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Testing the mean field theory of scalar field dark matter
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Abstract

Scalar field dark matter offers an interesting alternative to the traditional WIMP dark
matter picture. Astrophysical and cosmological simulations are useful to constraining
the mass of the dark matter particle in this model. This is particularly true at low mass
where the wavelike nature of the dark matter particle manifests on astrophysical scales.
These simulations typical use a classical field approximation. In this work, we look
at extending these simulations to include quantum corrections. We look into both the
ways in which large corrections impact the predictions of scalar field dark matter, and
the timescales on which these corrections grow large. Corrections tend to lessen den-
sity fluctuations and increase the effect of “quantum pressure". During collapse, these
corrections grow exponentially, quantum corrections would become important in about
∼ 30 dynamical times. This implies that the predictions of classical field simulations may
differ from those with quantum corrections for systems with short dynamical times.

1 Introduction

Scalar field dark matter is an interesting model as it exhibits wave-like properties on scales
of the deBroglie wavelength, [1–3]. On the low mass end, m ∼ 10−22 − 10−19 eV wavelike
phenomena manifest on astrophysical scales. This alters the structure associated with cold
dark matter by creating O(1) density fluctuations and “quantum pressure" which wash out
structure on small scales. Simulations of structure formation, therefore, provide a powerful
tool to constrain the lower mass bound of the dark matter [4–7]. Typically these simulations
are performed using the classical equations of motion, the Schödinger-Poisson equations.

For free fields at high occupations, like those typical of electromagnetism, the mean field
theory is known to accurately describe the evolution of observables [8]. However, when non-
linear interactions are present, such as gravity, the classical field theory can admit quantum
corrections on some time scale [9–12]. In this work, we consider the implications of quan-
tum corrections for the predictions of classical field theory simulations. We accomplish this
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by simulating the leading order quantum corrections to the classical equations of motion, de-
scribed in [9, 10, 12–14]. We find that large scale quantum corrections tend to remove phase
information from the field and wash out O(1) density fluctuations. Corrections grow expo-
nentially during nonlinear collapse resulting in a logarithmic enhancement in the breaktime
with number of particles, i.e. tbr∝ log(ntot). This is implies that even large systems, such as
dark matter halos of galaxies, which have dynamical times short compared to the age of the
Universe may exhibit quantum corrections altering predictions of the classical theory.

2 Numerical Methods

2.1 Mean field theory

There are many methods outlined in the literature for simulating the classical field equations,
for example [2,15]. A single complex non-relativistic scalar field is defined, where the square
amplitude corresponds to the spatial density, i.e. ψ(x) =

p

ρ(x)eiφ(x), and the phase gradient
to the bulk velocity, when expressed in the position basis, i.e. ℏ∇φ(x) = v(x).

We then compute the evolution using the Schrödinger-Poisson equations

∂tψ(x) = −i

�

−ℏ̃∇2

2
+

V (x)
ℏ̃

�

ψ(x) , (1)

∇2V (x) = 4πGρ(x) (2)

where ℏ̃≡ ℏ/m, and m is the mass of the field. These equations are integrated using the single
classical field scheme described in [15].

2.2 Field moment expansion

For systems of about M = 256 spatial modes and ntot < 1010 total particles, direct integration
of Schrödinger’s equation is not feasible as the relevant Hilbert space is far too large, i.e.
D[H] ∼ 102000. Instead we simulate the mean field theory plus the leading order quantum
correction proportional to the width of the underlying quantum distribution in field space.
The method and solver we use is detailed in [13]. Like in the mean field case we start with a
classical field, ψ(x , t). In addition to this field we also track a field variance and covariance,
〈δψ(x)δψ(y)〉 and 〈δψ†(x)δψ(y)〉 respectively.

2.3 Truncated Wigner method

It is also possible to approximate the evolution of the Wigner function using an ensemble of
classical fields. This method is described in [14]. A quantum state has a pseudo phase space
representation given by the Weyl symbol of the density matrix, ρ̂,

W [ψ(x),ψ∗(x)] =
1

Norm

∫ ∫

dη∗ dη 〈ψ(x)−
η

2
| ρ̂ |ψ(x) +

η

2
〉× (3)

e−|ψ(x)|
2− |η|

2

4 e
1
2 (η
∗ψ(x)−ηψ∗(x))

for a pure state ρ̂ = |φ〉 〈φ|. Where |φ〉 is some quantum state. If |φ〉 is a coherent state then
the corresponding Wigner function is Gaussian, i.e. W [ψ(x),ψ∗(x)] = 1

π e−|ψ(x)−ψ
cl (x)|2 .
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We can approximate this distribution as an ensemble of Ns classical fields,Ψ = {ψ1,ψ2, . . . ,ψNs
},

in analogy with corpuscular solver approximations of classical phase space. The ensemble con-
stituents, ψi(x) ∼ W [ψ(x),ψ∗(x)], are drawn randomly from the Wigner function at each
point, x , in our spatial grid. In the large Ns limit the statistics of this ensemble can be used
to approximate operators. For the symmetrically ordered operator Ω̂[ψ̂(x), ψ̂†(x)], with Weyl
symbol ΩW [ψ(x),ψ∗(x)], we can write 〈Ω̂[ψ̂(x), ψ̂†(x)]〉 ≈ 1

Ns

∑

i ΩW (ψi ,ψ
∗
i ). The Weyl

symbol of a symmetrically ordered operator is simply constructed by substituting ψ̂→ψ.
The time evolution of the density matrix is given by the von Neumann equation iℏ∂t ρ̂ = [Ĥ, ρ̂].

The Weyl symbol of the commutator is the Moyal bracket { { . . . } }M = 2sinh
�1

2 { . . . }c
�

, where
{ . . . }c is the classical Poisson bracket. In the limit |ψ|2 ≫ 1 we can approximate the Moyal
braket as a Poisson bracket. We can now write the evolution of the density matrix as

∂tW [ψ(x),ψ
∗(x)] =

−i
ℏ
{ {HW , W } }M ≈

−i
ℏ
{HW , W }c ≈

−i
ℏ

∑

i

{HW ,ψi }c (4)

where HW is the Weyl symbol of the Hamiltonian. The first inequality is valid when |ψ|2≫ 1
and the second when Ns ≫ 1. Note that −i

ℏ {HW ,ψ } is just the right-hand side of equa-
tion (1), the classical field equation of motion. And so we can approximate the evolution
of the Wigner function as an ensemble of classical fields each, independently, obeying the
Schrödinger-Poisson equations.

3 Results

3.1 Effect of large corrections
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Figure 1: We plot the evolution of a spatial overdensity in one spatial dimension using
the truncated Wigner expansion method. We plot the results for the classical field
theory in red, and two quantum simulations with ntot ≈ 6× 104 and ntot ≈ 1× 106

in black and cyan respectively. Each column represents a different time, t. The top
row shows the value of the each stream in the ensemble at x = 0 and the bottom
row shows the spatial density plotted such that each field has the same norm. Shell
crossing, the moment of highest density, occurs at t = 1.
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The effect of large quantum corrections gives us insight into which observables are most
perturbed by quantum effects, see figure 1. We run a simulation of the gravitational collapse of
an initial over density with M = 256, Ns = 4096,ψcl(x , t = 0) =

p

Mtot

p

1+ 0.1 cos(2πx/L)/Norm,
in a single spatial dimension. In simulation units we have 4πG = 0.1 and ℏ̃= 2.5×10−4. The
box size, L, and total mass, Mtot , are normalized to unity.

We can see that during the collapse phase the field undergoes phase diffusion but that the
density remains well approximated by the MFT until the collapse. Following the collapse O(1)
density fluctuations are smoothed out in proportion to the amount of phase diffusion achieved
prior to the collapse. Without well defined phase gradients the usual interference pattern is
washed out. The effect of quantum pressure is also exaggerated.

3.2 Time scale of correction growth
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Figure 2: Here we plot the evolution of Q(t) for the gravitational collapse of a spatial
overdensity in one spatial dimension using the field moment expansion method. We
can see that Q initially grows quadratically from near 0. Then exponentially during
the nonlinear growth of the overdensity, prior to the collapse, which occurs at t = td .
Following the collapse we see that the growth slows to a power law. In this simulation
ntot ∼ 1010. κi j ≡ 2R

�

∑

kpl bc Λ
i j
plΛ

k j
bc 〈âb〉 〈âc〉 〈â†

p〉 〈â
†
l 〉
�

The leading order correction term is proportional to second order central difference oper-
ators, e.g. 〈δψ̂(x)δψ̂†(x)〉= 〈|ψ̂(x)− 〈ψ̂(x)〉 |2〉. We can compare this operator to the square
field amplitude, ∼ ntot , to approximate the size of the leading order quantum correction,
see [13]. We define the value parameter

Q(t) =
1

ntot

∫

d x 〈δψ̂(x , t)δψ̂†(x , t)〉 (5)

to approximate the size of corrections. By studying how this quantity grows we can estimate
how long it takes for quantum corrections to grow large.

We can see from figure 2 that Q grows in a number of stages, see [10]. Initially Q(t) grows
quadratically. During the nonlinear collapse of the overdensity, Q(t) grows exponentially as
Q(t) ∼ e7t/td . Following the collapse, Q(t) slows to a powerlaw growth. If we assume this
behavior holds for a realistic system that is constantly undergoing collapse and merging events,
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this would imply that Q(t) ∼ 1 happens when e7t ∼ ntot , at such high occupations this time
depends only weakly on the initial quadratic growth. This would imply a breaktime

tbr ∼
ln(ntot)

7
td , . (6)

This is about ∼ 30 dynamical times at ntot ∼ 10100. We therefore expect quantum correc-
tions to manifest most quickly for chaotic continuously merging systems with short dynamical
times.

4 Conclusion

In this paper we have looked at the effect of large quantum corrections and the timescales
on which they become large by studying the behavior of second order operators during the
gravitational collapse of an overdensity. We have demonstrated that the quantum corrections
have the effect of removing phase information in the system which results in a smoothed
density profile and exaggerated quantum pressure effect, see figure 1. Both of these effects
would impact existing bounds on SFDM if present. We have also estimated the time scale on
which these corrections grow. During the nonlinear growth of the collapse the corrections
grow exponentially, see figure 2. We estimate that for systems with ntot ∼ 10100 particles,
quantum corrections become large, i.e. Q ∼ 1, at t ∼ 30 td .

This implies a number of interest prospects for future work. Investigation of the quantum
breaktime in three dimensions and how quantum corrections effect haloscope results would
be of interest. Additionally, since low masses are expected to decohere rapidly an investigation
of the pointer states would be useful to determine whether the classical field approximate can
be applied.
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