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We derive the response of non-Hermitian topological phases with intrinsic point gap topology to
localized magnetic flux insertions. In two spatial dimensions, we identify the necessary and sufficient
conditions for a flux skin effect that localizes an extensive number of in-gap modes at a flux core.
In three dimensions, we furthermore establish the existence of: a flux spectral jump, where flux tube
insertion fills up the entire point gap only at a single parallel crystal momentum; a higher-order flux
skin effect, which occurs at the ends of flux tubes in presence of pseudo-inversion symmetry; and a
flux Majorana mode that represents a spectrally isolated mid-gap state in the complex energy plane.
We uniquely associate each non-Hermitian symmetry class with intrinsic point gap topology with
one of these cases or a trivial flux response, and discuss possible experimental realizations.

I. INTRODUCTION

Gapped Hermitian topological phases can be differenti-
ated from trivial phases, as well as between each other, by
a quantized response to local magnetic fluxes [1–9]. Such
fluxes take the form of zero-dimensional (0D) flux cores
(vortices) in two dimensions (2D), or one-dimensional
(1D) flux tubes in three dimensions (3D). In particular,
in presence of a symmetry that quantizes the magnetic
flux ϕ through a plaquette (stack of plaquettes) of a 2D
(3D) lattice – most commonly to values ϕ = 0, π – topo-
logical insulators generically host flux-localized bound
states [10]. In 2D, these states may be constrained to
occur at zero energy by a spectral symmetry such as the
particle-hole symmetry of (mean-field) superconductors.
For example, magnetic vortices in a 2D p + ip super-
conductor are known to host unpaired Majorana zero-
modes [11, 12]. Without spectral symmetry, flux bound
states in 2D systems can be moved out of the gap, but
may still contribute to a filling anomaly of the ground
state that cannot be trivialized without breaking a sym-
metry or closing a gap [13]. In 3D, flux bound states fall
into two categories: in the first case, they form a gapless
state localized along the 1D flux tube, as is the case for
π-flux tubes in 3D time-reversal symmetric topological
insulators [3–9]. In the recently discovered second case,
the flux tube ends bind 0D states that give rise to a fill-
ing anomaly or are pinned to zero energy by a spectral
symmetry [14]. This latter case is realized in higher-order
topological phases protected by crystalline symmetries.

The goal of our present work is to generalize the theory
of flux bound states to non-Hermitian (NH) topological
phases that break energy conservation. Such phases have
generated increased interest recently due to their uncon-
ventional bulk-boundary correspondence [15–25]. Fun-
damentally, there exist two kinds of NH systems [15–
18]: Hamiltonians H with a line gap in their complex
energy spectrum can be adiabatically (without closing
the line gap) deformed to purely Hermitian (H† = H)
or anti-Hermitian (H† = −H) Hamiltonians. On the
other hand, Hamiltonians without any line gap may still
host a point gap – a region of complex energy that is

devoid of, but surrounded by, eigenstates. Point-gapped
systems without a line gap cannot be adiabatically de-
formed to any (anti-)Hermitian limit, and therefore re-
alize intrinsically NH topology. A prime example is the
1D Hatano-Nelson chain [26–28] in NH symmetry class
A (no symmetries) whose bulk winding number invari-
ant W ∈ Z in periodic boundary conditions (PBC) re-
sults in the NH skin effect under open boundary condi-
tions (OBC): when W ̸= 0, an extensive number of (al-
most all) OBC eigenstates accumulate at only one edge
of the system [29–37]. While this observation is remi-
niscent of a bulk-boundary correspondence, it is unclear
how the OBC spectrum may crisply differentiate between
systems with different nonzero W . To alleviate this is-
sue, we here employ the NH pseudospectrum that con-
sists of the collection of spectra associated with all O(ϵ)-
deformed Hamiltonians (see Sec. IIA for details) [38–40].
The pseudospectrum reduces to the spectrum in the Her-
mitian case, but represents the more physically adequate
quantity in the NH case: if a state fails to be an eigen-
state only by O(ϵ) terms, then it behaves as an eigen-
state with respect to realistic measurements. Moreover,
the pseudospectrum restores the full bulk-boundary cor-
respondence of NH point-gapped systems: for instance,
a Hamiltonian with nonzero bulk winding number W
has a pseudospectrum that fills the point gap and is
W -fold degenerate in presence of boundaries [39]. In
the thermodynamic limit, the pseudospectrum is equiv-
alent to the spectrum in semi-infinite boundary condi-
tions (SIBC) [38–40]. Correspondingly, we characterize
the flux response of NH systems by their SIBC spectrum
in presence of flux defects. We exclusively focus on NH
phases with intrinsic point gap topology, which were clas-
sified in all 38 NH symmetry classes in Refs. 16 and 39:
in addition to stability under manipulations preserving
point gap and symmetry class, these phases cannot be
trivialized even when coupling with arbitrary NH line-
gapped phases is allowed.

We find that, depending on the NH symmetry class,
the flux response of intrinsically NH point-gapped phases
falls into one of 5 classes:
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(1) No flux response: Some NH phases have a trivial
flux response even when their bulk is topologically
nontrivial.

(2) Flux skin effect: Inserting a π-flux core in a 2D NH
system can induce a skin effect response where a
macroscopic number of OBC eigenstates localizes at
the flux core [39]. Concomitantly, the SIBC spectrum
in presence of flux fills up the entire point gap in the
complex energy plane. This effect is similar to the
dislocation skin effect of Refs. 41 and 42, with the
important distinction that it does not rely on (dis-
crete) translational symmetry and therefore probes
strong instead of weak NH topology [14].

(3) Flux spectral jump: Threading a 1D π-flux tube
through a 3D NH system with nontrivial point gap
topology can result in a spectral jump as the momen-
tum coordinate k∥ along the flux tube is varied. In
particular, the SIBC spectrum in presence of flux re-
mains gapped at generic values of k∥, but completely
fills up with an extensive number of states at one of
the two special points k∥ = 0, π. Such a gapless NH
dispersion cannot be realized in any purely 1D lat-
tice system, and therefore represents an intrinsically
NH anomalous 1D state. We note that a purely 1D
system cannot realize a filled point gap at a single
momentum, as there is only a finite Hilbert space
available at any given momentum. Instead, the dis-
continuity in the 1D flux tube dispersion described
here capitalizes on a topologically nontrivial 2D bulk.

(4) Higher-order flux skin effect: Even when the SIBC
spectrum of a 3D NH phase in presence of a 1D
flux tube is fully gapped (does not exhibit a spec-
tral jump), preserving crystalline pseudo-inversion
symmetry [43–51] may result in a nontrivial higher-
order response. In this case, an extensive number
of eigenstates accumulates at the ends of flux tubes
when these terminate at sample surfaces. Concomi-
tantly, the SIBC spectral point gap remains empty
with PBC along the flux tubes, but is completely
filled up in OBC when a surface termination perpen-
dicular to the flux tubes is introduced.

(5) Flux Majorana modes: In just two NH symmetry
classes, intrinsic 3D point gap topology furthermore
manifests itself in an unpaired flux Majorana mode
pinned to the center of the SIBC spectral point gap.
For the case of NH class D, this mode is localized
along the entire 1D length of the flux tube. Such lo-
calization is impossible in Hermitian systems where
energetically isolated bound states must be pointlike.

In Tab. I, we identify the flux response of each NH sym-
metry class that allows for intrinsic point gap topology
with one of the 5 possible NH flux responses. In Sec. II
we outline the formalism that we use to derive the flux
responses, before discussing the individual effects: in
Sec. III we highlight the flux skin effect, Sec. IV presents
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FIG. 1. NH bulk-boundary correspondence. The NH
skin effect, which corresponds to a nonzero topological invari-
ant W (E) [Eq. (1)], induces a spectral collapse of the point
gap under OBC. However, the resulting OBC spectrum does
not uniquely specify the nonzero value ofW (E). This ambigu-
ity is resolved in the SIBC spectrum, which restores the NH
bulk-boundary correspondence: surface states fill the point
gap, and their degeneracy corresponds to W (E).

the flux spectral jump, in Sec. V we introduce the higher-
order flux skin effect, and finally Sec. VI unveils the flux
Majorana modes. We close by discussing potential exper-
imental realizations in Sec. VII. The appendices contain
exhaustive auxiliary derivations and toy model Hamilto-
nians.

II. FORMALISM

We begin by pedagogically reviewing the concepts
needed to characterize flux responses in the NH context.

A. NH Bulk-boundary correspondence

NH systems can differ dramatically in their spectra un-
der PBC and OBC. One of the prime examples of this fea-
ture is the NH skin effect, whereby a point-gapped bulk
collapses to a line under OBC (see Fig. 1). Connected
with this is a pile-up of all states at a single boundary.
In 1D, this effect is associated with a winding number
W (E) [39],

W (E) =

Z 2�

0

dk

2πi

d

dk
log det[H(k)− E], (1)

where the Bloch HamiltonianH(k) is point-gapped about
the reference energy E. In particular, if W (E) ̸= 0, the
NH skin effect must occur. However, it is important to
note that W (E) ∈ Z is an integer-valued invariant, while
the presence or absence of a skin effect only provides a
Z2 quantifier. This observation raises the question of how
the OBC spectrum of two systems with nonzero but dif-
ferent W (E) can be crisply distinguished. The problem
is further compounded by the dramatic sensitivity of the
OBC spectrum [52] to small changes of the Hamiltonian.

To solve both issues, the ϵ-pseudospectrum of NH sys-
tems was introduced in Refs. 38–40. It describes the
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change in the spectrum under a small perturbation� ,

� � (H ) = f E 2 Cj jj (H � E ) jvi jj < �

for at least one jvi with hvjvi = 1g:
(2)

This de�nition is practical: if a state is just O(� ) away
from being an eigenstate, it will still behave as one with
regards to realistic measurements, which always include
a small error. In contrast to other approaches reestab-
lishing the NH bulk-boundary correspondence, for in-
stance the OBC treatment of Ref. 53, the pseudospec-
trum, therefore, does not su�er from a sensitivity to in-
�nitesimal errors. The pseudospectrum is particularly
useful because it can be related to the spectrum in SIBC
� SIBC (H ), which is the spectrum in presence of just a
single boundary in the thermodynamic limit (system size
L ! 1 ). In particular, it holds that [38{40]

lim
� ! 0

lim
L !1

� � (H ) = � SIBC (H ): (3)

This correspondence between pseudospectrum and
SIBC spectrum allows for a precise de�nition of a NH
bulk-boundary correspondence. In particular, in the
SIBC spectrum of a 1D system with nonzeroW (E), the
point gap �lls completely with boundary localized states
whose degeneracy equalsW (E) (see Fig. 1).

B. Extended Hermitian Hamiltonian

To �nd the 
ux response of NH systems, we rely on
the topological equivalence between a NH HamiltonianH
and an extended Hermitian Hamiltonian (EHH) �H [54,
55], de�ned as

�H =
�

0 H � E0

H y � E �
0 0

�
: (4)

By construction, �H enjoys a chiral symmetry,

�� C �H �� y
C = � �H; �� C =

�
1 0
0 � 1

�
: (5)

The presence of a point gap ofH around E = E0 trans-
lates into a gapped spectrum of �H about zero energy.
Conversely, exact topological zero-energy eigenvalues of
�H correspond to protectedE = E0 states within the NH
point gap, because

det( �H ) = � det(H � E0) det(H y � E �
0 ) = 0

! det(H � E0) = 0 :
(6)

Consequently, we can predict the presence of protected
in-gap modes from the EHH spectrum.

C. Flux defects in NH systems

Flux defects are routinely employed as probes of bulk
topology in Hermitian systems [1{9, 56]. For instance,
� -
ux cores in 2D topological insulators bind a single

FIG. 2. Implementation of 
ux defects. a Periodic sys-
tems must contain pairs of 
ux defects � � . b These can be
implemented by multiplying all hoppings from sites s1 to s2

by ei� , and by e� i� in the opposite direction.

Kramers pair of midgap states [2{4]. While general de-
fects [57], dislocations [41, 42], and disclinations [58] have
been investigated in the NH context, a systematic un-
derstanding of the 
ux response of all intrinsically point-
gapped NH symmetry classes has been absent until now.

Any topological 
ux response relies on a quantization
of the admissible values of 
ux � . Restricting to local NH
symmetries corresponding to one of the 38 NH symmetry
classes [16] { potentially taken together with a crystalline
symmetry like pseudo-inversion { we �nd that, depend-
ing on the symmetry class, 
ux is either unquantized or
must take values � = 0 ; � in PBC. In the cases where
� = 0 ; � , the NH symmetry class must either contain a
time-reversal (TRS) or particle-hole (PHS) symmetry, or
include crystalline pseudo-inversion symmetry.

Here, we focus on PBC in order to cleanly separate
the NH 
ux response from boundary states or skin ef-
fects. The PBC geometry requires (at least) two 
ux
cores/tubes with strength � � [14]. Such a pair of 
uxes
can be introduced by the Peierls substitution: the hop-
pings encircling each 
ux must accumulate a phasee� i�

(see Fig. 2a). A convenient electromagnetic gauge choice
is then to multiply all hoppings across the line (plane)
connecting the two 
uxes in a 2D (3D) system by a fac-
tor of ei� in one direction (s1 ! s2, see Fig. 2b) and
by e� i� in the other direction ( s2 ! s1), where we de-
note the sites above the line (plane) ass1 and the ones
beneath as s2. We choose the orientation of this line
(plane) along the x- (x- and z-)direction in 2D (3D), re-
spectively. SIBC corresponds to the idealized limit where
only one 
ux (= only one \boundary") is present, while
the second 
ux is in�nitely far away. In our conventions,
a system with SIBC then has a single 
ux core/tube at
x = 0, is in�nitely extended in the x-direction, and is
�nite with PBC in all remaining directions (but poten-
tially still thermodynamically large).

We derive the 
ux response for all NH symmetry
classes with intrinsic point gap topology from their re-
spective EHH. The EHH experiences the same 
ux defect
as the NH Hamiltonian: In the gauge described above,
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FIG. 3. NH 
ux skin e�ect in 2D. a Spectrum in the complex energy plane under PBC (blue) and SIBC in presence of
� -
ux cores (blue and red) for a model exhibiting nontrivial point gap topology in NH class AII y [Eq. (E1)]. Flux-localized
states �ll the point gap in the SIBC spectrum, showing the 
ux skin e�ect. b The energy spectrum of the EHH for NH class
AII y [Eq. (E1)] shows four topological zero energy modes within the bulk energy gap, caused by two � -
ux cores. c The

ux skin e�ect localizes an extensive number of eigenmodes at the 
uxes, indicated by two peaks of the summed density
� (r ) =

P
�;i jhr i j � ij 2 , where � ranges over all eigenstates � of the Hamiltonian with 
ux defect, r denotes the lattice site,

and the summation i runs over sublattice degrees of freedom.

Peierls substitution implies

hs1jH � js2i = ei� hs1jH � =0 js2i : (7)

The corresponding matrix element for the EHH reads
hs�

1 j �H � js�
2 i , where�; � = 1 ; 2 label the two sublattices in-

troduced by the Hermitian extension. The only nonzero
contributions are

hs� =1
1 j �H � js� =2

2 i = ei� hs1jH � =0 js2i ; (8)

and

hs� =2
1 j �H � js� =1

2 i = ei� hs1jH y
� =0 js2i ; (9)

where, importantly, the 
ux enters in both cases as ei� .
The reason is that Hermitian conjugation in Eq. (9) not
only 
ips the sign of the 
ux, but also transposes the
matrix elements s1 ! s2 to s2 ! s1. In Eq. (7) we have
used that E0 multiplies an identity matrix in Eq. (4) and
therefore remains una�ected under 
ux insertion.

In summary, our strategy for determining the 
ux
response of a given NH symmetry classX is to:

(1) Find the corresponding Hermitian symmetry class �X
of the EHH.

(2) Derive the 
ux response of �X using the Dirac formal-
ism detailed in the appendices.

(3) Infer the topological properties of the NH SIBC spec-
trum that result from exact EHH zeromodes.

III. NH FLUX SKIN EFFECT

We begin our survey of NH 
ux responses with 2D
systems. Here we �rst consider a speci�c example in
NH class AIIy (see App. E 1 a for details). Point-gapped

systems in NH class AIIy are classi�ed by a Z2 invariant
� 2 f 0; 1g, de�ned in Ref. 16. In order to derive the 
ux
response of the nontrivial phase where� = 1, we rely on
the EHH for a given energyE0 inside the point gap (see
Sec. II B). Irrespective of the choice ofE0, the EHH for
NH class AIIy enjoys the symmetries of Hermitian class
DIII (see App. B 4 a and Tab. II therein). Moreover, since
Hermitian class DIII is likewise Z2-classi�ed in 2D, the
EHH associated with a nontrivial NH phase in class AIIy

must itself realize a nontrivial topological insulator phase
in Hermitian class DIII. For this phase, it was shown in
Ref. 10 that 
ux cores bind two degenerate zero-energy
states (a Kramers pair). In the NH SIBC spectrum, these
modes then correspond to a single 
ux localized state at
complex energyE0 in the point gap [39]. Since we can
perform this construction for all E0 inside the point gap,
we obtain an extensive number of modes localized at the

ux core (see Fig. 3a,b). Such an extensive accumulation
of states de�nes the NH 
ux skin e�ect [39].

In a PBC geometry with two 
ux cores, this response
is topologically equivalent to the Z2 skin e�ect [39]
of a 1D model in NH class AIIy situated on the line
terminated by the two 
ux cores (see Fig. 3c). Indeed,
the number of 
ux-localized modes scales with the length
of the 1D edge connecting the two defects, denoted by
L ? (see App. C 1 for details on the �nite-size scaling).
The equivalence of the 
ux skin e�ect and the 1D NH
bulk-boundary correspondence is consistent with the
fact that point gap topology in 1D and NH class AII y

is Z2-classi�ed [16]. This observation leads us to the
following generalizing hypothesis, which we prove in
App. B by exhaustion:

(I) A 2D system with nontrivial intrinsic
point gap topology in NH symmetry class
X, where X pins � = 0 ; � , exhibits a 
ux
skin e�ect for � = � i� X also has a
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