gap of a corresponding NH system fills with
an extensive number of states at a single momentum
k∥. Consequently, models in NH class DIIIS+− quantize
the flux to ϕ = 0, π and show a NH flux spectral jump,
discussed in Sec. IV.

i. Class AIIS+ + I†,S−,T−

NH class AIIS+ possesses TRS UT (UT U
∗
T = −1) and

sublattice symmetry S, with [UT ,S] = 0. As outlined
in App. A 2, the corresponding EHH introduces a chiral
symmetry Σ̄C , which combines with sublattice symmetry
to form a unitary symmetry Ū = S̄Σ̄C with Ū2 = +1.
The unitary Ū satisifies [ŪT , Ū ] = [S̄, Ū ] = [Σ̄C , Ū ] = 0.
We may furthermore define a PHS ŪP = ŪT Σ̄C which
satisfies ŪP Ū

∗
P = −1 and commutes with Ū . Hence the

eigenspaces of Ū are independent and individually enjoy
TRS, PHS and chiral symmetry, leading to Hermitian
class CII with a Z2 classification in each sector in 3D [83].
Without additional crystalline symmetries, the zero en-
ergy modes arising in the flux Dirac theory of systems in
Hermitian class CII are not protected (see App. B 3 e).
Adding a crystalline symmetry I†,S−,T− , however, quan-
tizes the flux and allows for a stable flux response. In-
troducing a π-flux results in the presence of zero energy
states under OBC along the flux tubes, in addition to the
surface signature for ϕ = 0.
Away from E0 = 0, we are only left with the chiral

symmetry Σ̄C , resulting in Hermitian class AIII. As Her-



21

mitian class AIII with additional crystalline symmetry
I†,S−,T− protects flux modes localized at the end of the
flux tubes, these zero modes appear extensively in the
point gap of the NH model, constituting a higher-order
flux skin effect (see Sec. V) for NH class AIIS++I†,S−,T− .

j. Class C

Models in NH class C possess a PHS UP with
UPU

∗
P = −1, yielding a 2Z classification in 3D, while

lower dimensions are trivial. As outlined in App. A 2,
the corresponding EHH introduces a chiral symmetry
Σ̄C , which combines with PHS to a TRS ŪT = ŪP Σ̄C
which satisfies ŪT Ū

∗
T = +1. Hence we obtain Hermitian

class CI, giving a 2Z classification in 3D [83]. The
flux response of the EHH in Hermitian class CI is
trivial, without protected flux localized zero modes (see
App. B 3 d). Consequently, systems in NH class C do
not show flux induced states within the NH point gap.
Therefore, the flux response for this NH symmetry class
is trivial.

k. Class CS+ + I†,S−

Models in NH class CS+ possess PHS UP (UPU
∗
P =

−1) and sublattice symmetry S, with [UP ,S] = 0. As
outlined in App. A 2, the corresponding EHH introduces
a chiral symmetry Σ̄C , which combines with sublattice
symmetry to form a unitary symmetry Ū = S̄Σ̄C with
Ū2 = +1. The unitary Ū satisifies {ŪP , Ū} = [S̄, Ū ] =
[Σ̄C , Ū ] = 0. We may furthermore define a TRS ŪT =
ŪP Σ̄C which satisfies ŪT Ū

∗
T = +1 and anti-commutes

with Ū . Hence the eigenspaces of Ū are not indepen-
dent and individually enjoy a chiral symmetry, leading
to Hermitian class AIII with a Z classification in 3D [83].
Without additional crystalline symmetries, the zero en-
ergy modes arising in the flux Dirac theory of systems in
Hermitian class AIII are not protected (see App. B 3 b).
Adding a crystalline symmetry I†,S− , however, quantizes
the flux and allows for a stable higher order flux response,
with a single mode at the end of each flux tube per Ū
eigenspace.

Away from E0 = 0, we can only form the TRS
Ū ′
T = S̄ŪP with Ū ′

T Ū
′∗
T = −1 and PHS Ū ′

P = Σ̄CŪ
′
T

with Ū ′
P Ū

′∗
P = +1 (see App. A 2). This results in

Hermitian class DIII, such that the two flux modes in
each Ū eigenspace are still protected. Consequently,
these zero modes appear extensively in the point gap
of the NH model. This constitutes a higher order skin
effect, with skin modes appearing at the ends of the flux
tubes in a finite geometry. The precise localization of
skin modes is then determined by the present crystalline
symmetry I†,S− . This is the defining signature of the
NH higher-order flux skin effect, discussed in Sec. V.
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FIG. 8. Scaling analysis for the NH flux skin effect.
The number of modes with more than 70% localization at
the flux cores scales linearly with the extent of the system
along the direction connecting the two flux cores L⊥. The
separation between the flux cores d is held fixed. The fit is
given by # = −3.81538 + 1.78462 L⊥, using a model in NH
class AII† [Eq. (E1)].

l. Class CS−

NH class CS− possesses PHS UP (UPU
∗
P = −1) and

sublattice symmetry S, with {UP ,S} = 0. As outlined
in App. A 2, the corresponding EHH introduces a chiral
symmetry Σ̄C , which combines with sublattice symmetry
to form a unitary symmetry Ū = S̄Σ̄C with Ū2 = +1.
The unitary Ū satisifies [ŪP , Ū ] = [S̄, Ū ] = [Σ̄C , Ū ] = 0.
We may furthermore define a TRS ŪT = ŪP Σ̄C which
satisfies ŪT Ū

∗
T = +1, commuting with Ū . Hence we

obtain Hermitian class CI in each Ū subspace, giving a
2Z ⊕ 2Z classification in 3D [83]. By modding out line-
gap phases, this is reduced to a Z classification where the
nontrivial element corresponds to having only a single Ū
subspace being nontrivial [39].

Away from E0 = 0, we can only form the TRS
Ū ′
T = S̄ŪP with Ū ′

T Ū
′∗
T = +1 and PHS Ū ′

P = Σ̄CŪ
′
T

with Ū ′
P Ū

′∗
P = −1 (see App. A 2). This results again in

Hermitian class CI, which shows a trivial flux response
(see App. B 3 d). Consequently, systems in NH class CS−

do not show flux induced states within the NH point
gap. Therefore, the flux response for this NH symmetry
class is trivial.

Appendix C: Scaling analysis of flux defect localized
modes

This appendix highlights the scaling of flux localized
modes with system extent for the flux responses discussed
in the main text.
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FIG. 9. Scaling analysis for the flux effects in 3D. a In the flux spectral jump, the number of modes with more than 70%
localization at the flux tubes scales linearly with the extent of the system connecting the two flux tubes L⊥. The fit is given
by # = −4.04396+ 1.67033 L⊥ for a model in NH class AII† [Eq. (E7)]. b The higher-order flux skin effect localizes all modes
along the flux defects, thereby scaling with L∥. The fit is given by # = −8.53571+ 1.51786 L∥ for modes localized at the ends
of the flux tubes. Scaling generated for a model in NH class A with fixed size L⊥ = 20 unit cells [Eq. (E8)]. c The number of
Majorana modes with more than 70% localization at the flux tubes does not scale with the system size. The number follows
directly from the Dirac flux theory for models in NH class D [Eq. (E11)] d The number of higher-order Majorana modes with
more than 55% localization at the flux tubes does not scale with the system size, here specifically shown for the dimension along
the length of the flux defect, L∥. Scaling generated for a model in NH class DS+ with fixed size L⊥ = 20 unit cells [Eq. (E12)].

1. Scaling of flux core-localized modes in 2D

Sec. III predicts a skin effect localizing modes at the
points where flux cores with ϕ = π pierce a 2D system.
Their number scales with the system size, precisely with
the extension of the system parallel to the line connect-
ing the two flux cores L⊥, as shown in Fig. 8. All states
in this 1D slice collapse towards the flux cores. For small
separations d, states at the two flux cores can hybridize,
yielding a smaller number of localized states. The topo-
logically relevant regime has both flux cores well sep-
arated, for which the number of skin modes does not
change with d. Consequently, all L⊥ states experience
the flux skin effect, irrespective of the extension of the
system to the left and right of the flux defects.

2. Scaling of flux tube localized modes in 3D

In 3D, NH flux defects probe 4 unique topological
phases: the flux spectral jump, the higher-order flux skin
effect, the NH flux Majorana mode and its higher-order
cousin. For a π-flux, the flux spectral jump causes an
extensive number of defect localized modes. Their num-
ber scales with the extension of the system parallel to
the line connecting the two flux tubes L⊥, as shown in
Fig. 9a. Conversely, the higher-order flux skin effect ap-
pears along π-flux tubes, thereby localizingO(L∥) modes,
where L∥ is the extension of the system along the defect
as shown in Fig. 9b. In contrast, flux Majorana modes
appear only as isolated modes, without a connected skin
effect. Their number then derives from the EHH Dirac
theory, which predicts two zero-energy modes per flux
tube, localized at the flux defects (see App. B 2 d). Cor-
respondingly, the model in NH class D hosts one mode
per flux tube (see Fig. 9c and App. B 5 e). Higher-order

flux Majorana modes appear in addition to the surface
state in NH class DS+ (see App. B 5 f). The number of
modes localized at the ends of the flux tubes, however,
does also not scale with the system size, indicating the
absence of a flux induced skin effect (see Fig. 9d).

Appendix D: More details on the higher-order flux
skin effect

This appendix provides details on the fractional na-
ture of the higher-order flux skin effect and the role of
(pseudo-)inversion symmetry in it. Additionally, we pro-
vide details for NH symmetry classes AIIS+ and CS+ .

1. Fractional nature of the higher-order flux skin
effect

The NH higher-order flux skin effect results from the
presence of one flux-end localized zero energy mode per
flux tube in the corresponding EHH. The single flux
bound state is fractional, as there exists no 1D system
with a single end state. In this appendix, we investi-
gate the fractional nature of this state by considering the
weight of a given chirality on each surface, which reveals
an imbalance only present for finite flux ϕ = π.
The eigenstates of the EHH are given as

H̄|ψj⟩ = Ej |ψj⟩, j ∈ Ξ = {1, . . . , L2
⊥ ·L∥ ·Li}, (D1)

where L⊥, L∥ are the system dimensions, with Li de-
scribing internal (sublattice, spin) degrees of freedom.
We can then consider an interval around zero energy
−ϵ < Ej < ϵ: requiring that we do not separate de-
generate states, the set of states in the interval 2ϵ forms
the subset E ⊂ Ξ, for instance as highlighted in the inset
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of Fig. 5b. Expressing the chiral symmetry of the EHH
Σ̄C in this subspace,

Σij = ⟨ψi|Σ̄C |ψj⟩, (D2)

allows to diagonalize Σ

Σv±
l = ±v±

l , l ∈ {1, . . . , n±}, (D3)

and obtain eigenstates of the chiral symmetry Σ̄C . We
denote eigenvectors with positive (negative) chiral eigen-
value as v+

l (v−
l ) and their number as n+ (n−). We are

interested in the chirality of the original eigenstates of the
EHH H̄, which we expand in the obtained chiral basis:

|ψ±⟩ =
∑
l,j

v±l,j |ψj⟩, (D4)

where |ψ±⟩ are now eigenstates of positive (+) or nega-
tive (-) chirality. For a system without flux defects, for
instance in Hermitian class AIII as considered in Sec. V,
each surface has zero net-chirality [83]. We calculate the
net chirality by summing all states of (+)/(-) chirality
for the top/bottom surface, ρ±top,bottom, and investigat-
ing their differences. Specifically, we use

ρ±top =

|ψ±(r∥)|2<δ∑
r⊥,r∥=L∥

|ψ±(r)|2, (D5)

ρ±bot =

|ψ±(r∥)|2<δ∑
r⊥,r∥=0

|ψ±(r)|2, (D6)

where we restrict the summation for bottom (top) sur-
face, denoted by r∥ = 0 (r∥ = L∥), once the states ψ±
decay in the bulk (|ψ±(r∥)|2 < δ, δ ≪ 1).

Forming the differences between top and bottom sur-
face for a fixed chirality, e.g. (+), yields

∆+ = |ρ+top − ρ+bot|. (D7)

In the absence of a flux defect, ϕ = 0, each chirality
has equal weight one each surface, ∆± = 0. Conversely,
for a nontrivial flux ϕ = π, each chirality has predomi-
nant weight on one surface. For a PBC system with two
flux tubes, ∆± is equal to one: there is a single state
per chirality per flux tube (see Fig. 10). Viewing a flux
tube as an effective 1D model highlights the fractional
nature of this response: A 1D model always contains
end states of both chiralities, for instance as in the Su-
Schrieffer-Heeger model [85]. The fact that we obtain a
single state per chirality shows the fractional nature in
the EHH, causing the higher-order flux skin effect in the
NH system.

2. Role of inversion symmetry in the higher-order
flux skin effect

This appendix investigates the effect of
(pseudo-)inversion symmetry on NH symmetry classes

with a higher-order flux skin effect under π-flux inser-
tion. The relevant NH symmetry classes are A, AS ,
AIIS+ and CS+ . In order to obtain a nontrivial response
to flux defects in these classes, we require the presence
of additional crystalline symmetries, restricting the
magnetic flux ϕ to 0, π in PBC, while still allowing for
nontrivial topology. Specifically, we investigate inversion
symmetry

IH(k)I† = H(−k), (D8)

appearing in the EHH as

ĪH̄(k)Ī† = −H̄(k), Ī =

(
I 0
0 I

)
, (D9)

and pseudo-inversion symmetry

IH(k)†I† = H(−k), (D10)

appearing in the EHH as

ĪH̄(k)Ī† = −H̄(k), Ī =

(
0 I
I 0

)
. (D11)

We have to identify choices of (pseudo-)inversion sym-
metry that leave the intrinsic point gap classification
invariant, i.e. do not trivialize the flux response.

a. Class A

In NH symmetry class A, the EHH can be formed as
outlined in Eq. (4) of the main text, which adds a chi-
ral symmetry Σ̄C , resulting in Hermitian class AIII. We
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FIG. 10. Fractional nature of the NH higher-order flux
skin effect. Eigenstates of the chiral symmetry in the EHH
appear with zero net-chirality per surface in the absence of
a magnetic flux ϕ. Introducing a flux defect with ϕ = π
leads to additional contributions to top and bottom surface
(depicted in red), having opposite chirality. Panel is generated
for a model of size 20× 20× 20 unit cells in NH class A with
additional pseudo-inversion symmetry (see App. E 2 b).



24

can either use an inversion symmetry (D8) or a pseudo-
inversion symmetry (D10) to fix the flux ϕ to 0, π in PBC
in the NH Hamiltonian. However, these two choices dif-
fer in their commutation with the chiral symmetry Σ̄C
when considering the EHH: Whereas “normal” inversion
symmetry commutes with chiral symmetry[

Σ̄C ,

(
I 0
0 I

)]
= 0, (D12)

pseudo-inversion symmetry anticommutes,{
Σ̄C ,

(
0 I
I 0

)}
= 0. (D13)

This means both chiral subspaces have the same
inversion eigenvalues. Consequently, at every inversion-
symmetric momenta in the Brillouin zone, the occupied
and unoccupied subspace have the same number of posi-
tive and negative inversion eigenvalues. Therefore every
Hermitian model with these symmetry properties cannot
have a band inversion and so is topologically trivial [86].
As topological zero modes of Hermitian extended models
stand in one-to-one correspondence with NH modes
within a point-gapped bulk (see Sec II B), also the
corresponding NH model is trivial. Accordingly, Ref. 87
outlines that with commuting inversion symmetry, the
resulting Hermitian class AIIII+ is trivial, in agreement
with the vanishing 3D winding number of the NH
system. Conversely, anticommuting pseudo-inversion
symmetry yields a EHH in Hermitian class AIIII−

which is classified by a Z index. Contrary to normal
inversion, pseudo-inversion hence allows for a nontrivial
flux response, the higher-order flux skin effect.

b. Class AS

In NH symmetry class AS , the EHH can be formed
for each sublattice symmetry block (see App. B 5 d)
as outlined in (4). This construction adds a chiral
symmetry Σ̄C , resulting in Hermitian class AIII in
each block, of which only one has to be nontrivial.
Again, we can either use an inversion symmetry (D8)
or a pseudo-inversion symmetry (D10) to fix the flux
ϕ to 0, π in PBC in the NH Hamiltonian. However,
these two choices differ in their commutation with the
chiral symmetry ŪC when considering the EHH: Whereas
”normal” inversion symmetry commutes with chiral sym-
metry pseudo-inversion symmetry anticommutes (see
Sec. D 2 a). Additionally, the sublattice symmetry S̄ of
the NH Hamiltonian acts as a chiral symmetry of H̄, too.
Depending on the commutation or anti-commutation
of both ŪC and S̄ with (pseudo-)inversion symmetry
the topological classification differs. Ref. 87 outlines
that both chiral symmetries have to anti-commute
with inversion symmetry to form a nontrivial phase
classified by a Z index. Correspondingly, an inversion
symmetry in the NH Hamiltonian always results in a
trivial phase. Pseudo-inversion symmetry on the other

hand only results in a nontrivial flux response for an
anti-commuting sublattice symmetry S. Contrary to
normal inversion, pseudo-inversion hence allows for a
nontrivial flux response, the higher-order flux skin effect.

c. Class AIIS+

In NH symmetry class AIIS− , the EHH follows as out-
lined in (4) (see Sec. B 5 i). The EHH possesses a unitary
symmetry Ū , whose eigenspaces are independent and in-
dividually enjoy TRS, PHS and chiral symmetry, leading
to Hermitian class CII in each sector. A stable flux re-
sponse in this class requires the presence of a crystalline
symmetry: we can either use an inversion symmetry (D8)
or a pseudo-inversion symmetry (D10). We have to anal-
yse these two choices with respect to their commutation
with TRS and PHS, to derive their topological classifica-
tion [87]. In the EHH we can form two TRS:

ŪT =

(
UT 0
0 UT

)
, (D14)

and

ŪT =

(
UT S 0
0 −UT S

)
. (D15)

Similarly, we can form two PHS,

ŪP =

(
UT 0
0 −UT

)
, (D16)

and

ŪP =

(
UT S 0
0 UT S

)
. (D17)

A 4Z classified phase is obtained if both TRSs commute
while the PHSs anticommute with inversion. Conversely,
if both TRSs anticommute while the PHSs commute
with inversion, we obtain a Z2 classification [87]. Only
the latter is compatible with the Z2-point gap clas-
sification without crystalline symmetries. All other
cases, also including inversion symmetry, do not yield
a nontrivial response. Therefore, we should choose a
pseudo-inversion symmetry commuting with sublattice
symmetry S, but anticommuting with TRS UT . Con-
trary to normal inversion, pseudo-inversion hence allows
for a nontrivial flux response, the higher-order flux skin
effect.

d. Class CS+

In NH symmetry class CS+ , the EHH possesses
chiral symmetries S̄, Σ̄C in each independent unitary
eigenspace (see App. B 5 k). Consequently, the EHH sits
in Hermitian class AIII for each block, of which only
one has to be nontrivial. We can either use an inversion
symmetry (D8) or a pseudo-inversion symmetry (D10)
to fix the flux ϕ to 0, π in the NH Hamiltonian. However,
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FIG. 11. Higher-order flux skin effect in NH class AIIS+ and CS+ . a The EHH for models in NH class AIIS+ [Eq. E17]
shows a gapless surface even for ϕ = 0. b Under OBC in NH class AIIS+ , the presence of a nontrivial flux ϕ = π introduces four
additional flux states. c Similarly, the EHH for models in NH class CS+ [Eq. E19] shows a gapless surface for ϕ = 0. d Under
OBC, however, the presence of a nontrivial flux ϕ = π introduces two additional flux states per unitary subspace, yielding in
total four additional modes. All panels are generated for systems of size 20× 20× 20 unit cells.

these two choices differ in their commutation with the
chiral symmetry Σ̄C when considering the EHH: Whereas
“normal” inversion symmetry commutes with chiral sym-
metry, pseudo-inversion symmetry anticommutes (see
Sec. D 2 a). Additionally, the sublattice symmetry S̄ of
the NH Hamiltonian acts as a chiral symmetry of H̄, too.
Depending on the commutation or anti-commutation
of both Σ̄C and S̄ with (pseudo-)inversion symmetry
the topological classification differs. Ref. 87 outlines
that both chiral symmetries have to anti-commute
with inversion symmetry to form a nontrivial phase
classified by a Z index. Correspondingly, an inversion
symmetry in the NH Hamiltonian always results in a
trivial phase. Pseudo-inversion symmetry on the other
hand only results in a nontrivial flux response for an
anti-commuting sublattice symmetry S. Contrary to
normal inversion, pseudo-inversion hence allows for a
nontrivial flux response, the higher-order flux skin effect.

3. Resolving the higher-order flux skin effect in the
EHH spectrum

In Sec. V, we derived the presence of a higher-order flux
skin effect in NH symmetry classes A, AS , AIIS+ , and
CS+ . While being observable in the NH system due to
the extensive localization of states, the occurrence in the
corresponding EHH is more intricate: the inherent non-
trivial surface state of the EHH obscures flux-localized
modes. We can nevertheless cleanly identify the pres-
ence of flux induced zero-energy modes in the EHH by
considering an interval around zero energy −ϵ < E < ϵ,
within the bulk energy gap (|ϵ| < Ebulk [88]). We denote
the set of states within this interval by E (see Fig. 5b and
Fig. 11 for examples). The number of states |E| can be
used to resolve the higher-order flux skin effect.

NH class A and AS map to Hermitian class AIII, where
the total number of states |E| has to be a multiple of 4
in the absence of a magnetic flux ϕ = 0,

|E| mod 4 = 0. (D18)

This can be understood from the fact that the EHH in
Hermitian class AIII hosts an integer number of Dirac
cones on each surface [83]. Since there is no net chiral-
ity per surface [89], energy eigenvalues appear in pairs
(E,−E) on each surface. Inversion symmetry maps be-
tween the two surfaces, such that E contains a multiple
of 4 states.
On the other hand, for a finite flux ϕ = π, we ob-

tain one additional zero-energy mode per flux tube (see
App. B 3 b), and so we find for a PBC system hosting
two flux tubes that

|E| mod 4 = 2. (D19)

Calculating |E| mod 4 for our example system in NH
class A (Fig. 5b) yields |E|ϕ=0 mod 4 = 0 (upper left in-
set), while we find |E|ϕ=π mod 4 = 2 as predicted (lower
right inset).
This relation is modified for the NH classes AIIS+ and

CS+ . NH class AIIS+ maps to Hermitian class CII⊗CII,
of which only one subspace is nontrivial (see App. B 5 i).
Hermitian class CII shows a 4-fold degenerate Dirac cone
per surface, as chiral symmetry combined with TRS
yields pairs of doubly degenerate states. As inversion
symmetry maps between the two surfaces, states appear
as multiples of eight in E . The introduction of two flux
tubes amends this by 4 additional states (see App. B 3 e),
hence we obtain for the number of states in E , denoted
by |E|, that

|E| mod 8 = 0 (4), (D20)

for flux ϕ = 0 (π). Fig. 11a and b show the comparison
of both cases and the validity of the above index.
NH class CS+ maps to Hermitian class AIII in two

interdependent unitary subspaces (see App. B 5 k). As
outlined in Sec. V, each subspace comes with a multi-
ple of 4 states. The full system hence has E containing
multiples of 8 states. The introduction of two flux tubes
amends this by 2 additional states per unitary subspace
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(see App. B 3 b), hence

|E| mod 8 = 0 (4), (D21)

for flux ϕ = 0 (π). Fig. 11c and d show the comparison
of both cases and the validity of the above index.

Appendix E: Toy models for all NH symmetry
classes with nontrivial flux response

1. 2D models

In this appendix we present models for all intrinsically
nontrivial 2D point-gapped NH classes showing a non-
trivial flux response. As outlined in the main text, we
consider flux defects oriented along the x-direction.

a. Class AII†

The model in NH class AII† is given by the Hamilto-
nian

HAII†(k) = sin(kx)σy − sin(ky)σx

+ i

 ∑
i=x,y

cos(ki)− µ

σ0 +∆σ0,
(E1)

with the Pauli matrices σµ (µ = 0, x, y, z), possessing
pseudo TRS as UT = iσy and ∆ ̸= 0 is a real parameter
breaking residual symmetries.

b. Class DIII†

The nontrivial point-gapped model in NH class DIII†

is given by the Hamiltonian

HDIII†(k) = sin(kx)σx − sin(ky)σy

− i

 ∑
i=x,y

cos(ki)− 1

σ0,
(E2)

with the Pauli matrices σµ(µ = 0, x, y, z). We obtain
TRS† UT = σy, PHS† UP = σx and chiral symmetry
UC = σz, fulfilling the required commutation relations.

c. Class BDIS+−

The point gap-nontrivial model in NH class BDIS+− is
given by the Hamiltonian

HBDIS+− (k) =i

(
0 Q(k; 1)

Q(k; 3) 0

)
, (E3)

with

Q(k;µ) =− sin(kx)σy − sin(ky)σx

−

 ∑
i=x,y

cos(ki)− µ

σz,
(E4)

and the Pauli matrices σµ (µ = 0, x, y, z). We obtain
TRS UT = τ0σx, PHS UP = τxσx, chiral symmetry UC =
τxσ0 and sublattice symmetry S = τzσ0, fulfilling the
required commutation relations.

d. Class DS−

A nontrivial point-gapped model in NH class DS− is
realized by the Hamiltonian

HDS− (k) =

(
0 Q(k; 2)

Q(k; 6) 0

)
+∆τxσy, (E5)

with

Q(k;µ) =i sin(kx)σz − sin(ky)σ0

+ i

2
∑
i=x,y

cos(ki)− µ

σy,
(E6)

with the Pauli matrices σµ and τµ (µ = 0, x, y, z). The
Hamiltonian possesses PHS UP = τxσ0 and sublattice
symmetry S = τzσ0, fulfilling the required commutation
relations. Note that ∆ multiplies a term to remove un-
wanted residual symmetries.

2. 3D models

In this appendix we present models for all intrinsi-
cally nontrivial 3D point-gapped NH classes showing a
nontrivial flux response. As outlined in the main text,
we consider flux defects oriented along the x- and z-
direction.

a. Class AII†

The model in NH class AII† is based on the exceptional
topological insulator introduced in Ref. 21. Its Hamilto-
nian is given by

HAII†(k) =

 ∑
j=x,y,z

cos(kj)−M

 τzσ0

+ λ
∑

j=x,y,z

sin(kj)τxσj

+ iδτxσ0 +∆τ0σ0,

(E7)

where the Pauli matrices σµ and τµ act on the spin
and orbital degrees of freedom, respectively, with µ =
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0, x, y, z and the 0-th Pauli matrix as the 2 × 2 identity
matrix. ∆ ̸= 0 is a real parameter breaking residual sym-
metries. The invariant is w3D = 1 for 3 − δ/λ < M <
3+δ/λ. By changingM , we transition to the trivial phase
at M = 3± δ/λ. The Hamiltonian has pseudo-inversion
symmetry with I = τzσ0 and pseudo TRS represented
by UT = τ0σy.

b. Class A+I†

The prototypical phase in 3D NH class A is formed
by the exceptional exceptional topological insulator in-
troduced in Ref. 21:

HA(k) =

 ∑
j=x,y,z

cos(kj)−M

 τzσ0

+ λ
∑

j=x,y,z

sin(kj)τxσj

+ iδτxσ0 +∆(τ0σz + τzσx),

(E8)

where the Pauli matrices σµ and τµ act on the spin
and orbital degrees of freedom, respectively, with µ =
0, x, y, z and the 0-th Pauli matrix as the 2 × 2 identity
matrix. ∆ ̸= 0 is a real parameter breaking residual
symmetries. The Hamiltonian is only left with pseudo-
inversion symmetry with I = τzσ0.

c. Class AS + I†

The nontrivial model in NH class AS is given by

HAS (k) =

(
0 Q(k; 2)

Q(k; 0) 0

)
+∆τxσx, (E9)

with the Pauli matrices σµ and τµ (µ = 0, x, y, z), ∆ ̸= 0
a real parameter breaking residual symmetries and

Q(k;µ) =i sin(kx)σx + i sin(ky)σy + i sin(kz)σz

+

 ∑
i=x,y,z

cos(ki)− µ

σ0.
(E10)

HAS has a sublattice symmetry S = τzσ0 and pseudo-
inversion symmetry I = τxσ0.

d. Class D

The model in NH class D is given by

HD(k) =− i sin(kx)σz − i sin(ky)σx + sin(kz)σ0

+ i

 ∑
i=x,y,z

cos(ki)− 2

σy,
(E11)

with the Pauli matrices σµ (µ = 0, x, y, z), possessing a
PHS UP = σ0.

e. Class DS+ + I†

The nontrivial point-gapped phase in NH class DS− is
based on the Hamiltonian in NH class D, formed by

HDS+ (k) =

(
0 HD(k)

HD(k) 0

)
+∆(τyσ0 + iτxσy),

(E12)

with the Pauli matrices σµ and τµ (µ = 0, x, y, z) and
∆ ̸= 0 a real parameter breaking residual symmetries.
We obtain PHS UP = τ0σ0 and sublattice symmetry
S = τzσ0, fulfilling the required commutation relations.
Additionally, HDS+ has pseudo-inversion symmetry with
I = τyσy.

f. Class DS−

The nontrivial point-gapped phase in NH class DS− is
formed by

HDS− (k) =

(
0 Q(k; 2)

Q(k; 0) 0

)
, (E13)

with the Pauli matrices σµ and τµ (µ = 0, x, y, z) and

Q(k;µ) =i sin(kx)σx + i sin(ky)σy + i sin(kz)σz

+

 ∑
i=x,y,z

cos(ki)− µ

σy.
(E14)

We obtain PHS UP = τyσy and sublattice symmetry S =
τzσ0, fulfilling the required commutation relations.

g. Class DIIIS+−

The nontrivial point-gapped phase in NH class DIIIS+−

is formed by

HDIIIS+− (k) =i

(
0 Q(k; 2)

Q(k; 4) 0

)
+∆ρxτxσ0, (E15)

with the Pauli matrices σµ, τµ and ρµ (µ = 0, x, y, z),
∆ ̸= 0 a real parameter breaking residual symmetries
and

Q(k;µ) = sin(kx)τxσx + sin(ky)τxσy + i sin(kz)τxσz

+

 ∑
i=x,y,z

cos(ki)− µ

 τzσ0.

(E16)
We obtain PHS UP = ρxτyσy, TRS UT = ρzτyσ0, chiral
symmetry UC = ρyτ0σy and sublattice symmetry S =
ρzτ0σ0, fulfilling the required commutation relations.
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h. Class AIIS+ + I†

The nontrivial point-gapped phase in NH class AIIS+

is formed by

HAIIS+ (k) =i

(
0 Q(k; 4)

Q(k; 2) 0

)
+∆ρyτxσz, (E17)

with the Pauli matrices σµ, τµ and ρµ (µ = 0, x, y, z),
∆ ̸= 0 a real parameter breaking residual symmetries
and

Q(k;µ) = sin(kx)τxσx + sin(ky)τxσy + i sin(kz)τxσz

+

 ∑
i=x,y,z

cos(ki)− µ

 τzσ0 +∆(τyσx + iτ0σx).

(E18)
We obtain TRS† UT = ρ0τ0σy and sublattice symme-
try S = ρzτ0σ0, fulfilling the required commutation re-
lations. Additionally, HAIIS+ has pseudo-inversion sym-
metry with I = ρyτxσ0.

i. Class CS+ + I†

The nontrivial point-gapped phase in NH class CS+ is
formed by

HCS+ (k) =i

(
0 Q(k; 3)

Q(k; 3)† 0

)
+∆(ρyτxσz + iρxτxσ0),

(E19)

with the Pauli matrices σµ, τµ and ρµ (µ = 0, x, y, z),
∆ ̸= 0 a real parameter breaking residual symmetries
and

Q(k;µ) = sin(kx)τxσx + sin(ky)τxσy + i sin(kz)τxσz

+

 ∑
i=x,y,z

cos(ki)− µ

 τzσ0 +∆(τyσx + iτ0σx).

(E20)
We obtain PHS UP = ρzτ0σy and sublattice symmetry
S = ρzτ0σ0, fulfilling the required commutation rela-
tions. Additionally, HCS+ has pseudo-inversion symme-
try with I = ρyτxσ0.
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