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We provide an efficient approximation for the exponential of a local operator in quantum spin
systems using tensor-network representations of a cluster expansion. We benchmark this cluster ten-
sor network operator (cluster TNO) for one-dimensional systems, and show that the approximation
works well for large real- or imaginary-time steps. We use this formalism for representing the ther-
mal density operator of a two-dimensional quantum spin system at a certain temperature as a single
cluster TNO, which we can then contract by standard contraction methods for two-dimensional ten-
sor networks. We apply this approach to the thermal phase transition of the transverse-field Ising
model on the square lattice, and we find through a scaling analysis that the cluster-TNO approx-
imation gives rise to a continuous phase transition in the correct universality class; by increasing
the order of the cluster expansion we find good values of the critical point up to surprisingly low
temperatures.

I. INTRODUCTION

In quantum-many body systems, the exponential of
the many-body HamiltonianH often plays a fundamental
role. Indeed, for quantum systems at finite temperature,
the thermal density operator

ρ(β) =
1

Z(β)
e−βH , Z(β) = Tr

(
e−βH

)
(1)

contains all static information, whereas the time evolu-
tion of a quantum state is dictated by the time-evolution
operator

U(t) = e−iHt. (2)

Efficient numerical schemes for representing such expo-
nentials are therefore crucial for simulating many-body
systems. The most common approach is the use of a
Trotter-Suzuki expansion [1, 2], which breaks up the ex-
ponential operator into a sequence of local gates. This
approach is size-extensive, a crucial property for simu-
lating uniform systems directly in the thermodynamic
limit [3]. As a downside, the Trotter-Suzuki expansion
breaks translation symmetry and is necessarily limited to
local interactions and small steps in (real or imaginary)
time. For one-dimensional (1-D) systems an alternative
approach [4] uses the formalism of matrix product opera-
tors [5], which preserves all symmetries, is size-extensive
and works for long-range interactions; here, the downside
is that the MPO is correct only up to first order, and go-
ing to higher orders is not straightforward. Finally, in the
context of quantum Monte-Carlo simulations, the use of
series expansions [6, 7] has proven very useful, but such
an approach is not size-extensive.

In Ref. 8, it was realized how a series expansion can
be encoded in the language of tensor networks in a way
that is size-extensive and can, therefore, be naturally

formulated directly in the thermodynamic limit. Mo-
tivated by the formal results on the representability of
thermal states as tensor network operators [9–11], the
tensor-network construction was recently improved [12]
by considering clusters instead of the bare terms in the
series expansion. Here, a cluster is essentially a regroup-
ing of many different terms that act non-trivially on a
small patch of the lattice, including many higher-order
terms that a truncated series expansion would neglect.
In Ref. 12, it was indeed realized that such a cluster ex-
pansion can be encoded as a tensor network operator
(TNO) with moderate bond dimension, in a way that
is size-extensive, preserves all spatial and internal sym-
metries and works in any dimension. It was shown that
such a “cluster TNO” is a very efficient numerical tool
for (i) simulating simulating the real-time evolution of a
global quench in a 1-D spin chain, or (ii) optimizing a
ground-state approximation with a projected entangled-
pair state. In both cases, the ability to take large real- or
imaginary-time steps proved to be a very efficient feature
of the cluster-TNO approach.

Motivated by these results, in this paper we use the
cluster-TNO approach for simulating thermal density op-
erators of two-dimensional quantum spin systems. In
Sec. II, we first reiterate the general idea of an exten-
sive cluster expansion, and how tensor networks provide
a natural expression. We further elaborate on different
constructions in one and two dimensions. In Sec. III, we
benchmark these different constructions by comparing to
the exact exponential on finite clusters, by checking to
what extent a cluster-TNO approximation for the real-
time evolution operator is a unitary operator and how a
cluster TNO allows us to compute the density of states.
Finally, in Sec. IV we apply cluster TNOs to simulate the
thermal phase transition of the quantum transverse-field
Ising model in two dimensions.
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II. CONSTRUCTION

A. General idea

Let us first explain the general idea of a cluster expan-
sion, and how we can encode this efficiently as a tensor
network operator. We consider a completely general lat-
tice with spins on every site, directly in the thermody-
namic limit, and a translation-invariant operator that is
the sum of local terms,

H =
∑
n

hn, (3)

where hn is a local operator that only acts on finite region
n. The exponential of this operator can be written down
as a series expansion of the form

T = exp

(
λ
∑
n

hn

)
=

∞∑
p=0

λp

p!

(∑
n

hn

)p
, (4)

where λ is thought to be a small parameter. In such
a series expansion, the different terms in p-th order are
not extensive: when applying the p-th order term to a
uniform state, the state is no longer normalizable in the
thermodynamic limit. Therefore, we propose a specific
regrouping of the terms in the series expansion,

T =

∞∑
n=1

Tn, (5)

where the Tn contains all terms in the expansion in
Eq. (4) that have maximum cluster size n. Here, the max-
imum cluster size of a given term in the series expansion
is the largest region of the lattice on which there are op-
erators acting non-trivially, and which cannot be decom-
posed as a tensor product of smaller clusters. So, each Tn
contains terms in the series expansion of all orders. Be-
low, using tensor networks we will indicate how a trun-
cated series expansion indeed leads to a size-extensive
operator1.

Let us make things concrete for a 1-D chain. A one-site
cluster S1 is of the form

S1 = = O1 − 1, (6)

and contains all terms in the exponentiated Hamiltonian
T [Eq. (4)] that act non-trivially on a single site. O1

is thus the exponentiated Hamiltonian acting on a 1-site
system; in general, we define On as the exponential of
the Hamiltonian, restricted to a patch of n sites. The
two-site cluster S2 is given by taking all terms that act

1 In this work, our discussion of a cluster expansions and its exten-
sivity is situated on an intuitive and practical level, but we refer
to the more formal results [9–11] for a more rigorous discussion.

non-trivially on two sites, and subtracting all terms that
can be decomposed into one-site clusters,

O2 − 1 = S2 + S1 ⊗ S1 (7)

= + . (8)

Similarly, the three-site cluster S3 is given by summing all
terms that act non-trivially on three sites and subtracting
all contributions that can be decomposed into one- and
two-site clusters,

O3 − 1 = S3 + S2 ⊗ S1 + S1 ⊗ S2 + S1 ⊗ S1 ⊗ S1 (9)

= +

+ + . (10)

This procedure can be extended to increasing cluster size
m: we compute all terms that act non-trivially on m sites
and we subtract all terms that can be decomposed into
smaller clusters.

The Tn introduced in Eq. (5) is then made up of the
superposition of all possible tensor products of Sm with
m ≤ n and at least one cluster of size n.

This cluster expansion can be straightforwardly gener-
alized to two dimensions. We take regions of increasing
size, compute the non-trivial terms in T on this region,
and subtract all terms that can be decomposed into clus-
ters of smaller size. As an example, the cluster on a
two-by-two region is defined as

O2×2 − 1 = + +

+ + +

+ + +

+ + + , (11)

where the last operator is the four-site cluster we need,
and all previous terms are decompositions into smaller
clusters.

As such the cluster expansion is a formal tool for group-
ing terms that appear in T , but now we use tensor net-
works to represent such a cluster expansion in a natural
way. Suppose we want to represent a term in the cluster
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expansion of the form

. (12)

We can encode such a configuration into a tensor network
by associating to every site a six-leg tensor, with two
legs that correspond to the physical action of the tensor
network operator and four virtual legs that encode the
cluster configuration:

1

1

2

1

1

3

2

α α

1

1

1 α

2 1 α

1 3 2

1

1 1

0 0

0

0 0 0 0

0

0 0 0

0 0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

. (13)

Here, the level ‘0’ on the virtual legs is of dimension one,
and is used between disconnected clusters. The higher
virtual levels are used within the clusters, and arise from
the tensor decomposition of the clusters – the specific
method for finding these tensor entries will be the sub-
ject of the following subsections. The dimension of these
higher virtual levels will generally be larger than one.

As such, the tensor network in Eq. (13) represents a
single term in the cluster expansion. We can now sum
up all terms in the cluster expansion by incorporating
all tensor entries that appear in the above network into
a single tensor, and repeating this tensor on every site in
the lattice

. (14)

The tensor network operator (TNO) that we construct
in this way now represents the sum of all of the above
configurations.

One important feature of this “cluster TNO” is its ex-
tensivity, which reproduces the extensivity of the expo-
nential. Concretely, this means that if the cluster TNO
contains a term with a certain cluster on region A and a
term with another cluster on a non-overlapping region B,
it also contains the term with both non-overlapping clus-
ters. This implies that the cluster-TNO with clusters up
to a certain size contains all terms in T with non-trivial
clusters, including the terms that are direct products of
clusters on non-overlapping regions.

B. One-dimensional models

This general idea of encoding a cluster expansion into a
tensor-network operator is made clear by working out the
case of a local translation-invariant Hamiltonian in one
dimension. We want to approximate the exponentiated
Hamiltonian by a matrix product operator (MPO), which
we can represent directly in the thermodynamic limit as

exp

(
λ
∑
n

hn

)
≈ ...... . (15)

It appears that a cluster TNO is not unique; here, we
explain three different constructions.

1. Type A

In the type-A construction, the clusters are encoded in
the MPO as follows. The one-site cluster is encoded as a
simple on-site operator with the virtual level ‘0’ on both
sides,

S1 = + 1. (16)

The virtual level ‘0’ is not drawn in this and following
figures. Next, we introduce a single virtual level ‘1’ for
encoding the two- and three-site clusters

S2 =
1

(17)

S3 =
1 1

. (18)

Here, the tensor entries 0−1 and 1−0 are found by, e.g.,
performing a singular-value decomposition (SVD) of the
two-site cluster S2. The 1 − 1 entry is then found by
solving a linear problem2. We go on to the four- and

2 It is important for numerical stability to solve the linear problem
imposed by, e.g., Eqs.(18) and (20) rather than inverting the
tensor entries 0−1 and 1−0 directly. For the larger clusters, the
inversion problem can be written as the inversion of a a direct
product of matrices; here, for numerical stability it is advised
to first perform a singular-value decomposition of each matrix
separately, and constructing a suitable pseudoinverse, instead of
solving the linear problem directly.
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five-site clusters, for which we introduce a new virtual
level ‘2’,

S4 =
1 2 1

(19)

S5 =
1 2 2 1

. (20)

Obviously, this construction can be continued to include
larger clusters. The bond dimension of the virtual lev-
els, however, increases exponentially with the cluster size:
the levels ‘1’ and ‘2’ have a dimension of d2 and d4, resp.,
with d physical dimension. For larger clusters, we can
choose to lower the bond dimension by truncating the
singular values.

One important feature of the type-A construction in-
volves the diagonal entries such as the 1 − 1 entry that
we have included for the three-site cluster. Indeed, this
entry does not only include the three-site cluster into the
MPO, but also gives rise to longer strings of the form

1 1 1
. (21)

We can correct for this contribution by redefining the
1− 2 and 2− 1 entries as

S4 − 1 1 1
=

1 2 1
. (22)

In general, we can correct for the longer strings in the
definition of the next virtual levels. If the bond dimension
of these next virtual levels becomes too high, we can
no longer correct for the longer strings. It is, a priori,
unclear what are the effects of these contributions on the
accuracy of the cluster TNO.

2. Type B

The MPO encoding can be adapted to avoid inclusion
of these strings of diagonal entries. Type B has the fol-
lowing entries

S1 = + 1 (23)

S2 =
1

(24)

S3 =
1 1’

(25)

S4 =
1 2 1’

(26)

S5 =
1 2 2’ 1’

, (27)

where the primed levels are entirely new levels, thus
avoiding any diagonal entries. The primed levels and un-
primed levels can only meet in the middle of the patch,
and hence longer chains such as eq. (21) are excluded by
this encoding. This comes at the numerical cost of twice
the total bond dimension in comparison to the type-A
construction.

3. Type C

Both the type-A and type-B construction requires us
to solve linear problems for finding some entries, which
can become ill-conditioned. In order to avoid this issue,
we propose the type-C construction

S1 = + 1 (28)

S2 =
1’

+
1

(29)

S3 =
1 1

(30)

S4 =
1 2 1

+
1 2’ 1

(31)

S5 =
1 2 2 1

. (32)

The unprimed entries that we have introduced are arbi-
trary unitary tensors (up to a constant factor), and form
the least squares solution to the problem, whereas the
primed entries make sure we reproduce the clusters of
even size. The ill-conditioning of the linear problems is
now avoided since it reduces to inverting these unitary
tensors. The downside is that the type-C constructions
requires twice the bond dimension of the type-A con-
struction.

Of course, the type-C construction can be combined
with the type-A or type-B one: we can switch to the
type-C prescription for the larger clusters, whenever the
linear problem becomes ill-conditioned.

C. Two-dimensional models

For the 2-D case, we can make a distinction between
two types of clusters: linear clusters (including branch-
ings) and loops. For the former, we can straightforwardly
extend the 1-D constructions, but the latter requires ex-
tra ingredients for representing them in terms of TNOs.
In the following, we will consider the square lattice only,
but our discussion also applies to other 2-D lattices

1. Linear clusters and branchings

The one and two-site clusters are simply encoded as

,
1

, 1 , (33)

where these entries are again found by taking singular-
value decompositions of the two-site clusters. There are
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six different three-site clusters,

1
1 ,

1 1
(34)

and their rotations; these diagonal entries are, again,
found by solving simple linear problems. We can add
larger clusters of the form

1 1
1

1 1

1

1

(35)

without increasing the bond dimension. But if we want
to include still larger clusters such as

1

1

2

1

2 1

2

1

, (36)

we need to include extra virtual levels. Clearly, we can
again continue this construction to include larger and
larger clusters. We have to take care that for before in-
cluding a new cluster, we have included all smaller clus-
ters that fit within the new one.

Here, we have chosen the type-A construction with di-
agonal TNO entries, that give rise to longer strings in the
TNO. We could avoid these longer strings by resorting to
the 2-D version of the type-B and type-C constructions.

2. Loops

Starting with the two-by-two cluster, we can also have
clusters that contain loops; for these clusters, we cannot
simply perform the simple growing of the TNO as we did
for the 1-D case. Instead, we need to introduce a new
virtual level, such that we can represent the two-by-two
cluster

α

α

α α , (37)

where we use Greek letters for labeling the virtual levels
that give rise to loops. Finding these entries can be done
by a sweeping algorithm, similar to a variational opti-
mization of a periodic matrix product state [13]. Addi-
tionally, we can add linear parts to these loop clusters,
such as

1 α

α

α α . (38)

A:2
B:2
C:2
A:3
B:3
C:3
A:4
B:4
C:4
A:5
B:5
C:5

A:2
B:2
C:2
A:3
B:3
C:3
A:4
B:4
C:4
A:5
B:5
C:5

FIG. 1. Relative error ε of the cluster-MPO for the 1-D
spin-1/2 Heisenberg model on a periodic chain of 11 sites.
Top panel shows ε for the unnormalized thermal density op-
erator ρ = e−βH , as a function of inverse temperature β.
Bottom panel shows ε of the real-time evolution operator
U(t) = e−iHt, as a function of time t. We show results
of the cluster-MPO of types A,B and C with cluster sizes
c = 2, 3, 4, 5.

III. BENCHMARKS FOR 1-D MODELS

In this section, we investigate how accurate these clus-
ter TNOs are for representing exponentials of nearest-
neighbour spin-chain Hamiltonians. In particular, we will
compare the different types of MPO constructions that
we have introduced in the previous section.

A. Accuracy on finite chains

As a first benchmark, we compare the cluster TNO
with the exact matrix exponential on a finite periodic
system. We will compute the relative 2-norm error ε

ε =
||Uexact − UTNO||2
||Uexact||2

. (39)

In Fig. 1, we first consider the spin-1/2 Heisenberg
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A:2
B:2
C:2
A:3
B:3
C:3
A:4
B:4
C:4
A:5
B:5
C:5

FIG. 2. Relative error ε of the cluster-expansion TNO for
the real-time evolution operator U(t) = e−iHt of the 1-D
transverse-field Ising model at g = 1 on a periodic chain of 11
sites. We show results of the cluster-expansion TNO of type
A,B and C with cluster size c = 2, 3, 4, 5, as a function of time
t.

Hamiltonian,

H =
∑
〈ij〉

σxi σ
x
j + σyi σ

y
j + σzi σ

z
j , (40)

and show the accuracy of the cluster MPO for both the
thermal density operator at inverse temperature β and
the real-time evolution operator as a function of time
t. Clearly, all the expansions improve when the order is
increased. One would expect the type-B construction to
be the better one of the three, as it avoids the presence of
longer strings in the MPO. Evidently, this is not the case
for the two examples that we consider. This implies that
the terms corresponding to the longer strings provide an
approximation of the larger clusters. Moreover, type A
outperforms type C by quite some margin for sufficient
low temperatures. As the type-A construction also has
a lower bond dimension, this is clearly the better choice.
For completeness, in Fig. 2 we also show the accuracy of
the cluster MPO for the transverse-field Ising model with
Hamiltonian

H = −
∑
〈ij〉

σxi σ
x
j + g

∑
i

σzi , (41)

with similar results as for the Heisenberg model.

B. Unitarity of the cluster expansion

One could wonder to what extent the cluster expansion
represents a unitary operator. To assess this, we calculate
the 1-site reduced density matrix of the operator ρ =
UU† = e−iHte−iHt ≈ Id directly in the thermodynamic
limit. The unitarity error ε is defined as

ε = ||ρ− Id||2 (42)

A:2
B:2
C:2
A:3
B:3
C:3
A:4
B:4
C:4
A:5
B:5
C:5

FIG. 3. Unitarity error ε as a function of time t for the 1-D
spin-1/2 Heisenberg model. We show results of the cluster-
expansion TNO of type A,B and C with clustersize c=2,3,4,5.

The results for the Heisenberg model are shown in Fig. 3.
The expansions become in general more unitary with in-
creasing cluster expansion order. Once again, type-A
outperforms the others by quite some margin and scales
better with cluster-expansion order.

C. Spectral Energy Density

As a final benchmark, we will consider the spectral
energy density. For a generic spin Hamiltonian H of N
sites with local dimension d, this quantity is defined as

µ(ω) =
1

dN

∑
j

δ(Ej − x), (43)

where Ej are the eigenvalues of H. It can be computed
directly from the trace of the time-evolution operator [14]
as

µ(ω) =
1

dN

∫
dt

2π
e−iωtU(t), U(t) = Tr

(
eiHt

)
. (44)

Using the cluster expansion, we can obtain an efficient
tensor-network representation of U(t) up to a certain
time T . In order to avoid cutting of the approximate
U(t) too sharply, we multiply it with a Gaussian window
function

µ̃(ω) =
1

dN

∫
dt

2π
e−iωtU(t)e−α

t2

2T2 , (45)

resulting in a smeared-out spectral density function µ̃
with a resolution O(T−1).

We consider the 1D Ising model with transverse field
g = 1 and longitudinal field h = 1

H = −
∑
〈ij〉

σxi σ
x
j + g

∑
〈i〉

σzi + h
∑
〈i〉

σxi (46)
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FIG. 4. Results for the density of states of the longitudinal-
field Ising model [Eq. (46)] with g = 1 and h = 1 on a ring
of 10 sites. In the top panel, the red lines show the real and

imaginary parts of U(t) = Tr(e−iĤt); the blue line shows the
deviation between the exact result and the TNO. The bottom
panel shows the smeared µ̃(ω) calculated exactly (T = 2) and
with TNO (T = 0.6).

on a system of 10 sites with periodic boundary condi-
tions; we present the results in Fig. 4. In the top panel,
we have plotted the accuracy of the cluster-expansion
approximation for U(t), by comparing it to the exact re-
sult. We observe that the cluster expansion is a good
approximation for t . 3. In the bottom panel, we show
the spectral densities, convoluted with a Gaussian. We
observe that the cluster-TNO provides an accurate sim-
ulation of the density of states, up to the fine-grained
features that require longer times in U(t).

D. Discussion

We have found that the cluster expansion TNO in-
deed approximates the Hamiltonian exponentials well.
Surprisingly, we have also found that the type-A con-
struction outperforms the others. This implies that the
-unwanted- strings of 1-1 and 2-2 discussed in Section. II
are actually lowering the error. Note, however, that this

is most likely a feature only found for nearest neighbour
interacting models, where the 1-1 strings are suppressed
by a power in t/β. This would not be the case for further
neighbour interactions. We therefore anticipate type-B
to be superior, if not necessary, for such models.

Note also that while the error goes down when in-
cluding higher order clusters, it always tends to saturate
around t/β(1), as can be clearly seen in Fig. 1,2, and 3,
which is not unreasonable since the cluster expansion is
also an expansion in powers of t/β. This should be taken
into account when attempting to use this construction
for low temperatures or long times.

IV. APPLICATION: THERMAL DENSITY
OPERATORS

Let us now consider two-dimensional quantum spin
systems at finite temperature. Using the cluster expan-
sion, we can represent the model’s thermal density oper-
ator at inverse temperature β = 1/T ,

ρ(β) =
1

Z
e−βH , Z(β) = Tr(e−βH), (47)

as a tensor network operator of the form

ρ(β) =

...

...

...

...

...

...

...

...

...

...

...

...

. (48)

Here, the bond dimension D of this tensor network op-
erator is determined by the order of the cluster expan-
sion; we expect that the approximation becomes better as
we increase D. Note that obtaining this tensor network
comes at negligible numerical cost.

The partition function Z is then obtained by tracing
over the physical degrees of freedom, such that we obtain
a simple two-dimensional tensor network

Z(β) =

...

...

...

...

...

...

...

...

...

...

...

...

. (49)

This tensor network can be efficiently contracted using
standard methods such as the variational uniform MPS
(VUMPS) algorithm [15–17], the corner transfer matrix
renormalization group (CTMRG) [18–20] or real-space
renormalization-group approaches [21, 22]; in this work,
we use the first option. Here, the bond dimension χ of the



8

boundary MPS enters as a control parameter. The lead-
ing computational complexity of both the above methods
scales as χ3D2, where D is determined by the order of the
cluster expansion and the appropriate scale of χ depends
on the entanglement in the system. Performing this con-
traction yields a direct calculation of λ, the scaling of
the partition function with system size in the infinite-
size limit, such that we obtain the free energy density
f

Z(β) ∝ λNxNy , f(β) = − log λ. (50)

In addition, using the boundary MPS we have direct ac-
cess to the local reduced density matrix

...

...

...

...

...

...

...

...

...

...

...

...

, (51)

which allows us to compute local observables directly in
the thermodynamic limit.

As an illustration of the power of this method, we study
the thermal phase transition in the transverse-field Ising
model on a square lattice, defined by the Hamiltonian

H = −
∑
〈ij〉

σxi σ
x
j + g

∑
i

σzi . (52)

The thermal phase diagram is plotted in Fig. 5, show-
ing a line of thermal second-order phase transitions be-
tween an ordered ferromagnetic phase and a disordered
paramagnetic phase. In the classical limit (g = 0)
there is the phase transition of the classical Ising model
at β = log(1 +

√
2)/2 ≈ 0.44, whereas in the zero-

temperature limit (β → ∞) we find a quantum phase
transition at g ≈ 3.044. For any non-zero temperature,
the phase transition falls within the 2-D classical Ising
universality class.

First we focus on the phase transition at a fixed value
of the field, g = 2.5. We represent the density operator
as a tensor network operator of dimension D = 27 by a
cluster expansion of order five and loop correction. In
Fig. 6 we plot the results from VUMPS simulations at
different values of χ. First we plot the magnetization as
a function of T that we have obtained for different values
of χ. We clearly see the Ising phase transition, but the
critical point is shifted due to finite-χ effects. In order to
get an accurate simulation of the phase transition, we can
employ a finite-entanglement scaling approach [24]: We
extract an effective length scale δ from the spectrum of
the boundary-MPS transfer matrix, and apply the scaling
hypothesis

m̃
(
tδ−1/ν

)
= m(t, δ)δ−β/ν , (53)

FIG. 5. The phase diagram of the 2- transverse-field Ising
model: the ordered ferromagnetic phase is separated from
the disordered paramagnetic phase by a second-order phase
transition. We show the lines of constant T = 2.5, g = 0.5
and g = 1.5 that are used in Figs. 6 and 7. The data for the
transition line is taken from the Monte-Carlo data in Ref. 23.

with t = T − Tc and (β,ν) the known Ising critical ex-
ponents. We can optimize the value of Tc such that
we get a good collapse of the scaling function m̃ [24].
The optimized data collapse is plotted in (b), where
we have obtained a value of the critical temperature of
Tc = 1.2736(0). This value should be compared to the
quantum Monte-Carlo estimate Tc = 1.2737(6) [23] and a
PEPS estimate Tc = 1.2737(2) [25]. This good agreement
for Tc illustrates the fact that our fifth-order cluster-TNO
is an extremely good approximation of the partition func-
tion. Finally, in the right panel of Fig. 6 we also show
the data collapse for the correlation lengths that we ex-
tract from the boundary MPS, using a similar scaling
hypothesis [24]

ξ̃
(

(tδ−1/ν
)

= ξ(t, δ)δ. (54)

Again, we find a collapse of the data.
Note that the PEPS method [25] must contract the

square of the partition function (ρ†ρ), making the con-
traction much more costly. Additionally, one has to opti-
mize the tensors first, which has a non-negligible numer-
ical cost as well.

Of course, the truncated cluster expansion is expected
to break down when decreasing the temperature. In order
to illustrate this, we have simulated the phase transition
for two fixed values of the temperatures, and for differ-
ent orders of the cluster expansion. In Fig. 7 we plot
the magnetization as a function of the field, again show-
ing that the Ising criticality is always found, but where
the value of the critical field is shifted. For T = 1.5 we
find that the critical point approaches the exact value
to a high precision, whereas for T = 0.5 the order-six
cluster-TNO yields a value of the critical point that is
significantly shifted with respect to the exact value.

To study this regime with tensor networks, one might
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FIG. 6. Results for 2-D transverse-field Ising model at g = 2.5, obtained by the VUMPS contraction of an order-six cluster
TNO. The left panel shows a direct calculation of the magnetization as a function of T for different values of χ. The middle
panel shows the rescaled magnetization, according to the scaling hypothesis, where we have optimized Tc to yield the best
collapse of the data. The right panel shows the rescaled data for the correlation length extracted from the boundary MPS. The
data set is sampled at values of χ = 11, 16, 23, 32, 45, 64, 91, 128 with roughly 65 data points for each value of χ.

use several layers of cluster expansion TNO’s, the PEPS
method referred to earlier, or indeed some optimal hybrid
of the two.

V. OUTLOOK

In this paper, we have explained how to represent
cluster expansions as tensor-network operators, which
can be used efficiently in tensor-network simulations for
real- and imaginary time evolution of local Hamiltoni-
ans. We have shown that the cluster-TNO construction
yields an extremely simple way of representing the par-
tition function of 2-D quantum spin systems at non-zero
temperature, which despite its simplicity gives accurate
results for relatively low temperatures. This approach
should be compared to the standard tensor-network ap-
proach, where the thermal density operator is represented
as a projected entangled-pair operator, and evolved by
imaginary-time evolution through a Trotter-Suzuki de-
composition of the density operator [26–28].

As our benchmarks for the 1-D case have shown, the
cluster expansion breaks down for small temperatures. In
that case, however, we can think of splitting up the ther-
mal density operator into a sequence of cluster TNOs.
Since the bond dimension of this TNO would grow expo-
nentially with the number of layers, intermediate trunca-
tion steps will be necessary here – a variational trunca-
tion scheme seems to be the best option. Here, again, we
believe that the cluster-TNO will be better suited than
a Trotter-Suzuki decomposition of the density operator,
since the former allows us to take much larger imaginary
time steps.

FIG. 7. Results for the 2-D transverse-field Ising model at
fixed T = 1.5 (top) and T = 0.5 (bottom). The magnetisation
is calculated for MPS bond dimension χ=45. The figures show
the magnetisation curve for different orders O of the cluster-
TNO. For order O = 6, virtual level ‘3’ is truncated at bond
dimension 20. The black lines denote the “exact” critical
temperatures, taken from Ref. 23.
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J. Vidal, and F. Verstraete, Bridging perturbative expan-
sions with tensor networks, Phys. Rev. Lett. 119, 070401
(2017).

[9] M. B. Hastings, Solving gapped Hamiltonians locally,
Phys. Rev. B 73, 085115 (2006).

[10] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera,
and J. Eisert, Locality of temperature, Phys. Rev. X 4,
031019 (2014).

[11] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, Ap-
proximating Gibbs states of local Hamiltonians efficiently
with projected entangled pair states, Phys. Rev. B 91,
045138 (2015).

[12] B. Vanhecke, L. Vanderstraeten, and F. Verstraete, Sym-
metric cluster expansions with tensor networks, Phys.
Rev. A 103, L020402 (2021).

[13] F. Verstraete, D. Porras, and J. I. Cirac, Density matrix
renormalization group and periodic boundary conditions:
A quantum information perspective, Phys. Rev. Lett. 93,
227205 (2004).

[14] T. J. Osborne, A renormalisation-group algorithm for
eigenvalue density functions of interacting quantum sys-
tems, arXiv (2006), cond-mat/0605194.

[15] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman,
F. Verstraete, and J. Haegeman, Variational optimization
algorithms for uniform matrix product states, Phys. Rev.
B 97, 045145 (2018).

[16] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber,
J. Haegeman, and F. Verstraete, Faster methods for con-
tracting infinite two-dimensional tensor networks, Phys.
Rev. B 98, 235148 (2018).

[17] L. Vanderstraeten, J. Haegeman, and F. Verstraete,
Tangent-space methods for uniform matrix product
states, SciPost Phys. Lect. Notes , 7 (2019).

[18] R. J. Baxter, Dimers on a rectangular lattice, J. Math.
Phys. 9, 650 (1968).

[19] T. Nishino and K. Okunishi, Corner transfer matrix
renormalization group method, J. Phys. Soc. Jap. 65,
891 (1996).
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