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Abstract

Annihilation or decay of dark matter (DM) could contribute to the electron and positron
cosmic-ray flux, allowing for constraints on DM parameters from its measurement. CALET
is directly measuring the energy spectrum of electron+positron cosmic rays up into the
TeV region most important for studying heavy DM, while AMS-02 provides a positron-
only spectrum below the TeV range. Limits on DM annihilation and decay well into the
TeV mass range have been derived from a combined analysis of both data-sets with an
astrophysical background model including pulsars as the origin of the positron excess
and individual nearby supernova remnant sources.

1 Introduction

Limits on DM annihilation and decay are derived from the all-electron (electron+positron)
spectrum measured by CALET [1], and the positron spectrum from AMS-02 [2]. The astro-
physical background for the positron spectrum is limited to pulsars and secondary particles, but
it reaches only up to 1 TeV, while the background for the all-electron spectrum which extends
up to 4.8 TeV includes also SNRs. Based on previously established methods [3–5], this study
focuses on TeV-mass-range DM, with an improved background model treating the nearby SNRs
Vela, Monogem and Cygnus Loop, which dominate the TeV-region [6], as individual sources.

2 Method

2.1 Propagation Model and Calculation of Dark Matter Signal

The calculation of DM signals and background flux requires an underlying model of cosmic
ray propagation. The model used in this work is founded on the hypothesis that all primary
nuclei species have a common source spectrum, a power law with index γl below, and γi above
the break at Rbi with softness sbi , and with an exponential cut-off at Rcut . Spectral differences
between the nuclei species are attributed to propagation with a rigidity and position dependent
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parameter
D0

[1028cm2/s]
D0(@sol)

[1028cm2/s]
R0
[GV]

L
[kpc]

va
[km/s] γl

Rbi
[GV] sbi γi

Rcut
[TV]

value 1.295 5.064 4 6 9.9 2.0 7.81 0.224 2.2642 27

rn
[kpc]

rs
[kpc]

zn
[kpc]

zs
[kpc] δl

Rbl
[GV] sl δ

Rbh
[GV] sh δh

2 4.62 0.15 2.68 0.3126 12.3284 0.0535 0.574 914.5 0.3262 0.053

Table 1: Propagation model parameters, see text for explanation.

(increasing with galactic radius r and distance from the disk z) diffusion coefficient as given
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The parameters of the model were determined by comparing nuclei spectra calculated with
DRAGON [7] to experimental proton [8–10], helium [11–13] (including low-energy Voyager
data [14]), carbon, oxygen spectra [15], and B/C [16,17], 3He/4He [18] ratios. By a random
walk scan of the parameter space, the parameters listed in table 1, which fit the combined
nuclei spectra data with χ2/ndof< 1, were found. Using these parameters, the propagation of
the DM annihilation/decay spectra obtained with PYTHIA was calculated in DRAGON, taking
a NFW halo profile and a local DM density of 0.3 GeV/cm3.

2.2 Astrophysical Base Model and Limit Calculation

Figure 1: Base model fit with contributions of individual astrophysical sources shown.

Limit calculation is based on the reduction of the fit quality when adding the DM signal
to a purely astrophysical base model. In the base model, the primary electron spectrum from
distant SNR is represented by a power-law function with a low-energy spectral break and expo-
nential cut-off. The nearby SNRs and pulsars are treated as individual point sources with free
source-spectrum parameters, with the propagated spectrum calculated following ref. [19]. Po-
sition and age of the point sources are taken from the Green (SNR) [20] and ATNF (pulsar) [21]
catalogs. The secondary particle fluxes are taken from DRAGON nuclei spectra calculations
with a free re-scale parameter. To the fit of this model to the CALET and AMS-02 data as shown
in fig. 1, the flux from DM annihilation/decay is added with a scale-factor increased in itera-
tively smaller steps under readjustment of all free parameters. The relative limit is set where
χ2 increases by 3.841 from the base model, disfavoring the addition of DM at 95% CL, while
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Figure 2: Left: Relative limit fit for 10 TeV DM annihilation to e++e−, for explanation
of lines representing the background, see legend of fig. 1. Right: Absolute limit fit.

an absolute limit can be set where χ2 exceeds the 95% CL threshold for the fit’s number of
degrees of freedom, excluding the model including the DM flux. Examples are shown in fig. 2.
The base model is over-fitted (χ2/ndof « 1), thus only the absolute limit should be considered
conservative. However, the reliability of the relative limit may be increased by studying a vari-
ation of background model cases giving a good fit (χ2/ndof ≈ 1) and taking the worst limit.
To this end, the fixed cut-off energy parameters in the base model were varied, for the param-
eterized distant SNR spectrum between [0.5, 1, 2] TeV and for the near SNR source spectrum
between [10,20,50,100] TeV. Furthermore, two values of 3.75 µG and 7.50 µG were used for
the turbulent magnetic field strength. It was found that indeed the relative limit varies with
the background model parameter choices, but the absolute limit is nearly constant.

3 Limits on Dark Matter Annihilation and Decay Parameters

The obtained limits on the annihilation cross-section are presented in fig. 3, top panel, with a
comparison to limits from γ-ray observation of dwarf galaxies with VERITAS [22] and Fermi-
LAT [23]. The limits on DM lifetime (fig .3, middle panel) are comparable to the most conser-
vative EGRB limits from [24] which assume no astrophysical background, however based on
specific astrophysical background models much stricter limits of O(1028 s) have been published
(e.g. ref [25]). In addition, limits on the lifetime of topological defect DM (Skyrmions [26])
decaying through a π+lepton channel [27] are shown in the bottom panel of fig. 3.

4 Conclusions

From CALET all-electron and AMS-02 positron-only data, limits on DM lifetime (annihilation
cross-section) have been calculated up to a DM mass of 100 TeV (50 TeV), which are compa-
rable and complementing those from other messengers such as γ-rays and neutrinos.

Acknowledgments

The author gratefully acknowledges the support of the CALET collaboration team in making
the preliminary results published at ICRC2021 available for use in this work.

Funding information Supported by JSPS KAKENHI No. JP21H05463 and No. JP21K03604.

3



SciPost Physics Submission

Figure 3: Top: 95% CL limits on 〈σv〉 as a function of DM mass. Middle: 95% CL
limits on DM lifetime as a function of DM mass for generic decay channels. Bottom:
95% CL limits on DM lifetime as a function of DM mass for π+lepton decay channels.
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