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We propose and study theoretically a new mechanism of electron-impurity scattering in doped
seminconductors with large dielectric constant. It is based upon the idea of vector character of
deformations caused in the crystalline lattice by any point defects siting asymmetrically in the unit
cell. In result, local lattice compression due to the elastic deformations decay as 1/r2 with distance
from impurity. Electron scattering (due to standard deformation potential) on such defects leads

to low-temperature mobility µ(n) scaling with electron density n of the form µ(n) ∝ n−2/3 that is
close to experimental observations on a number of relevant materials.

Introduction A number of doped semiconductors is
known to demonstrate low-temperature mobility µ(n)
with a nearly power-law dependence on electron density,
µ ∝ n−β , with the exponent β in the interval 1

2 < β < 1,
see Ref. [1–5] for Strontium Titanate SrTiO3, Ref. [6]
for Potassium Tantalate KTaO3, Ref. [1, 7, 8] for Lead
Telluride PbTe and Ref. [12] for mixed-chalcogenide
compound TlBiSSe. Obviously, mobility in the T → 0
should be determined by impurity scattering, but it is
not so easy to identify the specific mechanism of this
scattering. Indeed, an obviously existing scattering by
screened Coulomb potentials produced by charged impu-
rities leads [9, 10] to µCoul(n) ∝ 1/ ln(n). Another om-
nipresent type of scattering is provided by short-range
random potentials, but this one leads to density - inde-
pendent scattering cross-section, thus µshort(n) ∝ n−4/3.
None of these mechanisms is able to explain the data
[1–8]. The common feature of all these doped semicon-
ductors is high dielectric constant of the corresponding
undoped material, which makes Coulomb scattering by
charged impurities very weak.

In the present manuscript we propose and study a new
mechanism of electron scattering by point defects, which
we call vector impurity mechanism. Our key idea fol-
lows from two observations: i) all considered families of
semiconductors have crystal lattices with relatively com-
plicated elementary cells, which forces lattice defects (a
vacancy or a substitutional atom) to break down the
symmetry of elastic media around it; as a result, such
defects act as a microscopic ”force” upon surrounding
elastic media. ii) elastic deformations due to a point-
like force Fδ(r) applied to an elastic media leads [11] to
lattice deformations u(r) with slowly decaying compres-
sion divu ∝ 1/r2. Now, one can employ usual electron-
phonon deformation potential Hamiltonian of the form
Hint ∝ (ψ†ψ)divu to find that it leads to the impurity
transport cross-section νtr(q) ∝ 1/q2, with q being trans-
fered momentum. With typical q ∼ kF ∼ n1/3, one
immediately find mobility µ(n) ∝ (nνtrkF )

−1 ∝ n−2/3

which is rather close to the observations [1–8]. Below
we provide detailed exposition of our approach, and ap-
ply it first to Strontium Titanate (where some complica-
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FIG. 1: Schematic visualization of electron scattering on
vector impurity induced deformation potential. The vectors
F are oriented randomly for different impurities.

tions arise due to its many-band structure), and then to
KTaO3, PbTe and TlBiSSe.
Elastic deformations due to vector impurities.

Conduction-band electrons in semiconductors interact
with lattice distortions via deformation potential

Ĥimp = Dac

∫
drψ̂†(r)ψ̂(r)divu(r) (1)

where coupling constant Dac is usually rather large,
about few eV. Thus we need to consider possible sources
of lattice distortions leading to non-zero compression u.
In the simplest model of a ”void” in isotropic elastic me-
dia, the deformations u which arise around it lead to
divu = 0, see [11], Problem 2 for Paragraph 7. Crucial
point is to notice that any atomic defect in a complicated
crystal structure will break the symmetry of the lattice
in the way that is equivalent to the presence of some
local vector source. In other words, it would be incor-
rect to consider Oxygen vacancy in STO just as small
spherical defect in elastic media, as it would be possi-
ble in case of vacancy is simple cubic lattice with single
atom per unit cell. Oxygen defects in the lattice of STO
are located asymmetrically w.r.t. center of the unit cell.
Thus, in terms of symmetry of elastic deformation, the
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effect of such a defect is equivalent to the presence of
some frozen in local force F. The problem of elastic de-
formations in the presence of such a force was first solved
by W.Thomson in 1848; detailed solution is present in
Ref.[11], as the Problem to the Paragraph 8. It reads as
follows:

u =
1 + ν

8πE(1− ν)

(3− 4ν)F+ n(nF)

r
(2)

Here ν and E are the Poisson’s ratio and Young modulus
respectively, the magnitude of a force F = |F| will serve
as a fitting parameter for our theory. Local compression
divu corresponding to deformations (2) is given by

∇u = U Fr

r3
, U =

(1 + ν)
2

8πE(1− ν)
(3)

Fig. 1 presents a sketch of electron scattering on a ran-
dom deformation potential caused by vector impurities.

Collision integral, relaxation time and mobility. Now
we use the Hamiltonian (1) with impurity-induced com-
pressions given by Eq.(3) to calculate electron scattering
rates.

We will study electric transport in an electron sys-
tem using the Boltzmann kinetic equation. To find the
conductivity and the corresponding mobility within lin-
ear response theory, we expand the distribution func-
tion as fp ≈ np + δnp. Where, np = [exp (βξp) + 1]

−1

is the Fermi-Dirac distribution with β = 1/(kBT ) and
Boltzmann constant kB , and ξp = E(p) − EF with the
Fermi energy EF . Since we are concerned with the low-
temperature transport we will limit our discussions for
kBT ≪ EF , thus in the leading order approximating the
Fermi-Dirac distribution with a step function. This helps
to write the Boltzmann equation in presence of electric
field in the linearized form:

− eEvp
∂np (ξp)

∂ξp
= I{δnp} (4)

where vp = ∂ξp/∂p is the group velocity. The collision
integral I{δnp} in the RHS of the above equation de-
scribes the electron scattering at the impurity-induced
compressions governed by the Eq.(3). It is explicitly ex-
pressed as follows

I =
2π

ℏ
∑
j

∫
p′
|v(j)p′p|

2 [δnp′ − δnp] δ (ε(p)− ε (p′)) , (5)

where we introduced a notation
∫
p′ =

∫
d3p′

(2πℏ)3 ,
∑

j for

summation over impurities, and v
(j)
k for the Fourier trans-

form of the deformation potential from the Eq.(3) in-
duced by the jth impurity:

v
(j)
k = 4πiG

F(j)k

k2
, where G = UDac. (6)

The deviation of the distribution function from the
Fermi distribution is produced by the electric field, thus
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FIG. 2: The effective mass m/m0 (vertical) vs electron den-
sity in log scale (horizontal). Shown are the experimental
values from Shubnikov-de Haas effect [16] (orange squares),
from specific heat [21] (green dots), from quantum oscilla-
tions [22] (purple dots). The emerald green line showcases
the m(n) dependence we used, which was obtained using a
model of spherical Fermi surface via Eq. (11). The concen-
tration dependence of the Fermi energy is shown in the inset,
see Ref. [22].

for an isotropic Fermi surface in the limit of weak electric
field E we can preserve only the first angular harmonics
and choose δnp = Ep∂f

∂ϵ η(ε), with the function η(ε) be-
ing only energy dependent. As a result, the integral (5)
can be evaluated explicitly, as detailed in [33], producing:

I = 2π
mG2

ℏ2
η(ε)

∂f

∂ϵ

∑
imp

Mp

(
F(j)

)
, (7)

Mp (F) = (Ep̂)F 2 − 2 (EF) (Fp̂) + 3 (Ep̂) (Fp̂)
2

(8)

with p̂ denoting a unit vector along the momentum p.
We emphasize that the above expression is dependent
not only on the relative orientation of momentum p and
electric field E, but also on the relative orientations of p
and the vector force F.
In order to sum over the impurities we need to average

the expression (8) over the orientation of the vector F.
As a result we obtain a final expression for the collision
integral in a form I = −δnp/τ with a relaxation time

τ =
3ℏ2pF

8π (GF )
2
mn

(9)

The relaxation time is then used to find the electron mo-
bility:

µ =
eτ

m
=

3eℏ2pF
8π (GF )

2
m2n

(10)

We see that for a concentration independent effective
mass electron mobility scales with concentration as µ ∼
n−2/3 as tipped off in the Introduction. However, since
the mass enters squared in the above equation, even a
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FIG. 3: The mobility µ in log scale (vertical) vs electron density in log scale (horizontal). (a) The red circles and blue
squares correspond to the experimental data for SrTiO3−x extracted from [2, 3] respectively, and the green line represents the
theoretical model Eq. (10). The inset focuses on the local exponent β = −d lnµ/d ln(n) (b) Blue triangles illustrate the data
for PbTe extracted from Ref. [1, 7, 8]. The red line employs our theoretical model with the effective electron mass found in [25]
(see Fig. S1 in the Supplement). The orange squares and red stars indicate the mobility data for TlBiSSe [1, 12] and KTaO3

[6]. The green and pink lines represent the theoretical results for electron mobility in these materials, using constant effective
masses m = 0.14m0 and m = 0.5m0 respectively.

relatively weak n-dependence m(n) can influence the re-
sults considerably.

Application to SrTiO3. One of the most interesting
materials that our discussions can be applied to is Stron-
tium Titanate SrTiO3. Being a band insulator it becomes
a very dilute 3D metal due to tiny doping (10−6 − 10−3

conduction electrons per unit cell) and demonstrates a
number of unusual properties [13–15]. They mainly orig-
inate form the close proximity of insulating STO to
a ferroelectric transition, which leads to a giant low-
temperature dielectric constant ϵ0 ≈ 20000. As a result,
Coulomb interaction in STO is strongly suppressed; the
accurate consideration shows that the electron mobility
produced by the scattering on Coulomb field is more than
two orders of magnitude greater than the experimental
data.

Having an almost spherical Fermi surface when lightly
doped, at concentrations higher than nc1 ∼ 2 · 1018cm−3

SrTiO3 acquires a complicated multiband Fermi surface
far from being isotropic [16–20]. Anisotropic Fermi sur-
face can potentially produce correlations between the
subsequent scatterings by affecting the scattering direc-
tion probability distribution after each act of scattering.
This is indeed the case for scattering on isotropic impu-
rities where light electrons can contribute to the collision
integral more dramatically than heavy ones. However,
according to the Eq. (8) the collision integral depends
strongly on the relative orientation of p and the vector
force F, and of E and F. Since these vector forces are
oriented randomly, the exact shape of the Fermi surface
does not seem to be relevant and the electron scattering
is effectively averaged out. This enables us to model the
electron dynamics with a spherical Fermi surface with an

effective mass introduced phenomenologically as

m =
p2F
2EF

=
ℏ2

(
3π2n

)2/3
2EF

, (11)

with the Fermi energy obtained from the experimental
data. Somewhat similar approach is used in [21]. Fig. 2
summarizes a number of experimental data for the ef-
fective mass in the lowest band of STO, obtained by
different kinds of experiments: Shubnikov-de Haas ef-
fect, quantum oscillations and the density of states (DoS)
mass found from specific heat measurements. Continu-
ous green line in the same plot shows the dependence
m(n)/m0 which we extracted using the data from Ref.[22]
for Fermi energy and Eq.(11), to be used in our further
calculations.
The above considerations allow us to directly imple-

ment the result given by Eq. (10) for the analysis of
experimental data on SrTiO3. Fig. 3a) compares our
theoretical results for electron mobility with the experi-
mental data [2]. We used here single fit parameter, the
strength of vector impurity potential F . It shows a rea-
sonable overall scaling with deviations not exceeding 15%
for n > 5 · 1018 cm−3.
Our approach improperly predicts the mobility be-

haviour at lowest concentrations where experimental
data demonstrate saturation of µ(n) with further de-
crease of n below nc ∼ 5 · 1018 cm−3, which is not de-
scribed by Eq.(10). It means that another scattering
process should be taken into account to describe this
feature. One possible effect could come from Coulomb
interaction which leads to slow logarithmic dependence
of µ(n). However it is easy to check that Coulomb scat-
tering itself would lead to mobility overestimated by 2
orders of magnitude. Another possible explanation could
be electron scattering on domain walls. These processes
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can be roughly modeled using a relaxation time defined
as τ = l/vF , where l is the characteristic domain size.
In order to fit the experimental data for STO this ap-
proach requires the domain size to be l ∼ 0.5µm, wheres
the experiment [32] reveals the domain size to be an or-
der of magnitude larger. Finally, we would like to men-
tion spatial non-uniformity of dopant’s concentration as
a possible source of µ(n) saturation at lowest n; we leave
investigation of this issue for future research.

Now we need to implement ”sanity check” to see how
large are the lattice deformations induced by our vector
impurities. Let us evaluate the characteristic displace-
ment u(a) at the minimal distance from the impurity,
using known parameters of STO, like the deformation
potential Dac ≈ 4 eV [23], Young modulus E ≈ 270 GPa
and Poisson ratio ν = 0.24 [24]. To describe the exper-
imental data we used a fit parameter F ≈ 9.1 · 10−9 N.
According to Eq. (2), it corresponds to largest atomic
displacement

u(a)

a
≈ 3%, (12)

where a = 0.39 nm is the STO lattice constant. Such a
maximal displacement does not seem to be unreasonable.

Application to other materials: Now we extend our
analysis for several other doped semiconductors with
high dielectric constants. Namely, we use our approach
to describe electron mobility in a wide-gap semiconduc-
tor perovskite Potassium Tantalate KTaO3, Lead Tel-
luride PbTe - narrow gap semicoonductor, and a zero-gap
semiconductor - mixed-chalcogenide compound TlBiSSe;
their dielectric constants are roughly 4500, 1000 and 20
respectively.

Effective electron mass in PbTe depends on the elec-
tron density substantially [25], increasing from 0.07m0 at
n = 2·1017 cm−3 up to 0.5m0 at n = 1020 cm−3. The cor-
responding data from Ref. [25] are illustrated in the Fig.
S1 in the Supplement for convenience. We employed in-
terpolation of these actual experimental data for the cal-
culation of the mobility dependence µ(n) in PbTe within
our theory. Concerning effective masses for KTaO3 and
TlBiSSe, we are not aware of any data for m(n) depen-
dencies, therefore we used the following constant values
for these masses: m = 0.5m0 [6] and m = 0.14m0 [1]
respectively.

To calculate mobility µ(n) dependence according to
our theoretical formula (10), we need to use the data for
the deformation potential Dac, Young modulus E and
Poisson ratio ν, see Eqs.(6) and (3). For KTaO3 we used
E = 215 GPa and ν = 0.24, see Ref. [26, 27]. We did
not find data for the KTO deformation potential and thus
used, for general orientation, the value Dac = 4eV known
for STO, as these materials are rather similar. For PbTe

we used E = 57.5 GPa and ν = 0.26, see Ref. [28], and
deformation potential Dac = 15 eV, see Ref. [29, 30].
With the material parameters mentioned above, we are

left with just single unknown parameter F , the magni-
tude of ”vector force” related to impurities in KTO and
PbTe. We fit the values of this parameter to obtain best
agreement between our theory and the data, the results
are shown in Fig. 3b). The overall agreement is clearly
rather good, supporting the ubiquity of the proposed
mechanism.
Using the values of F equal from the fit, namely F =

2.6 · 10−9 N for KTO and F = 5.8 · 10−10 N for PbTe,
we estimate the analogues of Eq.(12), the largest relative
lattice displacements u(a)/a due to vector impurities. We
found u(a)/a ≈ 5.5% for KTO and u(a)/a ≈ 0.4% for
PbTe. In addition, we present in Fig. 3b) the best fit
for the µ(n) dependence in TlBiSSe. In this case we did
not found the data for deformation potential and elastic
modulus, thus we used for the fit the whole coefficient in
front of n−2/3 dependence.
Conclusions. We developed a new theory of electron

- impurity scattering in low-electron-density materials
with high dielectric constant. Low electron density makes
it possible to vary it in a broad range, by few orders of
magnitude. The observed in many materials dependence
of low-temperature mobility on density, µ(n), could not
find any explanation in terms of scattering on Coulomb
or short-range potentials. The notion of vector impuri-
ties we propose in this manuscript helps to elucidate the
origin of unusual type of scattering due to slow-decaying
deformation potential.
In its simplest form, our theory predicts µ(n) ∝ n−2/3

which is not far from the data on several low-density ma-
terials. Moreover, the account of the density-dependence
effective mass m(n) allows us to obtain theoretical re-
sults in a very good agreement with the data. These
results are provided in Fig.3a for the case of Oxygen-
deficient Strontium Titanate, and in Fig.3b for several
other semiconductors: KTaO3, PbTe and TlBiSSe.

Still an open issue for our theory is related to Nb-
substituted Strontium Titanate which demonstrate sim-
ilar µ(n) dependence at low temperatures: in this case
it is not clear why substitution of Sr atom by Nb pro-
duces vector impurity. We leave this problem for future
studies.
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Collision Integral

Here we present the detailed evaluation of the collision integral. First, we carry out a Fourier transformation for
the potential

vk = 2πG

∫ ∞

0

dr

∫ π

0

F∥ cos θe
ikr cos θ sin θdθ = 2πF∥

∫ ∞

0

dr

∫ 1

−1

teikrtdt = 4πGi
(F,k)

k2
(1)

Let us consider k = 1
ℏ (p− p′) with the z axis oriented along p and for sake of simplicity we recall that the investigated

scattering process conserves energy, thus |p| = |p′|.

vp′p = 4πGiℏ
(F,p− p′)

|p− p′|2
= 4πGiℏ

F∥ (1− cos θ)− Fx sin θ cosϕ− Fy sin θ sinϕ

2p (1− cos θ)
, (2)

here the angles θ, ϕ denote the orientation of the vector p′. Since we still have a freedom of orienting x, y axes, we
can Fy = 0:

vp′p =
2πGiℏ
p

(
F∥ −

Fx sin θ cosϕ

(1− cos θ)

)
(3)

This expression is then plugged into the collision integral, yielding

Iimp = −2πG2

ℏ

(
∂f

∂ϵ
η(ϵ)

)∑
imp

∫ (
F∥ − Fx sin θ cosϕ

(1− cos θ)

)2 [
E∥ (1− cos θ)− Ex sin θ cosϕ− Ey sin θ sinϕ

]
· m sin θ dθ dϕ

2πℏ
(4)

where we have already carried out the trivial integration of the δ function. The further integration over the angles leads to the
equation (8) from the Main text.

Effective Electron Mass in PbTe

As discussed in the main text, the effective electron mass in PbTe depends on the electron density considerably [25]:
upon increasing concentration from n = 2 · 1017 cm−3 to n = 1020 cm−3 the electron mass enhances from 0.07m0 up
to 0.5m0. In Fig. S1 we present the experimental data from Ref. [25] as well as the interpolating function m(n) which
we used to evaluate the mobility.

n (cm-3)

m
/m

0

Horichok et al. (2020)
Interpolation
m/m0=αn

1/3

FIG. S1: The effective mass of electrons as a function of the concentration for PbTe. The orange squares showcase the
experimental data [25], the green line illustrates our interpolation employed in further calculations and the dashed blue line

approximates tha data with a scaling m/m0 ∼ αn1/3 with α ≈ 1.1 · 10−7.
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