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We study unusual gapped topological phases where they admit ZN fractional ex-

citations in the same manner as topologically ordered phases, yet their ground state

degeneracy depends on the local geometry of the system. Placing such phases on

2D lattice, composed of an arbitrary connected graph and 1D line, we find that

the fusion rules of quasiparticle excitations are described by the Laplacian of the

graph and that the number of superselection sectors is related to the kernel of the

Laplacian. Based on this analysis, we further show that the ground state degeneracy

is given by
[
N ×

∏
i gcd(N, pi)

]2
, where pi’s are invariant factors of the Laplacian

that are greater than one and gcd stands for the greatest common divisor. We also

discuss braiding statistics between quasiparticle excitations.
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I. INTRODUCTION

Topologically ordered phases are novel phases beyond the paradigm of the standard

Landau-Ginzburg theory [1–4] and have been one of the central topics in condensed matter

physics for decades. There are many salient features in these phases, like deconfined frac-

tionalized excitations (anyons)[2, 5, 6], and they may find many ramifications in different

fields of physics, such as quantum information [7, 8] and high energy physics [9–11].

While a plethora of progress has been made towards complete understanding topologically

ordered phases from both of theoretical and experimental point of view, recently, new types

of topologically ordered phases have been proposed, which are often called fracton topological

phases in the literature [12–14]. One of the intriguing properties of the fracton topological

phases is that ground state degeneracy (GSD) depends on the UV lattice spacing, which

is contrasted with conventional topologically ordered phases where GSD depends only on

the global topology of the manifold. This property can be intuitively understood by that

fractional quasiparticle excitations are affected by local geometry of the system. In other

words, the local geometry imposes a mobility constraint on the fractional excitations, giving

rise to sub-extensive dependence of the GSD. In this view, fracton topological phases may

open a possibility to explore new geometric phases.

In this work, we consider unusual 2D gapped ZN topological phases with a distinct

feature that while they admit ZN fractional excitations in the same way as the topologically

ordered phases, their GSD depends on the local geometry of the system, similar to the fracton

topological phases. We emphasize that our model is different from fracton topological phases

as it does not show the sub-extensive GSD dependence. Rather, it exhibits unusual GSD

dependence on N and geometry of the lattice. To investigate interplay between fractional

excitations and geometry of the system, we place such phases on 2D lattice consisting of

arbitrary connected graph, a pair consisting of a set of vertices and a multiset of edges,

and 1D line. A systematic study on geometric aspects of the fractional excitations can be

accomplished by resorting to the well-developed algebraic tools of graph theory, such as the

Laplacian and Picard group [15, 16]. (see also Ref. [17] for a study on 3D fracton topological

phases on the Cayley trees and Ref. [18] for analysis on the Lifshitz theory on a graph and

complexity.)

We find that fusion rules of fractional excitations are described by the Laplacian of the
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graph and that the number of superselection sectors (i.e., the number of distinct types of

fractional excitations) is associated to kernel of the Laplacian. Further analysis shows that

GSD depends on the greatest common divisor of N and invariant factors of the Laplacian.

Laplacian plays an important role in graph theory. For instance, one can study con-

nectivity of a graph by evaluating its eigenvalues [19, 20]. In our context, the Laplacian

is crucial to characterize fusion rules of fractional charges and GSD dependence. We also

study braiding statistics between electric and magnetic charges and find that it is described

by matrices with which the Laplacian is transformed into a diagonal form, known as the

Smith normal form. These results are summarized in (26) and (40).

The outline of this paper is as follows. In Sec. II, after reviewing the notations and

formulations in graph theory, we introduce a 2D lattice, which is a product of an arbitrary

connected graph and 1D lattice, and model Hamiltonian. In Sec. III, we discuss behaviours

of fractional excitations of our model. We derive the fusion rules of the excitations, and the

GSD dependence on the graph, based on the formulation of the Laplacian. In Sec. IV, we

demonstrate several examples of the graph (cycle graph and complete graph) to see more

transparently how our results presented in the previous section works. Finally, in Sec. V,

we conclude our work with a few remarks for future directions.

II. MODEL

In this section, we introduce our lattice and model. Since these are described by graph

and the Laplacian, we briefly go over notations and formulations of graph theory, especially

the properties of the Laplacian, before introducing the lattice and model Hamiltonian. Our

model shares the same features as the ZN toric code [8], e.g., Hamiltonian consists of mu-

tually commuting terms and there are two types of excitations carrying fractional charges.

However, our model has the distinct property from the toric code: depending on N and

graph, excitations are subject to a mobility constraint in the x-direction, giving rise to

unusual GSD.
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A. Notations of graph and Laplacian

Let us first introduce a graph G = (V,E) which is a pair consisting of a set of vertices V

and a set of edges E comprised of pairs of vertices {vi, vj}. Throughout this work, we assume

that the graph is connected, meaning there is a path from a vertex to any other vertex, and

that the graph does not have an edge that emanates from and terminates at the same vertex.

We also introduce two quantities, deg(vi) and lij, which play pivotal roles in this paper. The

former one, deg(vi) denotes degree of the vertex vi, i.e., the number of edges emanating from

the vertex vi and the latter one, lij represents the number of edges between two vertices vi

and vj (We have lij = 0 when there is no edge between two vertices, vi and vj.). Using these

two quantities, Laplacian matrix of the graph, which is the analogue of the second order

derivative operator ∂2
x on a graph, is defined. For a given graph G = (V,E), the Laplacian

matrix L (which we abbreviate as Laplacian in the rest of this work) is the matrix with rows

and columns indexed by the elements of vertices {vi} ∈ V , with

Lij =

deg(vi) (i = j)

−lij (i ̸= j)
. (1)

The Laplacian is singular due to the connectivity of the graph. (Summing over all rows or

columns gives zero.) As an example, the Laplacian of the cycle graph C3 (i.e., a triangle)

consisting of three vertices and three edges, where there is a single edge between a pair of

vertices, is given by

L =


2 −1 −1

−1 2 −1

−1 −1 2

 .

It is known that by introducing inevitable matrices over integer P , Q corresponding to

linear operations on rows and columns of the Laplacian, respectively, the Laplacian of any

connected graph can be transformed into a diagonal form (Smith normal form):

PLQ = diag(u1, u2, · · · , un−1, 0) := D, (2)

where ui represents positive integers, satisfying ui|ui+1 for all i (i.e., ui divides ui+1 for

all i) [16]. Since the Laplacian is singular, the last diagonal entry is zero. The diagonal

element ui referred to as the invariant factors of the Laplacian, plays a pivotal role in the
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(a)

(b)

FIG. 1: (a) One example of the 2D lattice, consisting of cycle graph (C3) in the x-direction

and 1D lattice in the y-direction. (b) Two types of terms introduced in (4), V(vi,y) (left)

and P(vi,y+1/2) (right) in the case of the square lattice.

graph theory. For instance, their product is equivalent to the number of spanning trees,

which are connected subgraphs where there is a unique path from a vertex to any other

vertex [15]. In our work, ui is crucial quantity to characterize the superselection sectors of

fractional excitations.

B. Lattice and Hamiltonian

The 2D lattice is defined by a product of a graph that runs across in the x-direction

and 1D lattice going in the y-direction. More explicitly, for a given graph, the 2D lattice is

constructed by stacking the copies of the graph and add vertical edges between the adjacent

graph. As an example, we demonstrate the case where the graph is cycle graph C3 in

Fig. 1a. We place two types of quantum states, each of which takes discrete N (≥ 2) values,

i.e., generalized qubits (ZN clock states) on this lattice. The first clock states are located

at vertices of the graph (red squares in Fig. 1a) whereas the second ones are at vertical

edges (blue squares in Fig. 1a). We denote the coordinate of the first clock states by (vi, y)

where vi represents a vertex of the graph and y does the height taking integer values in the

unit of lattice spacing. Analogously, the coordinate of the second clock states are denoted

by (vi, y + 1
2
), where the second element corresponds to the edge between vertices located

at (vi, y) and (vi, y + 1).

Having defined the 2D lattice, we introduce Hamiltonian. We represent basis of the two
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types of the clock states as |ω⟩1 and |ω⟩2 with ω being N -th root of unity, i.e, ω = e2πi/N ,

and ZN shift and clock operators (they become Pauli operators when N = 2) of the first and

second clock states as {Zi, Xi} (i = 1, 2) with the relation (Ii denotes the identity operator)

XN
i = ZN

i = Ii, Zi |ω⟩i = ω |ω⟩i , XiZj = ωZjXiδi,j. (3)

With these notations, we define following two types of operators at each vertex and edge

V(vi,y) := X2,(vi,y+1/2)X
†
2,(vi,y−1/2)(X

†
1,(vi,y)

)deg(vi)
∏
j

(X1,(vj ,y))
lij ,

P(vi,y+1/2) := Z†
1,(vi,y+1)Z1,(vi,y)Z

deg(vi)
2,(vi,y+1/2)

∏
j

(Z†
2,(vj ,y+1/2))

lij . (4)

Here, deg(vi) is the number of edges in the x-direction which emanate from the vertex vi

whereas lij gives the number of edges in the x-direction between two vertices with coordi-

nate (vi, y) and (vj, y). We demonstrate examples of these two types of terms in Fig. 1b in

the case of the square lattice, where at any vertex vi, (without taking into account boundary)

we have deg(vi) = 2 and lij = 1 (j = i± 1), lij = 0 (else). Hamiltonian is defined by

H = −
∑
(vi,y)

V(vi,y) −
∑

(vi,y+1/2)

P(vi,y+1/2) + h.c. (5)

Note that Hamiltonian is described by ZN shift and clock operators and the two types of

quantities, deg(vi) and lij. Especially, the latter ones also enter in the Laplacian of the

graph (1), allowing us to systematically investigate physical properties of Hamiltonian by

resorting to formulations of the Laplacian.

Each term in Hamiltonian (5) commutes with one another. To verify this, for a given

coordinate (vi, y), one has to check commutation relation between V(vi,y) and some of the

second terms in (5) which has overlapping support with the one of V(vi,y). Such terms are

given by P(vi,y+1/2), P(vi,y−1/2), P(vj ,y+1/2), P(vj ,y−1/2), where vj represents a vertex adjacent

to vi. Using (3) and (4), we have

V(vi,y)P(vi,y+1/2) = ωdeg(vi)ω−deg(vi)P(vi,y+1/2)V(vi,y) = P(vi,y+1/2)V(vi,y)

V(vi,y)P(vj ,y+1/2) = ωlijω−lijP(vj ,y+1/2)V(vi,y) = P(vj ,y+1/2)V(vi,y).

Similarly, one can check other commutation relations and find that every term in (5) indeed

commutes. The ground state of this Hamiltonian (5), |Ω⟩ satisfies

V(vi,y) |Ω⟩ = P(vi,y+1/2) |Ω⟩ = |Ω⟩ , ∀ V(vi,y), P(vi,y+1/2),
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(a)
(b)

(c)
(d)

FIG. 2: Configurations of terms which constitute of Hamiltonian and the form of

excitations in the case of N = 2 and the square lattice. (a) Two terms given in (6).

(b) When applying Z1,(vi,y) (green square), V(vi±1,y) = 1 is violated, creating a pair of

electric charges (purple dots). (c) Applying further Z1,(vi+1,y) in (b), the trajectory of

electric charges is stretched. (d) Left: when n is even (n = 6 in this figure), there are two

distinct closed loops of electrics charges (green and yellow squares). Right: when n is odd

(n = 5 in this figure), there is only one closed loop (green squares). In both of left and

right figures, the rightmost vertical edges and vertices are identified with the leftmost ones.

that is, the ground state satisfies V(vi,y) = 1 and P(vi,y+1/2) = 1 at any coordinate.

In what follows, we discuss quasiparticle excitations of this model. As we will see, the

excitations show unusual behavior in x-direction compared with conventional topologically

ordered phases, giving rise to novel GSD dependence on the lattice. In the next subsection,

we start with the simplest case by setting N = 2 and square lattice to intuitively understand

this feature and in the later sections, we present more detailed discussions on the excitations

based on formalism of graph theory.
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C. Simplest case: N = 2 and the square lattice

To extract more intuition from Hamiltonian (5), we consider the case with N = 2 and

the square lattice, which corresponds to setting the graph to be the cycle graph Cn. This

graph consists of n vertices placed in a cyclic order so that adjacent vertices are connected

by a single edge. By setting N = 2 in (3), the terms (4) become simplified:

V(vi,y) = X2,(vi,y+1/2)X2,(vi,y−1/2)X1,(vi−1,y)X1,(vi+1,y),

P(vi,y+1/2) = Z1,(vi,y+1)Z1,(vi,y)Z2,(vi−1,y+1/2)Z2,(vi+1,y+1/2) (1 ≤ i ≤ n). (6)

Here the vertices {vi} (1 ≤ i ≤ n) are placed in cyclic order and we conventionally set

vn+1 = v1 and v−1 = vn. We portray these terms in Fig. 2a. Hamiltonian (5) is defined by

using these terms. It is straightforward to check each term in Hamiltonian commutes. The

ground state satisfies V(vi,y) = 1 and P(vi,y+1/2) = 1 at any coordinate. From (6) and Fig. 2a,

one can easily associate mutual commuting terms in Hamiltonian to the ones of the Z2 toric

code [8] except the fact that in the x-direction, the next nearest neighboring Pauli operators

X1 or Z2 enter in the terms (6).

With this difference in mind, let us look at the excitations of Hamiltonian. Analogous

to the Z2 toric code, one can act X1(2) and Z1(2) operators to create an excitation carrying

“electric” and “magnetic” charge, respectively. Consider acting a single Z1 operator at vi

on the ground state, i.e, applying Z1,(vi,y) on the ground state. It violates V1,(vi−1,y) = 1 and

V1,(vi+1,y) = 1, giving rise to a pair of electric charges as demonstrated in Fig. 2b. If we

further act another Z1 operator at vi+2, the trajectory of the electric charges is stretched so

that one of them jumps between next nearest vertices (Fig. 2c). Note that such an unusual

behavior of the electric charge can be seen only in the x-direction. As for the y-direction,

the behavior of electric charge is the same as the toric code: the trajectory of the electric

charge is formed in such a way that the electric charge hops between nearest edges in the

y-direction. The behavior of magnetic charges can be similarly discussed.

One can easily evaluate the GSD in this case, imposing the periodic boundary condition

in the y-direction. Similarly to the toric code, one can successively act Z1 operators on the

ground state so that a non-contractible closed loop of the electric charge is formed, which

is responsible for the non-trivial GSD. In the case of n being even, due to the fact that the

electric charge hops between next nearest vertices, there are two closed loops of the electric
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charge in the x-direction, the one formed by string of Z1 operators at even vertices and the

other at odd ones, denoted by We,x,(1) and We,x,(2), respectively. On the contrary, in the

case of n being odd, there is only one closed loop, We,x. the configurations of these loops

are portrayed in Fig. 2d. One can count analogously the number of closed loops of the

magnetic charge, and obtain the same result: in the case of n even, there are two distinct

loops, Wm,x,(1) and Wm,x,(2) whereas in the case of n odd, there is only one, Wm,x. As we

mentioned previously, the behavior of excitations in the y-direction is the same as the Z2

toric code, hence, these closed loops that we consider are deformable to the ones shifted

above or below in the y-direction by applying sets of terms given in (6).

In the torus geometry, the GSD is equivalent to the number of topological excitations,

i.e., the number of superselection sectors which are distinguishable by closed loops of electric

and magnetic charges [8]. Based on this fact, in the case of n being even, there are four

closed loops of Z2 charge, We,x,(1), We,x,(2), Wm,x,(1), and Wm,x,(2), thus the GSD is given

by 42 = 16. On the other hand, in the case of n being odd, there are two closed loops of Z2

charge, We,x and Wm,x, therefore we find that the GSD is given by 22 = 4. Summarizing,

GSD =

16 (n even)

4 (n odd).

This result is consistent with a formula (26) that we are going to prove in the next section.

III. GROUND STATE DEGENERACY AND QUASIPARTICLE STATISTICS

In this section, we study distinct quasiparticle excitations of the model. To this end, we

show that the fusion rules of the quasiparticle excitations are succinctly described by the

Laplacian (1). Using this result, we also show that the number of superselection sectors

and the GSD of our model depends on N and the great common divisor of N and invariant

factors of the Laplacian.

A. Fusion rules and Laplacian

In this subsection, we study excitations of our model by acting a single X1(2) or Z1(2)

operator on the ground state. There are two types of fractional excitations in our model,
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referred to as ZN “electric” and “magnetic” charges that violate V(vi,y) = 1 and P(vi,y+1/2) =

1 defined in (4), respectively. We label these two excitations at coordinate (vi, y) and

(vi, y + 1/2), whose eigenvalue of V(vi,y) and P(vi,y+1/2) is ω, by e(vi,y) and m(vi,y+1/2). Also,

we label their conjugate with eigenvalue ω−1 by e(vi,y) and m(vi,y+1/2). We interchangeably

use the notation e−1
(vi,y)

= e(vi,y), m
−1
(vi,y+1/2) = m(vi,y+1/2) [21].

We first concentrate on the electric charges. Suppose we introduce an excited state by

acting an operator Z1,(vi,y) at (vi, y) on the ground state. From (4), such a state violates

V(vi,y) = 1 and V(vj ,y) = 1 with vj being adjacent vertices to vi, giving eigenvalue ω−deg(vi)

and ωlij , respectively. More precisely, we have

V(vi,y)(Z1,(vi,y) |Ω⟩) = ω−deg(vi)(Z1,(vi,y) |Ω⟩), V(vj ,y)(Z1,(vi,y) |Ω⟩) = ωlij(Z1,(vi,y) |Ω⟩),

where |Ω⟩ denotes the ground state. Hence, by acting Z1,(vi,y) on the ground state, we

schematically obtain the fusion rule of the electric charges:

I → (e(vi,y))
deg(vi) ⊗

∏
j

(e(vj ,y))
lij , (7)

where I denotes vacuum sector. The fusion rule (7) is the generalization of the one studied

in conventional topologically ordered phases, where a pair of quasiparticle excitations are

created.

To discuss more systematically the fusion rules in our model, it is useful to introduce the

Laplacian of the graph given in (1). For a graph G(V,E) at given y, we define n-dimensional

vector where each entry takes ZN value by

r = (r1, r2, · · · , rn)T ∈ Zn
N (8)

with n being the number of vertices, from which we introduce multiple sets of Z1 operators,

Zr1
1,(v1,y)

Zr2
1,(v2,y)

· · ·Zrn
1,(vn,y)

acting on the ground state. Also, introducing fundamental basis

of vectors {λi} as λi = (0, · · · , 0︸ ︷︷ ︸
i-1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)T ∈ r, the fusion rule (7) is rewritten as

I → ea1(v1,y) ⊗ ea2(v2,y) ⊗ · · · ⊗ ean(vn,y) (ai ∈ ZN) (9)

with

fe := (a1, a2, · · · , an)T = −Lλi. (10)

Note that in the fusion rule (9), charge conservation is satisfied, i.e,
∑

i ai = 0 (modN) as

the Laplacian is singular (summing over matrix elements along i-th column gives zero).
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We can similarly discuss the fusion rules of the electric charges induced by applying

multiple sets of Z1 operators on the ground state. When we apply Zr1
1,(v1,y)

Zr2
1,(v2,y)

· · ·Zrn
1,(vn,y)

on the ground state, characterized by vector r (8), the fusion rule of the electric charges has

the same form as (9) by setting

fe = −Lr. (11)

So far we have considered fusion rules of the electric charges in x-direction. As for the

fusion rules in the y-direction, by acting Z2,(vi,y+1/2) on the ground state, a pair of electric

charges are created, giving

I → e(vi,y+1) ⊗ e(vi,y), (12)

sharing the same fusion rule as the one in the toric code.

By the similar line of thoughts, we obtain the fusion rules of magnetic charges in the x-

direction. Introducing a vector s = (s1, s2, · · · , sn)T ∈ Zn
N , corresponding to an excited state

by applying Xs1
2,(v1,y+1/2)X

s2
2,(v2,y+1/2) · · ·X

sn
2,(vn,y+1/2) on the ground state, one can associate an

excited state induced by applying a single X2 operator, X2,(vi,y+1/2) to a fundamental basis

of vector, ηi = (0, · · · , 0︸ ︷︷ ︸
i-1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)T ∈ s. The fusion rule of the magnetic charges reads

I → mb1
(v1,y+1/2) ⊗mb2

(v2,y+1/2) ⊗ · · · ⊗mbn
(vn,y+1/2) (bi ∈ ZN) (13)

with

fm := (b1, b2, · · · , bn)T = Lηi.

In the y-direction, a pair of magnetic charges are created by applying X1,(vi,y), yielding

I → m(vi,y−1/2) ⊗m(vi,y+1/2). (14)

To summarize, while the fusion rules of electric and magnetic charges in the y-direction

have the same form as the toric code in that a pair of fractional excitations are created,

in the x-direction, the fusion rules show unusual behavior and their form crucially depends

on the Laplacian. In the next subsection, using this property, we will count the number of

superselection sectors in our model.

B. Superselection sectors and GSD

In this subsection, we study how many distinct fractional excitations in our model, more

precisely, we count the number of superselection sectors. In doing so, we impose periodic
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boundary condition in the y-direction by identifying the coordinate (vi, y) with (vi, y +

ny) (ny ∈ Z).

The number of superselection sectors in our model amounts to be the number of distinct

closed loop of fractional excitations that goes around the system. For instance, in the case of

the Z2 toric code, the superselection sectors are labeled by distinct non-contractible closed

loops of electric and magnetic charges going around in either x- or y-direction [8].

We apply the same logic to the present case. We first focus on the closed loops of elec-

tric charges in the x-direction. Assuming the graph G(V,E) at given y has n vertices, we

consider a closed loop of an electric charge in the form Zr1
1,(v1,y)

Zr2
1,(v2,y)

· · ·Zrn
1,(vn,y)

charac-

terized by the vector r ∈ Zn
N defined in (8). The loop must satisfy that they commute

with every term of V(vi,y) given in (4), i.e., the loop does not violate V(vi,y) = 1 at any

coordinate. In other words, the fusion rule of electric charges induced by applying the oper-

ator Zr1
1,(v1,y)

Zr2
1,(v2,y)

· · ·Zrn
1,(vn,y)

on the ground state becomes trivial. Recalling the argument

around (8)-(11), and using the Laplacian L, this condition is equivalent to

Lr = 0 mod N. (15)

Therefore, the number of closed loops of electric charge in the x-direction is associated with

the kernel of the Laplacian, ker(L). Note that there are always at least N solutions of (15)

r = k(1, 1, · · · , 1)T (k ∈ ZN), mirroring the fact that the Laplacian is singular, meaning

summing over matrix elements along row gives zero. As we will see soon, depending on the

Laplacian, there can be more than N solutions.

To proceed, we transform the Laplacian into the Smith normal form (2). By multiplying

inevitable matrices P and Q over integers on the Laplacian, the condition (15) becomes

P−1DQ−1r = 0 mod N

⇔ Dr̃ = 0 mod N, (16)

where in the second equality, we have multiplied P from the left and used the fact that P

is a matrix over integers. Also, we have introduced r̃ := Q−1r ∈ Zn
N (Note that P−1 and

Q−1 are also integer matrices.). Suppose the Smith normal form of the Laplacian (2) has m

invariant factors greater than one, meaning

D = diag(1, · · · , 1︸ ︷︷ ︸
n-1-m

, p1, · · · , pm︸ ︷︷ ︸
m

, 0) (pi ≥ 2). (17)
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Then, from (16), it follows that the first n− 1−m components of the vector r̃ are zero:

r̃i = 0 mod N (1 ≤ i ≤ n− 1−m). (18)

As for the elements r̃i+n−1−m (1 ≤ i ≤ m), they have to satisfy

pir̃i+n−1−m = 0 mod N ⇔ pir̃i+n−1−m = Nti (1 ≤ i ≤ m, ti ∈ Z). (19)

Decompose N and pi into two integers as

N = N ′
i gcd(N, pi), pi = p′i gcd(N, pi), (20)

where gcd stands for the greatest common divisor and N ′
i and p′i are coprime, (19) becomes

p′ir̃i+n−1−m = N ′
iti. Since N ′

i and p′i are coprime, one finds

r̃i+n−1−m = N ′
iαi (1 ≤ i ≤ m), (21)

where integer αi can take gcd(N, pi) distinct values, i.e., αi = 0, 1, · · · , gcd(N, pi)−1. There

is no constraint on the last element of r̃, r̃N as the last diagonal entry of D is zero, implying

r̃N can take N distinct values.

Overall, with the assumption of (17), the condition (16) leads to that

r̃ = (r̃1, · · · , r̃n−1−m︸ ︷︷ ︸
n-1-m

, r̃n−m, · · · , r̃n−1︸ ︷︷ ︸
m

, r̃n)
T = (0, · · · , 0︸ ︷︷ ︸

n-1-m

, N ′
1α1, · · · , N ′

mαm︸ ︷︷ ︸
m

, α′)T mod N,

(22)

where 0 ≤ αi ≤ gcd(N, pi) − 1, 0 ≤ α′ ≤ N − 1. Hence, the kernel of the Laplacian,

associated with closed loops of electric charges, is labeled by

ZN × Zgcd(N,p1) × Zgcd(N,p2) × · · · × Zgcd(N,pm). (23)

When gcd(N, pi) = 1, the sector Zgcd(N,pi) becomes trivial as αi takes trivial value, i.e., αi = 0

mod N .

Once we have identified the closed loops of electric charges in the x-direction, they can

be deformed into the ones shifted upwards or downwards in the y-direction by applying sets

of P(vi,y+1/2), corresponding to the fusion rule (12), therefore, we have exhausted all kinds

of closed loops of electric charges in the x-direction, fully labeled by (23). The explicit form

of the closed loops, consisting of multiple of Z1 operators, is obtained by multiplying the



14

matrix Q from the left in (22). More explicitly, the closed loop of an electric charge in the

x-direction, We,x,rα is labeled by α := (Zgcd(N,p1), · · · ,Zgcd(N,pm),ZN) via

We,x,rα = Zr1
1,(v1,y)

· · ·Zrn
n,(vn,y)

, r = QV

0n−m−1

α

 mod N. (24)

Here,

V = diag(1, · · · , 1︸ ︷︷ ︸
n-1-m

, N ′
1, · · · , N ′

m︸ ︷︷ ︸
m

, 1), (25)

where N ′
i is defined in (20), and 0n−m−1 denotes n−m−1 dimensional vector with all entries

being zero.

The closed loops of magnetic charges in the x-direction can be discussed in the similar

fashion, leading to that they carry the same quantum numbers (23), thus, we finally find that

the superselection sectors are characterized by
[
ZN×Zgcd(N,p1)×Zgcd(N,p2)×· · ·×Zgcd(N,pm)

]2
.

The multiple ground states are distinguished by the closed loops of electric and magnetic

charges in the x-direction, therefore, we have

GSD =
[
N × gcd(N, p1)× · · · × gcd(N, pm)

]2
. (26)

The GSD dependence on gcd of N and length of the lattice was studied in the Wen’s Z2

plaquette model and several models in the case of the square lattice [22, 23]. Here, by

employing algebraic tools of graph theory, we have derived such novel GSD dependence in

the case of an arbitrary connected graph.

C. Alternative derivation of (26)

There is an alternative approach to reach (26) by counting the number of superselection

sectors of electric and magnetic charges in the y-direction, instead of the x-direction. Let us

first focus on the case with magnetic charges. As we mentioned in the previous subsection,

the fusion rules of the magnetic charges in the y-direction (14) is identical to the one in the

toric code, where a pair of excitations are created. From this feature, one can construct a

closed loop of magnetic charge formed by string of X1 operators defined by

Wm,vi :=

ny−1∏
y=1

X1,(vi,y). (27)
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Although this loop resembles the one in the toric code, there is a crucial difference between

the two. Depending on N and the graph, one fails to deform the loop by applying sets of

operators V(vi,y) so that it is shifted to the adjacent position in the x-direction. Rather, the

loop is deformed into composite of loops, Wm,vi and Wm,vj with vj being adjacent vertex in

the x-direction.

To understand what we have just mentioned more intuitively, let us for a moment consider

the case where the graph is the cycle graph Cn and N = 3 as shown in Fig 3. For simplicity,

we concentrate on the two cases with C3 and C4. In the case of C3, by acting
∏

y V
2
(v2,y)

on a single closed loop Wm,v1 (For the sake of simplicity,
∏ny−1

y=1 is abbreviated as
∏

y.),

it is deformed into the composite of W 2
m,v2

and W 2
m,v3

(Fig. 3a). After some trials, one

is convinced that the single loop cannot be shifted to the adjacent position under any

deformation. However, if we start with a “dipole” of the closed loops, Wm,v1W
2
m,v2

, it can

be shifted to the adjacent position in the x-direction under the deformation as shown in

Fig. 3b, thus it moves around the system. This property reminds us of topological defects

in smectic phase in a liquid crystal, where a dipole of excitations which is dislocation, is free

to move in one direction whereas a single one, disclination cannot [24]. On the contrary, in

the case of C4, the single loop can be shifted to the adjacent position under the deformation,

as portrayed in Fig. 3c, where a single loop Wm,v1 is shifted to Wm,v2 . Also, there is no

dipole configuration – it becomes vacuum configuration under the deformation (Fig. 3d).

As we will see below, whether the single loop can be shifted or the phase admits the dipole

of closed loops depends on N and invariant factors of the Laplacian.

Coming back to the generic case of the graph, in order to count the superselection sectors

coming from the magnetic charges, one has to know the number of distinct configurations

of the loops up to deformation. From (4), after simple algebra, one finds

∏
y

V(vi,y) = W−deg(vi)
m,vi

∏
j

W lij
m,vj

. (28)

By acting this operator on a closed loop Wm,vi , it yields∏
y

V(vi,y)Wm,vi = W 1−deg(vi)
m,vi

∏
j

W lij
m,vj

. (29)

This consideration becomes more succinct in the language of the Laplacian. We define a

vector s ∈ Zn
N associated with sets of closed loops, W s1

m,v1
× · · · ×W sn

m,vn . Also, introducing
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(a)
(b)

(c) (d)

FIG. 3: Deformation of the closed loops of magnetic charges in the y-direction in the case

where the graph is the cycle graph C3 or C4 with N = 3. The top (bottom) figures

correspond to the cycle graph C3 (C4). The deformation is implemented by

acting
∏

y V
2
(vi,y)

(along the vertical line marked by the black arrow) on the loop. The

symbol “ ∼ ” represents identification between two configurations under the deformation.

another vector σ ∈ Zn
N , corresponding to

∏
y V

σ1

(v1,y)
×· · ·×

∏
y V

σn

(vn,y)
, which acts on the sets

of the closed loops. The configuration of the closed loops after the deformation becomes

s− Lσ(:= s′). (30)

The number of distinct configurations of the closed loops is equivalent to the number of

distinct s under the identification s ∼ s′. Therefore, we need to find Zn
N/im(L), which is

known as the Picard group, Pic(G).

What we have discussed so far in this subsection has intimate relation to the chip-firing

game, invented in the context of graph theory [25–27]. This interpretation becomes clearer

from the top view of our lattice (Fig. 4). The configuration of the closed loops of magnetic

charges, s ∈ Zn
N corresponds to what is called chip configuration in the chip-firing game

which is defined as non-negative integer vector recording the number of chips located at
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FIG. 4: Deformation of closed loops of magnetic charges in the case of the cycle graph C3

and N = 3. (Top) Deformation of Wm,v1 by
∏

y V(v1,y). (Bottom) The top view of our

lattice, where one assigns Z3 number on each vertex, corresponding to the configuration of

the loops. These numbers are regarded as chips located at each vertex. By applying∏
y V(v1,y), the closed loop is deformed, which corresponds to the one of the chip-firing

process where the chip at vertex v1 is transferred into the adjacent ones, v2 and v3 (red

arrows).

each vertex of the graph and the process of the deformation of the closed loops can be

regarded as the process of chip-firing where one chip is sent to each of its neighbors. In the

chip-firing game, the Picard group is studied to classify the configurations of chips [25–27].

Important difference between the chip-firing game and our consideration is that while a chip

takes non-negative integer at each vertex in the chip-firing game, ZN number is assigned at

each vertex in our case.

To find the Picard group, we need to evaluate im(L). To this end, remembering the

Laplacian is transformed into the Smith normal form (2), we have

im(L) = Lσ, ∀σ ∈ Zn
N

= P−1Dσ̃ (σ̃ := Q−1σ)

= span(π′
1,π

′
2, · · · ,π′

n). (31)

Here, π′
i represents the vector corresponding to the i-th column of P−1D. Since D is the
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diagonal with the last entry being zero, (31) is further written as

im(L) = span(u1π1, u2π2, · · · , un−1πn−1), (32)

where πi denotes the vector which corresponds to the i-th column of P−1. Now we write

s ∈ Zn
N/im(L) in these basis:

s =
n∑

i=1

ciπi (ci ∈ ZN). (33)

From (32), ci is subject to (the symbol “ ∼ ” represents identification)

ci ∼ ci + ui (1 ≤ i ≤ n− 1). (34)

By definition, it also must satisfy

ci ∼ ci +N (1 ≤ i ≤ n). (35)

The algebraic structure of the Picard group is determined by the number of distinct s subject

to the two constraints (34)(35). Assuming the Smith normal form of the Laplacian has m

invariant factors greater than one as shown in (17), then we have

ci ∼ ci + 1 (1 ≤ i ≤ n− 1−m),

implying the coefficients of the first n − 1 − m basis are trivial. As for the coefficients

ci+n−1−m (1 ≤ i ≤ m), they satisfy

ci+n−1−m ∼ ci+n−1−m + pi

ci+n−1−m ∼ ci+n−1−m +N (1 ≤ i ≤ m),

which leads to that ci+n−1−m (1 ≤ i ≤ m) can take gcd(N, pi) distinct values. Together with

the fact that the last coefficient cn can take N distinct values, we find that

c := (c1, · · · , cn−1−m︸ ︷︷ ︸
n-1-m

, cn−m, · · · , cn−1︸ ︷︷ ︸
m

, cn)
T = (0, · · · , 0︸ ︷︷ ︸

n-1-m

, β1, · · · , βm︸ ︷︷ ︸
m

, β′)T mod N (36)

with βi ∈ Zgcd(N,pi), β
′ ∈ ZN . Therefore, the distinct configurations of the closed loops of

magnetic charges are labeled by

ZN × Zgcd(N,p1) × Zgcd(N,p2) × · · · × Zgcd(N,pm).
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Since

s =
n∑

i=1

ciπi = P−1c, (37)

the explicit form of the configuration of the loops s is obtained by multiplying P−1 from

the left in (36). To be more precise, the closed loops of magnetic charges running in the y-

direction, Wm,y,sβ is labeled by β := (Zgcd(N,p1), · · · ,Zgcd(N,pm),ZN) via

Wm,y,sβ = W s1
m,v1

× · · · ×W sn
m,vn , s = P−1

0n−m−1

β

 mod N. (38)

One can similarly discuss the configurations of the closed loops of electric charges in

the y-direction, giving the same result as the case with the magnetic charges. Hence, the

GSD is given by (26).

D. Braiding statistics

Based on discussions presented in preceding subsections, one can evaluate braiding statis-

tics between electric and magnetic charges. In dosing so, we make use of the analogous logic

to obtain the statistics in the toric code. In the case of the Z2 toric code, the non-trivial

braising statistics is characterized by θ via We,xWm,y = eiθWm,yWe,x, where We,x(We,y) rep-

resents the closed loop of electric (magnetic) charge in the x(y)-direction and the phase

factor is given by θ = π.

In our model, we have closed loops of fractional excitations in the x-direction and

the ones in the y-direction, both of which are labeled by α,β ∈
∏m

i=1 Zgcd(N,pi) × ZN .

From (3), (24), (25), and (38), introducing sub-diagonal (m+1)×(m+1) matrix of (P−1)TV Q

by Γ via

(P−1)TV Q =

∗ ∗

∗ Γ

 , (39)

where the symbol “∗” denotes some matrix element which is not necessary to find in the

present discussion, the statistical relation between the two loops is described by

We,x,rαWm,y,sβ = ωβTΓαWm,y,sβWe,x,rα . (40)

The braising statistics between a closed loop of a magnetic charge in the x-direction and the

one of an electric charge in the y-direction has the same form as (40).
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Generally, the form of the matrices P andQ is not uniquely determined, mirroring the fact

that there are multiple ways to transforming the Laplacian into the Smith normal form. In

our context, such a fact corresponds to the base transformation of the superselection sectors,

retaining physical properties of the system, such as spectrum. More thorough analysis on

statistics of fractional excitations will be presented elsewhere.

E. More generic 2D lattice

We can extend our analysis to the case where the 2D phases are placed on more generic

2D lattices constructed by product of two connected graphs, G1(V1, E1)⊠G2(V2, E2). Practi-

cally, such lattices are obtained by replacing the 1D line (the line in y-direction) introduced

in Sec. II with a connected graph G2(V2, E2) and relabeling the graph in the x-direction

as G1(V1, E1). Generalization of Hamiltonian (5) to such lattices is straightforward.

As we previously mentioned, in the y-direction, the behavior of the excitations closely

parallels the one in the toric code. Thus, properties of the excitations in the y-direction only

depends on the global topology of the graph, not the Laplacian. In deriving the GSD by

the second approach (Sec. III C), we initially constructed a single closed loop of a magnetic

charge in the y-direction. If we instead consider the case of the 2D lattice where 1D line is

replaced with graph G2(V2, E2), there are g2 ways to form such a closed loop with g2 being

the genus of graph G2, g2 := |E2|− |V2|+1. In other words, additional g2 degrees of freedom

is assigned to each closed loop of a magnetic charge. Accordingly, one finds that the distinct

configurations of closed loops of magnetic charges are labeled by

[
ZN × Zgcd(N,p1) × Zgcd(N,p2) × · · · × Zgcd(N,pm)

]g2 . (41)

Taking closed loops of electric charges into the consideration [these are also labeled by (41)],

one arrives at

GSD =
[
N × gcd(N, p1)× · · · × gcd(N, pm)

]2g2 , g2 = |E2| − |V2|+ 1. (42)

IV. EXAMPLES

In this, section, we examine two simple examples of graph to see explicitly how our

results (26) (40) work.



21

1. Cycle graph

The cycle graph Cn consists of n vertices placed in a cyclic order so that adjacent vertices

are connected by a single edge. The 2D lattice construed from the product of the cycle

graph and 1D line with periodic boundary condition in the y-direction is equivalent to the

torus geometry with periodicity in the x-direction being n. We transform the Laplacian to

the Smith normal form by implementing operations on rows and columns.

To start, adding the first n− 1 columns to the last one and doing the same procedure for

rows, the Laplacian is transformed as

L =



2 −1 −1

−1 2 −1

−1 2
. . .

. . . . . . −1

−1 −1 2


→

 L̃ 0n−1

0T
n−1 0

 , (43)

where

L̃ =



2 −1

−1 2 −1

−1 2
. . .

. . . . . . −1

−1 2


n−1×n−1

. (44)

The Laplacian of any connected graph is transformed into the form (43), where L̃ is obtained

by removing the last row and column of the Laplacian. We further transform L̃ as

L̃
swap 1st and 2nd row−−−−−−−−−−−−→
and negate on 1st row



1 −2 1

2 −1

−1 2
. . .

. . . . . . −1

−1 2


add 1st column to 2nd one twice−−−−−−−−−−−−−−−−−−−−−→

and subtract 1st column from 3rd one



1 0 0

2 −3 −2

−1 2
. . .

. . . . . . −1

−1 2


.

(45)
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Continuing,

(45)
subtract 1st row from 2nd one twice−−−−−−−−−−−−−−−−−−−−→



1 0 0

0 −3 −2

−1 2
. . .

. . . . . . −1

−1 2


. (46)

The last form of (46) has a diagonal element in (1, 1) entry. We iteratively implement the

similar transformation on the sub-diagonal matrix below (1, 1) entry by swapping the first

and second rows of the sub-diagonal matrix followed by multiplying (−1) on the first row,

and adding the first columns and rows to or subtracting those from other columns and rows.

Finally, one arrives at

PLQ = diag(1, 1, · · · , n, 0), (47)

where matrix P (Q) corresponds to the operations involving switching between rows

(columns), negating, and adding or subtracting the rows (columns). From the Smith

normal form (47), there is only one invariant factor greater than one, which is the second

diagonal element from the last, n. Applying formula (26) to the present case, one finds

GSD = [N × gcd(N, n)]2. (48)

From our operations on columns and rows performed in (43)-(46), one can find P−1 and Q

as

P−1 =



2 3 · · · n− 1 1 0

−1 0

−1
...

. . .
...

−1 0

−1 −2 · · · −(n− 2) −1 1


, Q =



1 2 3 · · · n− 1 1

1 2 · · · n− 2 1
. . . . . .

...

1 2 1

1 1

1


. (49)

The superselection sectors are labeled by Zgcd(N,n)×ZN . From (49), one finds that the form

of the closed loop of electric charge in the x-direction, We,x,rα , labeled by α = (α1, α
′)T ∈
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Zgcd(N,n) × ZN , is described by Eqs. (24)(25) with

r = QV


0n−2

α1

α′

 = N ′
1α1



n− 1

n− 2
...

1

0


+ α′



1

1
...

1

1


mod N, (50)

where N ′
1 = N/gcd(N, n). The last term of (50) corresponds to the solution of Lr = 0 that

any connected graph has. Similarly, refereeing to (49), the configuration of the closed loop of

magnetic charge in the y-direction, Wm,y,sβ characterized by β = (β1, β
′)T ∈ Zgcd(N,n) × ZN

has the form (38) with

s = P−1


0n−2

β1

β′

 = β1



1

0
...

0

−1


+ β′



0

0
...

0

1


mod N. (51)

When gcd(n,N) ̸= 1, the phase admits dipole of closed loops of magnetic charges in accor-

dance with the first term of (51). In Fig. 5, we demonstrate configurations of closed loops of

electric charges with α = (1, 0), (0, 1) and those of magnetic charges with β = (1, 0), (0, 1) in

the case of N = n = 3, from which any configuration of loops is constructed. By calculating

(P−1)TV Q, the matrix Γ given in (39), the braiding statistics between We,x,rα and Wm,y,sβ

reads

We,x,rαWm,y,sβ = ωβTΓαWm,y,sβWe,x,rα with Γ =

N ′
1(n− 1)

1

 . (52)

2. Complete graph

We move on to another example, complete graph Kn. It comprised of n vertices, where

there is an edge between any pair of vertices. The Laplacian is described by

L = diag(n, n, n, · · · , n)− A, (53)
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FIG. 5: Two configurations of the closed loops of electric charge in the x-direction (24)

with α = (1, 0), (0, 1) (red dots) and those of magnetic charges in the y-direction (38) with

β = (1, 0), (0, 1) (blue dots) in the case of the cycle graph Cn with N = n = 3.

where A represents the all-ones matrix (i.e., the matrix with all entries being one). To

transform the Laplacian into the Smith normal form, we add the first n− 1 columns to the

last one and implementing the same manipulation for the rows, giving the form

L →

 L̃ 0n−1

0T
n−1 0


with L̃ being the matrix obtained by removing the last row and column of L. We further

transform L̃. Adding all of the second to the last rows to the first one, and adding the first

column to all of the second to the last columns, we have

L̃ →


1 0 · · · 0

1 n
...

...
. . . 0

1 n

 .

Subtracting the first rows from all other rows gives rise to the Smith normal form:

PLQ = diag(1, n, n, · · · , n, 0). (54)

There are n−2 invariant factors greater than one, all of which are n. By making use of (26),

we obtain

GSD =

[
N × (gcd(N, n))n−2

]2
. (55)
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One of possible form of the matrices P−1 and Q, corresponding to transformations on

columns and rows mentioned above, is given by

P−1 =



1

−1 1
...

. . .

−1 1

n− 3 −1 −1 −1 1


, Q =



1 1 · · · · · · 1

1 2 1 · · · 1
... 1

. . .
...

1 1 1 2 1

0 0 0 0 1


. (56)

The superselection sectors are characterized by Zn−2
gcd(N,n) × ZN . The closed loop of electric

charge in the x-direction, given in (24) and (25), is labeled by α = (α1, α2, · · · , αn−2, α
′) ∈

Zn−2
gcd(N,n) × ZN with

r = QV

0

α

 = N ′α1



1

2

1
...
...

1

0


+N ′α2



1

1

2

1
...

1

0


+ · · ·+N ′αn−2



1

1

1
...

1

2

0


+ α′



1

1

1
...

1

1

1


mod N, (57)

where N ′ = N/gcd(N, n). Likewise, closed loops of magnetic charges in the y-direction,

defined in (38), which are labeled by β = (β1, β2, · · · , βn−2, β
′) ∈ Zn−2

gcd(N,n) × ZN with

s = P−1

0

β

 = β1



0

1

0
...
...

0

−1


+ β2



0

0

1

0
...

0

−1


+ · · ·+ βn−2



0

0

0
...

0

1

−1


+ β′



0

0

0
...

0

0

1


mod N. (58)

We portray configurations of (57) and (58) in Fig. 6 with n = N = 4 where α and β take

the form of the standard basis of vector e.g., α = (1, 0, · · · , 0)T .

The braiding statistics between the closed loop of electric and the one of magnetic charge



26

FIG. 6: The top view of three configurations of the closed loops of electric charge in

the x-direction (24) with α = (1, 0, 0), (0, 1, 0), (0, 0, 1) (red dots) and those of magnetic

charges in the y-direction (38) with β = (1, 0, 0), (0, 1, 0), (0, 0, 1) (blue dots) in the case of

the complete graph Kn with n = N = 4. The blue dot with dashed circle represents the

closed loop of the magnetic charge which is directed out of the paper.

is given by

We,x,rαWm,y,sβ = ωβTΓαWm,y,sβWe,x,rα with Γ =



2N ′ N ′ · · · · · · N ′ 0

N ′ 2N ′ N ′ · · · N ′ 0
... N ′ . . .

...
...

...
... N ′

N ′ N ′ · · · N ′ 2N ′ 0

0 · · · 0 1


. (59)

V. CONCLUSION

Spurred by a recent discovery of the fracton topological phases, in this paper, we have

studied unusual gapped ZN topological phases on 2D lattice which is constructed by the

product of an arbitrary connected graph and 1D line, and explored interplay between frac-

tional excitations and combinatorics. The distinct property of our model from the conven-

tional topologically ordered phases is that depending on N and the graph, the world line of a
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fractional excitation cannot be deformed to shift to the adjacent position in the x-direction.

Rather, the composite of world lines of the excitations can be shifted. Such a property can

be seen more clearly in the case of the square lattice by setting G(V,E) to be the cycle

graph Cn with gcd(N, n) ̸= 1, where dipole excitations are free to move. This behavior is

reminiscent of topological defects of the smectic phase in a liquid crystal, where dipoles of

disclinations move freely in one direction [24].

Due to this mobility constraint, the model exhibits unusual GSD dependence on N and

the graph. We have derived the GSD dependence on the graph (26) by two approaches.

In the first approach, we have shown that the superselection sectors are characterized by

the kernel of the Laplacian. By the knowledge of graph theory, we have found that GSD

depends on N and the great common divisor of N and invariant factors of the Laplacian.

In the second approach, we evaluate the number of distinct configurations of closed loops of

fractional excitations in the y-direction up to the deformation. Finding an intriguing analogy

between our model and the chip-firing game, we have obtained the same GSD dependence

by evaluating the Picard group. Based on these two approaches, we also have found braiding

statistics between electric and magnetic charges.

In this work, we have considered Abelian topological phases on connected graphs. It

would be interesting to extend our study to non-Abelian topological phases. Due to the

non-Abelian statistics, the fusion rules, described by the Laplacian, would become more

complicated, which probably allows us to explore more interesting interplay between frac-

tional excitations and graphs. Studying fermionic analogue of our model would be an another

intriguing direction. To this end, one has to introduce directed graphs, which incorporates

the direction of an edge between two vertices. Algebraic study on such graphs could lead

us to new fermionic topological phases. It would be also interesting and important to ad-

dress whether one can establish an effective field theory description of our model to see

any universal data, such as self-statistics, is fully captured by the Laplacian, analogously

to the K-matrix description of topologically ordered phases [28]. Such investigation would

contribute to exploring new types of topological field theory.

Last but not least, it is important to ask whether our model is useful for practical pur-

poses, such as quantum error corrections. To this end, one needs to study the stability

of the closed loops of electric and magnetic charges and investigate which graph can host

stable loops. By setting the length of 1D line in the y-direction, ny to be large so that
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closed loops in the y-direction is stable against local perturbations, one can concentrate on

studying stability of closed loops in the x-direction. As seen from (50) (57) and in the case

of any connected graph, there is always a closed loop which has the form r = k(1, 1, · · · , 1)T

(k ∈ ZN). It is the most stable loop as it consists of operators at every vertex. For other

loops, the stability crucially depends on the matrix P given in (2). Furthermore, one has to

study asymptotic behavior of the loops by taking large n limit.

We hopefully come back to these issues for future works.

Notes added. After submitting the paper, we were informed by the authors of [29] that

the similar model is considered in their upcoming work.
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