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Abstract

Integrable λ-deformed σ-models are characterized by an underlying current alge-
bra/coset model CFT deformed, at the infinitesimal level, by current/parafermion
bilinears. We promote the deformation parameters to dynamical functions of time in-
troduced as an extra coordinate. It is conceivable that by appropriately constraining
them, the beta-functions vanish and consequently the σ-model stays conformal. Re-
markably, we explicitly materialize this scenario in several cases having a single and
even multiple deformation parameters. These generically obey a system of non-linear
second-order ordinary differential equations. They are solved by the fixed points of
the RG flow of the original σ-model. Moreover, by appropriately choosing initial con-
ditions we may even interpolate between the RG fixed points as the time varies from
the far past to the far future. Finally, we present an extension of our analysis to the
Yang–Baxter deformed PCMs.
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1 Introduction

Two-dimensional conformal σ-models play an important rôle in string theory, since

they provide consistent backgrounds for propagation of strings in curved spacetimes.

As usual these models are described in terms of the action1

S =
1

2π

ˆ
d2σ(GMN + BMN)∂+XM∂−XN , M = 1, 2, . . . , d , (1.1)

from which we read off the background fields for the metric GMN and the antisym-

metric tensor BMN. In addition, there is also a dilaton field Φ. Demanding conformal

invariance at one-loop order leads to vanishing beta-functions for the metric and the

antisymmetric fields. At one-loop these read [1–4]

RMN −
1
4

HMKLHN
KL + 2∇M∂NΦ = 0 , ∇P(e−2ΦHMNP) = 0 , (1.2)

where RMN is the Ricci tensor and∇M is the covariant derivative built out of the met-

ric GMN, using the Levi–Civita connection. In addition, HMNP = ∂MBNP + cyclic is

the field strength of the antisymmetric tensor BMN. The dilaton beta-function requires

that the expression

R− 1
12

HMNPHMNP + 4∇2Φ− 4
(
∂Φ
)2

= w , (1.3)

when (1.2) is applied, is a constant labelled here by w. Finally, we may compute the

central charge at one-loop order from the dilaton beta-function or the Weyl anomaly

coefficient (1.3) as [5, 6]

W = d− 3w . (1.4)

In this work we will consider the (multi) λ-deformed current algebra CFTs [7], the

λ-deformed coset CFTs [7, 8] as well as, to a lesser extend, the η-deformed PCMs [9],

where we will promote the deformation parameters to dynamical functions of time.2

1The world-sheet coordinates σ± and (τ, σ) are given by

σ± = τ ± σ , ∂± =
1
2
(∂τ ± ∂σ) , d2σ = dτ dσ .

2In practice we promote the target space metric Gµν with coupling constants λi to time-dependent
ones

Gµν(Xµ; λi)dXµdXν =⇒ dt2 + Gµν(Xµ; λi)dXµdXν ,

similarly for the antisymmetric tensor Bµν and the dilaton Φ.

2



We will demand that these functions are constrained in such a way that the result-

ing σ-model stays conformal at one-loop order (1.2). This is not a priori a consistent

procedure warranted to lead to a conformal model, especially for a multi-parameter

deformation. However, we will present several cases in which this yields a consistent

system of non-linear second-order ordinary differential equations. These equations

are trivially solved by the fixed points of the RG flows of the original σ-model, but,

more interestingly, they also admit time dependent solutions interpolating between

these fixed points. Let us point out that there is no direct identification of the RG scale

with the target-space time as the RG equations do not solve the system of second-order

ordinary differential equations. Yet the system of second-order ordinary differential

equations upon demanding an appropriate behaviour may interpolate between the

fixed points. A similar set-up was considered in [10–12] with the crucial difference

that in these works the starting point was a CFT and the demand was that the dynam-

ical promotion led again to a conformal model at one-loop order.

This work is structured in two classes of models, (I) and (II):

In models of class (I), considered in Sections 2, 3 and 4 we study integrable σ-models

known as λ-deformations [7], which interpolate between a (gauged) WZW model and

the non-Abelian T-dual of a PCM. These models are dynamically extended by adding

an extra coordinate t contributing to its Lagrangian density, letting λ depending on t

and including a time dependent term in the dilaton. More specifically, in Section 2, we

considered the λ-deformed SU(2)k/U(1) [7]. In Section 3, we worked out the scale invari-

ant deformation of the SL(2,R)−k/SO(2) coset CFT [13]. The resulting system of differen-

tial equations can be analytically integrated. In Section 4, we studied the λ-deformed

SU(2)k case for an isotropic and a marginal deformation [7]. In the latter case we

make contact with the Nappi–Witten expanding universe SU(2)k×SL(2,R)−k
U(1)×U(1) [14]. Lastly,

in Section 7 we extend our analysis to the Yang–Baxter deformed SU(2) PCM [9].

In models of class (II), considered in Sections 5 and 6 we dynamically extend (inte-

grable) σ-models which interpolate between exact (coset) CFTs. In Section 5, we con-

sidered the single λ-deformed Gk1 × Gk2 for an isotropic, a marginal and a generic de-

formation λab [15]. In Section 6, we studied the λ-deformed SU(2)k1
×SU(2)k2/SU(2)k1+k2

[16].

Finally, in Appendix A we gathered the technical details of the generic deformation

λab(t) considered in Section 5.
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2 λ-deformed SU(2)k/U(1)

In this Section we consider the simplest example, namely that for the λ-deformed
SU(2)k/U(1) [7] whose action is given by

S =
k
π

ˆ
d2σ

{
1− λ

1 + λ

(
∂+β∂−β + cot2 β ∂+α∂−α

)
+

4λ

1− λ2

(
sin α cot β ∂+α + cos α ∂+β

)(
sin α cot β ∂−α + cos α ∂−β

)}
.

(2.1)

Including a diffeomorphism induced by the scalar

Φ = − ln sin β , (2.2)

the above σ-model is renormalizable at one-loop in the 1/k expansion and its RG flow

is given by [17, 18]
dλ

d ln µ2 = −λ

k
, (2.3)

where µ is the energy scale. From the above expression we find that the operator

O, driving the perturbation, is relevant and has scaling dimension equal to ∆O =

2(1− 1/k). This is in accordance with general considerations for the case at hand

dλ

d ln µ2 =
∆O − 2

2
λ +

1
2

COOOλ2 +O(λ3) , (2.4)

where COOO denotes the OPE coefficient of the operatorO with itself. In our case this

operator is the parafermion [19] bilinear corresponding to the coset CFT. To leading

order in the 1/k-expansion there are no higher in λ-corrections since COOO vanishes

due to the fact that the coset CFT corresponds to a symmetric space.

2.1 The Euclidean case

Let us now dynamically promote the above model by adding an extra spacelike coor-

dinate contributing to the Lagrangian the term k/π ∂+t∂−t and moreover allowing the

constant λ to depend on t. In addition, we add to the scalar (2.2) the term Φ0(t) and

consider the entire Φ as the dilaton of the resulting σ-model. Then by imposing the

one-loop beta-function equations for the metric (1.2) we find the following differential
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equations for λ(t) and h(t) = Φ̇0(t)

λ̈ = −4λ + 2λ̇

(
h− λλ̇

1− λ2

)
, ḣ =

λ̇2

(1− λ2)2 . (2.5)

In addition, the dilaton beta-function (1.3) yields the constant

− 1
k

(
2h2 − ḣ

)
+

2
k

1 + λ2

1− λ2 = w , (2.6)

which is nothing but a first integral of (2.5). This system, as well as the corresponding

action, is invariant under t → −t and in addition, they are invariant under the two

symmetries

I: λ→ λ−1 , k→ −k , t→ it ,

II: λ→ −λ , α→ α± π

2
.

(2.7)

This is the analogue of the symmetries of the action (2.1) and of the beta-function (2.3)

found in [17, 20].

Note that (2.5) has the trivial solution with λ(t) = 0 , h(t) = constant, corresponding

to the SU(2)k/U(1)×RQ CFT. It is instructive to see how at the linear level, for small λ,

the perturbation stays marginal. In the integrable case in which λ is constant the CFT

perturbation is bilinear in the compact parafermions of the coset theory and has di-

mension equal to ∆O = 2(1− 1/k), i.e. a relevant operator. This operator is multiplied

by λ which does not of course affect this. However, in the dynamical case λ(t) acquires

a dimension itself. Indeed, the first of (2.5) can be easily seen to be approximated as

t → −∞ by the equation corresponding to a harmonic oscillator with friction. It is

solved approximately by (recall that h = Φ̇0)

λ(t) ' c ea−t , Φ0(t) ' hit , a− = hi −
√

h2
i − 4 > 0 , (2.8)

where c and hi are integration constants and the corrections are O
(
e2a−t). Reality of

the dilaton and demanding a weak string coupling, i.e. eΦ(t) � 1, as t → −∞, gives

the condition hi > 2. We may also obtain an approximate solution for 0 < hi < 2

λ(t) ' c ehit sin
[√

4− h2
i (t− t0)

]
, Φ0(t) ' hit , (2.9)

again with correction of O
(
e2hit

)
. For the critical value of the "friction" coefficient
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hi = 2 the solution is

λ(t) ' e2t (c + c̃ t) , Φ0(t) ' 2t , (2.10)

with O
(
e4t) corrections.

To read the scaling dimension of λ(t) we first pass to Euclidean signature

τ → −iτ , σ+ → −iz , σ− → −iz̄ , ∂+ → i∂ , ∂− → i∂̄ , d2z = dτ dσ , (2.11)

where z = τ + iσ, z̄ = τ − iσ, with the action in the path integral appearing as e−S.

The scaling dimension of λ(t) can be read throughout the general formulae for an

exponential operator. Indeed for the linear dilaton theory (flat worldsheet)

S`.d. =
s

πα′

ˆ
d2z ∂X∂̄X , Φ0 = QX , (2.12)

where s = ±1, parameterizing a spacelike or a timelike boson X, respectively, we have

the energy–momentum tensor

Tzz = −
s
α′
(∂X)2 + Q ∂2X , Tzz̄ = −Q ∂∂̄X , (2.13)

with central charge given by c`.d. = 1 + 6sα′Q2. Then, for an exponential operator we

have that

V∆,∆̄ =: eaX : , ∆ = ∆̄ =
saα′

2

(
Q− a

2

)
, (2.14)

where ∆ and ∆̄ are the holomorphic and the antiholomorphic dimensions, respec-

tively. In the case at hand, we have a background charge dilaton.

Next we read off various parameters either from (2.8), (2.9) or from (2.10) depending

on whether or not the positive constant hi is larger, smaller or equal to 2. We will give

the expressions corresponding to the first case. The results for the others are identical.

We obtain that

X = t , a = a− , s = 1 , α′ =
1
k

, Q = hi . (2.15)

Hence, the holomorphic and antiholomorphic dimensions (∆, ∆̄) equal to 1/k. When

these dimensions and the scaling dimension of the parafermion bilinear ∆O = 2 (1− 1/k)

are added up we find the scaling dimension of a marginal operator. Hence, at t→ −∞

we find the SU(2)k/U(1) ×RQ CFT. This property is supported by the Weyl anomaly
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constant coefficient (1.4) for the case at hand (2.6). Using (2.8) equals to

computed as t→ −∞ : W = 3− 3w = 3− 6
k
+

6h2
i

k
= c2d + c`.d. , (2.16)

where we have decomposed the latter expression in the two contributions, namely

that of the coset CFT SU(2)k/U(1)

c2d =
3k

k + 2
− 1 = 2− 6

k
+O

(
1
k2

)
(2.17)

and that of the linear dilaton CFT at charge hi. Note that, preserving conformal invari-

ance at linear order does not warrant its preservation to all orders, that is consistency

conditions of the form (2.5) are not always possible to be obtained. In that sense, this

as well as the rest of the examples presented in the present paper are quite intriguing.

An interesting question is what happens as time progresses starting from the re-

mote past. We expect that the model will approach the strong coupling regime in

which λ(t) approaches unit. This is analogous to the behaviour of the model with

constant λ under RG flow which in the IR reaches λ = 1, which is the strong coupling

region. Letting λ(t) = 1− α(t) we find that for small α(t) the system (2.5) becomes

α̈ ' 2(2 + hα̇) +
α̇2

α
, ḣ ' α̇2

4α2 . (2.18)

In addition the dilaton equation gives that

ḣ− 2h2 +
2
α
' kw . (2.19)

We may easily verify that for small t we have the approximate solution

t→ 0− : α ' 2t2 , Φ0 ' − ln(−t) , (2.20)

which corresponds to the constant w = 0 in (2.6). Since the latter is the same as that

in (2.17) we find that the constant appearing in the approximate solution valid in the

remote past hi = 1. Hence, the string coupling behaves as eΦ(t) ∼ −1/t, as t → 0−

(obviously, this value for t can be shifted at will) and the model reaches the strong

coupling region. In that regime one may resort to the non-Abelian T-dual limit, in

which λ(t)→ 1 and the overall level coefficient k→ ∞ in a correlated manner, so that

the model still makes sense. The limiting procedure here is identical to the constant

7



λ case [7], it can easily be performed and therefore will not repeat it here. We have

numerically checked that the λ(t) → 1− limit is reached monotonically from the far

past at t→ −∞ towards t = 0.

2.2 The Lorentzian case

In this case we add to the Lagrangian density (1.1) the term −k/π ∂+t∂−t. Hence, our

results should be obtained from the above Euclidean case by the analytic continuation

t → it (under this h → −ih). Then from (2.5) and (2.6) we obtain the system of

equations given by

λ̈ = 4λ + 2λ̇

(
h− λλ̇

1− λ2

)
, ḣ =

λ̇2

(1− λ2)2 . (2.21)

As before, this has the trivial solution λ(t) = h(t) = 0, corresponding to the SU(2)k/U(1)

coset CFT and the free scalar t at zero background charge. In addition, the dilaton

beta-function requires that (1.3) is a constant. Explicitly,

1
k

(
2h2 − ḣ

)
+

2
k

1 + λ2

1− λ2 = w . (2.22)

Similarly, to the Euclidean case we can solve (2.21) approximately as t→ −∞

λ(t) ' c ea+t , Φ0(t) ' hit , a+ = hi +
√

h2
i + 4 > 0 , (2.23)

where c and hi > 0 are integration constants and corrections of O(ea+t). Hence, the

model is at the weak coupling regime, i.e. eΦ(t) � 1. In addition, following the

analysis of the Euclidean case the holomorphic and anti-holomorphic dimension of

the solution λ(t) can be read using (2.11), (2.12) and (2.14), where in the case at hand

X = t , a = a+ , s = −1 , α′ =
1
k

, Q = hi , (2.24)

leading to holomorphic and antiholomorphic dimensions (∆, ∆̄) equal to 1/k. When

these are added up they precisely provide the central charge deficit 2/k and the per-

turbation is a marginal one. Hence, at t→ −∞ we find the SU(2)k/U(1)×RQ CFT. This

is in accordance with the Weyl anomaly coefficient (1.4) for the case at hand (2.22).
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Using (2.23) this equals to

computed as t→ −∞ : W = 3− 3w = 3− 6
k
−

6h2
i

k
= c2d + c`.d. . (2.25)

Finally, we comment that contrary to the Euclidean case the system (2.21) does not

admit solutions reaching λ→ 1− as t→ 0−.

3 Scale invariant deformation of SL(2,R)−k/SO(2)

In [13] a scale, albeit not Weyl invariant, deformation of the SL(2,R)−k/SO(2) coset CFT

was constructed. The corresponding action is given by

S =
k
π

ˆ
d2σ

{
∂+ρ ∂−ρ− coth2 ρ ∂+τ ∂−τ

+λ e2τ (∂+ρ + coth ρ∂+τ)(∂−ρ + coth ρ∂−τ)
}

.
(3.1)

This model is scale invariant since it has a vanishing β-function [13]. However, it is

not Weyl invariant since the required diffeomorphism (field redefinition) cannot be ex-

pressed in terms of a dilaton [21]. Equivalently, the corresponding energy-momentum

tensor has non-vanishing trace. Indeed, for a metric background and a flat worldsheet

the trace of the energy-momentum tensor is given by [4]

T+− =
1
2k

βgµν ∂+Xµ∂−Xν , βgµν = Rµν + 2∇µ∂νΦ . (3.2)

In our case the dilaton scalar is

Φ = − ln sinh ρ , (3.3)

yielding for the σ-model at hand the expression

T+− =
λ

k
e2τ (∂+ρ + coth ρ∂+τ)(∂−ρ + coth ρ∂−τ) . (3.4)

Finally, we note that this model can be obtained by taking an appropriate limit [13] to

the λ-deformed σ-model corresponding to the non-compact coset SL(2,R)−k/SO(2).
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3.1 Restoring conformal invariance

We add the term k/π ∂+t∂−t to the above Lagrangian density and we allow λ to depend

on t. We also add to the scalar Φ (3.3) an additional term Φ0(t). By imposing the

one-loop beta-function equations for the metric (1.2) we find the following system of

differential equations for λ(t) and h(t) = Φ̇0(t)

λ̈ = 2hλ̇ + 4λ , ḣ = 0 (3.5)

and the dilaton beta-function (1.3) yields the constant

− 2
k

(
1 + h2

)
= w . (3.6)

The above system is easily solved by

h(t) = hi , Φ0(t) = hit ,

λ(t) = c+ea+t + c−ea−t , a± = hi ±
√

h2
i + 4 ,

(3.7)

where c± and hi are integration constants. Without loss of generality we take hi > 0.

The model necessarily has weakly and strongly coupled regions. Setting c− = 0,

the function λ(t) varies from zero as t → −∞, where the model is at weak coupling

eΦ(t) � 1, towards infinity as t→ ∞ where the model is at strong coupling eΦ(t) � 1.

Following the analysis of Subsection 2.1 the holomorphic and anti-holomorphic di-

mension of the solution λ(t) can be read using (2.11), (2.12) and (2.14), where in the

case at hand

X = t , a = a± , s = 1 , α′ =
1
k

, Q = hi , (3.8)

hence the holomorphic and antiholomorphic dimensions (∆, ∆̄) equal to −1/k. When

these are added up they provide the central charge deficit −2/k. In that respect, note

that the perturbation is driven by a bilinear of the non-compact parafermions [22]

whose holomorphic and anti-holomorphic dimensions are equal to 1 + 1/k adding up

to 2(1+ 1/k). Hence, the aforementioned central charge deficit makes the perturbation

a marginal one. In addition, we can also compute the central charge through the Weyl

anomaly coefficient (1.4) for the case at hand (3.6)

W = c2d + c`.d. , c2d = 2 +
6
k
+ · · · , c`.d. = 1 +

6h2
i

k
, (3.9)
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where we have decomposed the expression in two contributions, namely that of the

scale invariant model (3.1) (to leading order in 1/k) and that of the linear dilaton CFT

with background charge hi.

4 λ-deformed SU(2)k

Let us now consider the λ-deformed Gk, whose action was introduced in [7]

Sk,λ(g) = Sk(g) +
k
π

ˆ
d2σ [(1− λDT)−1λ]ab Ja

+ Jb
− , (4.1)

where the action of the WZW model at level k

Sk(g) = −
k

2π

ˆ
d2σ Tr(g−1∂+gg

−1∂−g) +
k

12π

ˆ
Tr (g−1dg)3 , (4.2)

as well as the (anti-)chiral currents

Ja
+ = −i Tr(ta∂+gg

−1) , Ja
− = −i Tr(tag

−1∂−g) , Dab = Tr
(

tagtbg
−1
)

, (4.3)

with [ta, tb] = i fabctc , Tr(tatb) = δab. In additon, the scalar Φ is given [23]

e−2Φ = det(1− λDT) , (4.4)

where we have ignored a constant proportionality factor. Note that we have given

an alternative expression for the dilaton and for the action compared to the original

literature to cover cases in which the matrix λ is not invertible as in the Subsection 4.2

below.

4.1 Isotropic deformation

Let us now specialize to the isotropic deformation λab = λδab for the SU(2) case

g = eiα naσa , na = {− sin β sin γ, sin β cos γ, cos β} , (4.5)
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where σa are the Pauli matrices. Inserting the above into (4.1) we find [7], in the nor-

malization of (1.1), the metric

ds2 = 2k
(

1 + λ

1− λ
dα2 +

1− λ2

∆(α)
sin2 α

(
dβ2 + sin2 βdγ2

))
,

∆(α) = (1− λ)2 cos2 α + (1 + λ)2 sin2 α

(4.6)

and the antisymmetric tensor

B = 2k
(
−α +

(1− λ)2

∆(α)
sin α cos α

)
sin β dβ ∧ dγ . (4.7)

The scalar Φ (4.4) equals to

Φ = −1
2

ln ∆(α) . (4.8)

The above σ-model is renormalizable at one-loop in the 1/k expansion and its RG flow

is given by [17, 18]
dλ

d ln µ2 = − cGλ2

2k(1 + λ)2 . (4.9)

where cG is the quadratic Casimir of the group. In the case at hand for SU(2) the prop-

erly normalized generators are ta = σa/
√

2 and cG = 4. The latter RG flow describes an

interpolation between λ = 0 in the UV towards the IR as λ→ 1− [17].

As before and concentrating on the Euclidean case, we add the term k/π ∂+t ∂−t to

the corresponding Lagrangian density (1.1), we let the constant λ to depend on t and

additionally we add to the scalar Φ (4.8) the term Φ0(t). The one-loop equations for

the metric and the antisymmetric tensor give the following system equations for λ(t)

and h(t) = Φ̇0(t)

λ̈ = − 8λ2

(1 + λ)2 + λ̇

(
2h− λ̇

1− λ2

)
,

ḣ =

(
hλ̇− 4λ2

(1 + λ)2

)
1− 2λ

1− λ2 + λλ̇2 2− λ

(1− λ2)2 .

(4.10)

In addition, the dilaton beta-function (1.3) yields the constant

2
k

(
ḣ− h2

)
+

λ̇2

k
1− 2λ

(1− λ2)2 +
2
k

1 + 2λ + 4λ2 − 6λ3 + λ4

(1− λ)(1 + λ)3 = w . (4.11)

The system (4.10) has as a trivial solution λ(t) = 0 , h(t) = constant, corresponding to
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the SU(2)k ×RQ CFT. Near that point the approximate solution valid for t→ −∞ is

λ(t) ' c e2hit , Φ0(t) ' hit , (4.12)

where c, hi are integration constants and the correction are as before exponential. Hence

the model is at the weak coupling regime, i.e. eΦ(t) � 1. Following the analysis of

Subsection 2.1, the holomorphic and anti-holomorphic dimension of the solution λ(t)

can be found through (2.14) where

X = t , a = 2hi , s = 1 , α′ =
1
k

, Q = hi , (4.13)

yielding ∆ = ∆̄ = 0. Hence, the deformation around λ = 0 is indeed a marginal

one. Hence, at t → −∞ we find the SU(2)k CFT times a linear dilaton background at

charge hi. Finally, inserting the latter into the Weyl anomaly constant coefficient (1.4)

for the case at hand (4.11) we find that

computed as t→ −∞ : W = 4− 3w = 3− 6
k
+ 1 +

6h2
i

k
= c3d + c`.d. , (4.14)

corresponding to the central charge of the CFT SU(2)k

c3d =
3k

k + 2
= 3− 6

k
+O

(
1
k2

)
, (4.15)

plus central charge the linear dilaton background at charge hi respectively

c`.d. = 1 +
6h2

i
k

. (4.16)

As in the renormalization group flow (2.3), the parameter λ interpolates between λ =

0 as t → −∞ towards λ → 1−. To show the latter we expand the system (2.5) and the

dilaton beta-function (2.6) as λ(t) = 1− α(t) with α(t)� 1. We obtain that

α̈ ' 2(2 + α̇h) +
α̇2

α
, ḣ ' α̇2

4α2 (4.17)

and
α̇2

4α2 − 2h2 +
2
α
' kw . (4.18)

We can solve the system (4.17) approximately as t→ 0− by

α ' 2t2 , Φ0 ' − ln(−t) , (4.19)
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which corresponds to the constant w = 0. Since eΦ(t) � 1, the model becomes strongly

coupled. Since, the dilaton beta-function is independent of t using (4.14) for w = 0 we

find that hi = 1.

4.2 Marginal deformation

Next we specialize to the deformation corresponding the diagonal matrix λab = diag(0, 0, λ3)

for the SU(2) case. This deformation is a marginal one and the background is confor-

mal. We still consider this case so that we recover some known results in the literature.

Parameterize the group element as

g = ei/2(φ+θ)σ3ei(π/2−ω)σ2ei/2(φ−θ)σ3 (4.20)

and inserting the above into (4.1) we find in the normalization of (1.1) the metric and

the antisymmetric tensor

ds2 = 2k

(
dω2 +

(1− λ3) cos2 ωdθ2 + (1 + λ3) sin2 ωdφ2

1 + λ3 cos 2ω

)
,

B = k
λ3 + cos 2ω

1 + λ3 cos 2ω
dθ ∧ dφ ,

(4.21)

whereas the scalar is

Φ = −1
2

ln(1 + λ3 cos 2ω) . (4.22)

This is a string background at one-loop in the 1/k-expansion at it can be checked using

(1.2), corresponding to the SU(2)k×U(1)/U(1) gauged WZW model [24, 25]. In addition,

the deformation parameter λ3 can be turned-on through an O(2, 2) transformation [26]

on the exact SU(2)k string background.

Next, we dynamically promote the aforementioned string background by including

the term k/π ∂+t ∂−t to the corresponding Lagrangian density (1.1) and taking λ3 to be

a function of t, adding to the dilaton Φ (4.22) the term Φ0(t) and demanding confor-

mality at one-loop (1.2) [11, 12] (see also [27] for earlier considerations)

λ̈3 = λ̇3

(
2h− λ3λ̇3

1− λ2
3

)
, ḣ = − λ3λ̇3h

1− λ2
3

, (4.23)
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where h(t) = Φ̇0(t) and the dilaton beta-function (1.3) yields the constant

− 2h2

k
+

2
k
+

λ̇3(λ̇3 − 4λ3h)
2k(1− λ2

3)
= w . (4.24)

The latter system of differential equations can be easily solved in general and has as

a trivial solution λ3(t) = constant and Φ0(t) = Q t, hence it corresponds to the exact

string background SU(2)k×U(1)/U(1)×RQ.

In its Lorentzian version t → it, it was shown in [12] that the corresponding string

background can be mapped the Nappi–Witten exact CFT SU(2)k×SL(2,R)−k
U(1)×U(1) [14]. For

completeness we present the mapping in our parameterization. In particular Eqs.(14)-

(17) in [14] with (ψ, s, λ, ρ; kthere, α) to the dynamical model (1.1), (4.21), (4.22) with

(t, ω, θ, φ; k, λ3(t)), where

ψ = t , s =
π

2
−ω , ρ = φ , λ = θ , kthere = 2k , (4.25)

where λ3(t) and the dilaton Φ0(t) are given by

λ3(t) =
sin α + cos 2ψ

1 + sin α cos 2ψ
, Φ0(t) = −

1
2

ln(1 + sin α cos 2ψ) . (4.26)

As a consistency check we have verified that the equations of motion (4.23) (they

remain unaltered in the Lorentzian version) are satisfied from the above solution

λ3(t), Φ0(t) and that the dilaton beta-function, taking t→ it in (4.24), vanishes

2h2

k
+

2
k
− λ̇3(λ̇3 − 4λ3h)

2k(1− λ2
3)

= 0 , (4.27)

which was expected since the dilaton beta-function plays the rôle of the central charge

at one-loop in the 1/k-expansion through (1.4).

5 The λ-deformed Gk1 × Gk2

One may wonder if the promotion of the deformation parameters to functions of time

is consistent with conformal invariance for a general deformation matrix λab. In fact

it is conceivable that these matrices may obey certain necessary conditions for con-

formal invariance to be restored. Since we are dealing with second order equations

it is rather hard to provide an answer for the λ-deformed action (4.1). However, we
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have managed to do so for the λ-deformed action [15] which provides, for particular

choices of the deformation matrix, new classes of integrable models, closely related,

but distinct to those in [15]. The action is given by

S = Sk1(g1) + Sk2(g2) +
k
π

λab

ˆ
d2σ Ja

1+ Jb
2− , (5.1)

where k =
√

k1k2, gi are group elements of a semi-simple Lie group G and Ski(gi) are

the corresponding WZW actions at level ki (4.2). In addition

Ja
i+ = −i Tr(ta∂+gig

−1
i ) , Ja

i− = −i Tr(tag
−1
i ∂−gi) , [ta, tb] = i fabctc , Tr(tatb) = δab ,

with a = 1, . . . , dG and the scalar Φ is a constant. In the isotropic case λab = λδab, the

above σ-model is renormalizable at one-loop in the cG/k expansion and its RG flow is

given by [15]

dλ

d ln µ2 = − cG

2k
λ2(λ− λ0)(λ− λ−1

0 )

(1− λ2)2 , λ0 =

√
k1

k2
. (5.2)

The above system of RG flows has apparently three fixed points namely: λ = (0, λ0, λ−1
0 ).

Assuming that k2 > k1 or λ0 < 1 it was shown in [15] that the action (5.1) interpolates

between the UV fixed point Gk1 × Gk2 at λ = 0 and the IR fixed point Gk2−k1 × Gk1 at

λ = λ0. Expanding the above β-function around the aforementioned fixed points we

can read through (2.4) the classical scaling dimension of the driving operator around

each fixed point [28, 29]

UV: ∆O = 2 , IR: ∆O = 2 +
cG

k
λ0

1− λ2
0

. (5.3)

We emphasize that the model is renormalizable for a generic λab at one-loop in the 1/k

expansion and its RG flow is given by [30]

dλab
d ln µ2 =

1
2k
Nac

dNbd
(T)c , (5.4)

where we use the definitions

Nab
c ≡ Nab

c(λ, λ−1
0 ) =

(
λadλbe fde f − λ−1

0 λe f fabe

)
g f c , Nab

(T)c = Nab
c(λT, λ0)

(5.5)
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with gab = g−1
ab with g = I− λTλ and g̃ = I− λλT. The above RG fixed points persist

even for non-isotropic deformations with general λab.

5.1 Isotropic and marginal deformation

After adding the term k
2π ∂+t ∂−t to the corresponding Lagrangian density (1.1) for

λab = λδab, we let the constant λ to depend on t. As before we add to the constant

scalar Φ the term Φ0(t).

5.1.1 Isotropic deformation

Then, by imposing the one-loop equations (1.2) after specializing to the SU(2) case we

find the equations for λ(t) and h(t) = Φ̇0(t)

λ̈ = 2hλ̇−
4λ2(λ− λ0)(λ− λ−1

0 )

(1− λ2)2 +
λλ̇2

1− λ2 ,

ḣ =
6λ3(λ− λ0)(λ− λ−1

0 )

(1− λ2)3 − 3λ2λ̇2

(1− λ2)2 −
3λλ̇h
1− λ2 ,

(5.6)

where the latter system, as well as the corresponding action, is invariant under t →
−t. In addition, (5.6) has two trivial solutions, namely λ(t) = 0 and λ(t) = λ0 with

h(t) = constant corresponding to the CFTs SU(2)k1 × SU(2)k2 ×RQ and SU(2)k1 ×
SU(2)k2−k1 ×RQ, respectively. In addition, the dilaton beta-function (1.3) gives the

constant

− 4h2

k
+

2(λ0 + λ−1
0 )(1− 3λ2) + 8λ3

k(1− λ2)3 +
3(1− 3λ2)λ̇2

k(1− λ2)2 −
12λλ̇h

k(1− λ2)
= w , (5.7)

from which we compute the central charge using the Weyl anomaly coefficient (1.4).

To further analyze the system (5.6), for the SU(2) case, we consider with no loss of

generality that k2 > k1. Around t→ −∞ it has an approximate solution

λ(t) = c e2hit , Φ0(t) = hit +O
(

e4hit
)

, (5.8)

where c and hi > 0 are integration constants and where we have integrated for the

dilaton field. Hence, the model is at weak coupling regime, i.e. eΦ(t) � 1. Following

the analysis of Subsection 2.1, the holomorphic and anti-holomorphic dimensions of
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the solution λ(t) can be found through (2.14) with

X = t , a = 2hi , s = 1 , α′ =
2
k

, Q = hi , (5.9)

yielding ∆ = ∆̄ = 0. Hence, the deformation around λ = 0 is indeed a marginal

one. Hence, at t → −∞ we find the SU(2)k1 × SU(2)k2 CFT times a free scalar at

background at charge hi. This is consistent with the Weyl anomaly coefficient (1.4) for

the case at hand (5.7). Since W is time independent we may compute it at any moment,

in particular in the remote past for t→ −∞ using (5.8). This leads to

computed as t→ −∞ : W = 7− 6
k

(
λ0 + λ−1

0

)
+

12h2
i

k
. (5.10)

This corresponds to the central charge of the SU(2)k1 × SU(2)k2 CFT

c(i)6d =
3k1

k1 + 2
+

3k2

k2 + 2
= 6− 6

k1
− 6

k2
+O

(
1

k2
1,2

)
, (5.11)

plus the central charge of a free scalar t at a background charge hi

c(i)`.d. = 1 + 6sα′Q2 = 1 +
12h2

i
k

. (5.12)

Unlike the models we have considered in previous sections in this case we may de-

mand that in the remote infinity the solution reaches the IR fixed point at λ = λ0, i.e.

λ(t)
∣∣
t→+∞ = λ0. Expanding (5.6) around λ0 we find the approximate solution

λ(t) = λ0 + c̃ ea−t , h(t) = h f +O
(
ea−t) , a− = h f −

√
h2

f +
4λ0

1− λ2
0
< 0 , (5.13)

where h f , c̃ are integration constants. Integrating for the dilaton we find

λ(t) = λ0 + c̃ ea−t , Φ0(t) = h f t +O
(
ea−t) , (5.14)

where h f < 0 for validity of the solution, i.e. weak coupling regime eΦ(t) � 1. As

before, the holomorphic and anti-holomorphic dimension of the solution λ(t) can be

found through (2.14) where

X = t , a = a− , s = 1 , α′ =
2
k

, Q = h f , (5.15)
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leading to ∆ = ∆̄ = − 2λ0
k(1−λ2

0)
. When these are added up they precisely provide the

central charge deficit and the perturbation is a marginal one. Hence, at t → +∞ we

find the WZW for SU(2)k2−k1 × SU(2)k1 CFT times a linear dilaton background at

charge h f . Then the Weyl anomaly coefficient (1.4) which for the case at hand is (5.7)

can be computed in the remote future at t→ +∞ using (5.13). This leads to

computed as t→ +∞ : W = 7− 6
k

1
λ0(1− λ2

0)
+

12h2
f

k
, (5.16)

which corresponding to the central charge of the SU(2)k1 × SU(2)k2−k1 CFT

c( f )
6d =

3k1

k1 + 2
+

3(k2 − k1)

k2 − k1 + 2
= 6− 6

k1
− 6

k2 − k1
+O

(
1

k2
1,2

)
, (5.17)

plus the central charge of a free scalar t at a background charge h f

c( f )
`.d. = 1 +

12h2
f

k
. (5.18)

The background charges hi and h f are related as the Weyl anomaly coefficient is inde-

pendent of t. Equating the two expressions (5.10) and (5.16) we find that

h2
f − h2

i =
λ3

0

2(1− λ2
0)

> 0 . (5.19)

In conclusion, the system (5.6) interpolates between λ = 0 and λ = λ0 corresponding

to the CFTs SU(2)k1 × SU(2)k2 and SU(2)k1 × SU(2)k2−k1 times the free scalar t at

background charge hi and h f respectively – see Figure 1.

t→ −∞ : SU(2)k1 × SU(2)k2 × Rhi

t→ +∞ : SU(2)k1 × SU(2)k2−k1 × Rh f

Figure 1: CFT interpolation associated to (5.6). Numerical investigations showed that
λ(t) is monotonic.

5.1.2 Marginal deformation

In this Subsection we perturb the SU(2)k WZW along the marginal deformation λab =

diag(0, 0, λ3). We note that in the static case the parameter λ3 can be absorbed by an
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appropriate O(4, 4) duality transformation on the exact string background SU(2)k1 ×
SU(2)k2 [30]. Dynamically promoting λ3 to depend on t by adding k

2π ∂+t ∂−t to the

corresponding Lagrangian density (1.1) and to the constant dilaton Φ the term Φ0(t).

By imposing the corresponding one-loop equations (1.2) for λ3(t) and h(t) = Φ̇0(t),

which are given by (4.23) and the dilaton beta-function (1.3) yields the constant

− 4h2

k
+

2
k
(λ0 + λ−1

0 ) +
λ̇3(λ̇3 − 4λ3h)

k(1− λ2
3)

= w . (5.20)

The corresponding σ-model for |λ3| < 1 possesses no singularities and has a Eu-

clidean signature. The system (4.23) has as a trivial solution λ3(t) = constant and

Φ0(t) = Q t, hence it corresponds to the exact CFT SU(2)k1 × SU(2)k2 ×RQ. Non-

trivial time-dependent solutions can be easily found, in particular those exhibited in

Subsection 4.2 (for the Lorentzian case), i.e. in eq. (4.26), whose central charge can be

read through (5.20) and (1.4), yielding

W = 7− 6(1 + λ0)
2

kλ0
= 7− 6

(
1
k1

+
1
k2

+
2√
k1k2

)
, (5.21)

corresponding to a seven-dimensional Euclidean CFT. It will be interesting to see if

this CFT can be identified as it was done for the four-dimensional example studied in

Subsection 4.2.

5.2 Generic deformation

We would like to generalize the previous analysis for a general deformation matrix

λab(t) as well as a time dependent dilaton background Φ0(t). The aim of this section

is to determine under which conditions the full time dependent model has conformal

symmetry. We use the one-loop equations (1.2) of the considered σ-model. Following

the analysis of the Appendix A.2 we find that λab(t) and h = Φ̇0(t) should obey

the differential equations (A.23) and (A.24) which are restated here for the reader’s

convenience

λ̈ab = λ̇abTr(λ̇g−1λT)− 2(λ̇g−1λTλ̇)ab +Nac
dNbd

(T)c + 2λ̇abh , (5.22)

where the Nab
c’s are defined in (5.5) and also

2ḣ + Tr(λ̈g−1λT) + Tr(λ̇g−1λTλ̇g−1λT) = 0 . (5.23)
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These are accompanied by constraints on λab, given in Eq.(A.25) (also reproduced

here)

fabc (g−1λTλ̇g−1)bc = 0 , fabc (g̃−1λλ̇T g̃−1)bc = 0 . (5.24)

While (5.22), (5.23) describe the dynamical evolution of λab and h, the conditions (5.24)

make sure that the whole construction is consistent with the one-loop conformality. In

addition, the dilaton β-function (1.3) is given by (A.31)

w =
λ0

6k

(
Iabc Ipqr g̃ap g̃bq g̃cr + 3Nab

cNpq
r g̃ap g̃bqg2

cr + cGdG

)
− 4h2

k

+
1
k

Tr(λ̇g−1λ̇T g̃−1)− 1
k

(
Tr(λ̇g−1λT)

)2
− 1

k
Nac

dNbd
(T)c(g−1λT)ab

− 4
k

Tr(λ̇g−1λT)h ,

(5.25)

where the Iabc’s are given by (A.28), also presented here for reader’s convenience

Iabc = λ−1
0 fabd g̃cd +Nbc

d(g−1λT)da +Nca
d(g−1λT)db . (5.26)

We would like to comment on possible consistent truncations of the general matrix

λab, in which some of its elements are set to zero. Conceptually, this is similar to

truncations of the RG equations (5.4) whose existence is non-trivial. On one hand a

consistent truncation in the system of RG flow equations is not necessarily a consistent

one for the second order system (5.22), due to the second term in its right hand side.

On the other hand, in the system of RG flows (5.4) we can also incorporate generic

diffeomorphisms ζa’s for consistency. These slightly modify (5.4) to [31]

dλab
d ln µ2 =

1
2k
Nac

d
(
Nbd

(T)c + gbdζc
)

. (5.27)

However, we do not have this freedom in the dynamical (conformal) case, since these

field redefinitions are not consistent with (1.2) for our dilaton ansatz Φ0(t).

6 The λ-deformed SU(2)k1
×SU(2)k2/SU(2)k1+k2

In this Section we dynamically promote the deformation parameter in an integrable

model based on a coset CFT more complicated than that in Section 2. Our starting

point will be the λ-deformed SU(2)k1
×SU(2)k2/SU(2)k1+k2

[23], whose integrability was

shown in [16]. The action is given by (1.1), where the metric and the field Φ are given
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by

ds2 =
2(k1 + k2)

(1− λ)Λ

(
Ωααdα2 + Ωββdβ2 + Ωγγdγ2

+ 2Ωαβdαdβ + 2Ωβγdβdγ + 2Ωαγdαdγ
)

,

e−2Φ = Λ , Λ = (1− α2)(1− β2)− γ2 ,

(6.1)

with

Ωαα = (1 + λ−2
0 )−2Z−1

(
Z2 −

(
Z2 − (1− λ)2(1 + λ2

0)
2
)

β2
)

,

Ωββ = (1 + λ2
0)
−2Z−1

(
Z2 −

(
Z2 − (1− λ)2(1 + λ−2

0 )2
)

α2
)

,

Ωγγ = (1− λ)2Z−1 ,

Ωαβ = (1− λ)2Z−1αβ + (λ0 + λ−1
0 )−2Zγ ,

Ωβγ = −λ−2
0 (1− λ)2Z−1α , Ωαγ = −λ2

0(1− λ)2Z−1β

(6.2)

and

λ0 =

√
k1

k2
, Z = 8λ + (1− λ)(λ0 + λ−1

0 )2 .

The above σ-model is renormalizable at one-loop in the 1/k expansion and its RG flow

is given by [16]

dλ

d ln µ2 = −
cGλ(1− λ−1

1 λ)(1− λ−1
2 λ)(1− λ−1

3 λ)

2(k1 + k2)(1− λ−1
f λ)2

, (6.3)

where

λ1 =
1

s2 − 3s1
, λ2 =

1
s1 − 3s2

, λ3 =
1

(s1 − s2)2 , λ f =
1

1− 8s1s2
(6.4)

and

s1 =
λ2

0

1 + λ2
0

, s2 =
1

1 + λ2
0

. (6.5)

The above RG flow equation has apparently four fixed points at λ(t) = (0, λ1, λ2, λ3).

Assuming that k1 > k2 or λ0 > 1 it was shown in [16] that the action (6.1) inter-

polates between the UV fixed point Gk1
×Gk2/Gk1+k2

at λ = 0 and the IR fixed point
Gk1−k2

×Gk2/Gk1
at λ = λ1. Expanding the above β-function around the aforementioned

fixed points we can read through (2.4) the classical scaling dimension of the driving
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operator around each fixed point

UV : ∆O = 2− 4
k1 + k2

, IR : ∆O = 2 +
4

k1 − k2
. (6.6)

6.1 Restoring conformal invariance

Adding k1+k2
π ∂+t ∂−t to the corresponding Lagrangian density (1.1), we let the con-

stant λ to depend on t and also add to the dilaton the term Φ0(t). Imposing the one-

loop equations (1.2) we find the equations for λ(t) and h(t) = Φ̇0(t)

λ̈ = 2hλ̇−
8λ(1− λ−1

1 λ)(1− λ−1
2 λ)(1− λ−1

3 λ)

(1− λ−1
f λ)2

− 2λ̇2
(s1 − s2)

2 − λ−1
f λ

(1− λ)(1− λ−1
f λ)

,

ḣ =
24s2

1s2
2λ̇2

(1− λ)2(1− λ−1
f λ)2

.

(6.7)

These admit trivial solutions λ(t) = (0, λ1, λ2, λ3) and h(t) = constant. In addition,

the dilaton beta-function (1.3) yields a constant albeit rather lengthy expression which

we will not present here.

To further analyze the system (6.7) we consider k1 > k2 or λ0 > 1. Around t → −∞

the system is solved approximately by

λ(t) = c ea−t , h(t) = hi +O
(

e2a−t
)

, a− = hi −
√

h2
i − 8 > 0 , hi > 2

√
2 (6.8)

and integrating with respect to the dilaton we find that

λ(t) = c ea−t , Φ0(t) = hit +O
(

e2a−t
)

. (6.9)

showing that we are in the weak coupling regime, i.e. eΦ(t) � 1. The holomorphic and

anti-holomorphic dimension of the solution λ(t) can be found through (2.14) where

X = t , a = a− , s = 1 , α′ =
1

k1 + k2
, Q = hi , (6.10)

leading to ∆ = ∆̄ = 2
k1+k2

. Adding them up they precisely provide the central charge

deficit and the perturbation is a marginal one. Hence, at t → −∞ we find the coset

CFT SU(2)k1
×SU(2)k2/SU(2)k1+k2

times the free scalar t at background charge hi. The Weyl
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anomaly constant coefficient computed as t→ −∞ gives

computed as t→ −∞ : W = 4− 6
k1
− 6

k2
+

6
k1 + k2

+
6h2

i
k1 + k2

, (6.11)

corresponding to the central charge of the coset CFT SU(2)k1
×SU(2)k2/SU(2)k1+k2

c(i)3d =
3k1

k1 + 2
+

3k2

k2 + 2
− 3(k1 + k2)

k1 + k2 + 2
= 3− 6

k1
− 6

k2
+

6
k1 + k2

+O
(

1
k2

1,2

)
(6.12)

and the central charge of a free scalar t at a background charge hi

c(i)`.d. = 1 +
6h2

i
k1 + k2

. (6.13)

Around t→ +∞ the system is solved approximately by

λ(t) = λ1 + c̃ eã−t , Φ0(t) = h f t +O
(

e2ã−t
)

,

ã− = h f −

√
h2

f + 8
λ2

0 + 1
λ2

0 − 1
< 0 ,

(6.14)

where we have integrated with respect to the dilaton and where h f < 0 for validity of

the solution, i.e. weak coupling regime eΦ(t) � 1. Following the analysis of Subsec-

tion 2.1, the holomorphic and anti-holomorphic dimension of the solution λ(t) can be

found through (2.14) where

X = t , a = ã− , s = 1 , α′ =
1

k1 + k2
, Q = h f , (6.15)

leading to ∆ = ∆̄ = − 2
k1−k2

whose sum precisely provides the central charge deficit for

the perturbation to be marginal. Hence, at t→ +∞ we find the coset CFT SU(2)k1−k2
×SU(2)k2/SU(2)k1

times the free scalar t at background charge h f . The Weyl anomaly coefficient which

as t→ +∞ gives

computed as t→ +∞ : W = 4− 6
k1 − k2

− 6
k2

+
6
k1

+
6h2

f

k1 + k2
, (6.16)

corresponding to the central charge of the coset CFT SU(2)k1−k2
×SU(2)k2/SU(2)k1

c( f )
3d =

3(k1 − k2)

k1 − k2 + 2
+

3k2

k2 + 2
− 3k1

k1 + 2
= 3− 6

k1 − k2
− 6

k2
+

6
k1

+O
(

1
k2

1,2

)
(6.17)
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and the central charge of a free scalar t at a background charge h f

c( f )
`.d. = 1 +

6h2
f

k1 + k2
. (6.18)

In addition, the background charges hi and h f are related since the Weyl anomaly

coefficient is independent of t. In particular, from (6.11) and (6.16) we find that

h2
f − h2

i =
2

λ2
0(λ

2
0 − 1)

> 0 . (6.19)

In conclusion, the system (6.7) interpolates between λ = 0 and λ = λ1 corresponding

to the CFTs SU(2)k1
×SU(2)k2/SU(2)k1+k2

and SU(2)k1−k2
×SU(2)k2/SU(2)k1

times the free scalar t

at background charge hi and h f respectively – see Figure 2.

t→ −∞ : SU(2)k1
×SU(2)k2/SU(2)k1+k2

× Rhi

t→ +∞ : SU(2)k1−k2
×SU(2)k2/SU(2)k1

× Rh f

Figure 2: CFT interpolations associated to the system (5.6).

7 The η-deformed SU(2) model

It is important to investigate whether or not the dynamical promotion of parameters

may lead to conformal models if the starting points are integrable models albeit not

the deformations of CFTs or coset CFTs, i.e. the λ-models. A natural playground

to investigate this question are the η-deformed PCMs, in particular the η-deformed

SU(2) σ-model [9]

S =
1

2πT

ˆ
d2σ

{
R1
+R1
− + R2

+R2
−

1 + η2 + R3
+R3
−

}
, (7.1)

where Ra
± = − i√

2
Tr(σa∂±gg−1) with σa’s the Pauli matrices, obeying the exterior

algebra dRa = − 1√
2
εabcRb ∧ Rc . The above σ-model is renormalizable at one-loop
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order in the T expansion and its RG flow is given by [32]3

dη

d ln µ2 = Tη(1 + η2)2 ,
dT

d ln µ2 = −T2(1 + η2)2 , η T = constant . (7.2)

7.1 Restoring conformal invariance

We add 1
2π ∂+t∂−t to the action (7.1) and let the parameters η and T to depend on t. In

addition, we introduce the scalar Φ conveniently parameterized as

Φ(t) = Φ0(t)−
1
4

ln
{

T3(1 + η)2
}

. (7.3)

Demanding that the one-loop equations for conformal invariance (1.2) are satisfied,

we find for the functions η(t) and h(t) = Φ̇0(t) the system of differential equations

η̈ = 2Tη(1 + η2)2 + η̇

(
2h− 1− η2

1 + η2
η̇

η

)
,

T̈ = −2T2(1 + η2)2 + Ṫ
(

2h +
Ṫ
T

)
,

ḣ =
3Ṫ2

8T2 +
ηη̇

1 + η2

(
Ṫ
T
+

ηη̇

1 + η2

)
.

(7.4)

In addition, the dilaton β-function (1.3), yields the constant

− 4h2 +
3Ṫ2

4T2 + T(3 + 2η2 − η4) +
2ηη̇

1 + η2

(
Ṫ
T
+

ηη̇

1 + η2

)
= w . (7.5)

Note that these equations admit a constant dilaton Φ (7.3) as a solution which would

correspond to a Ricci-flat background. Indeed, in this case, the first two equations

in (7.4) are consistent and the third one yields the constraint (7.5) with w = 0, cor-

responding to a vanishing Ricci scalar. In this case, the corresponding second order

equations admit a first-order formulation as differential equations, namely

η̇ = −
√

2T
η

(1 + η2)

(
c + η2 − c

√
1 + η2

)
, Ṫ = −

√
2T3/2

(
1− 2c− η2

)
, (7.6)

where the parameter c takes the values zero and one. For these two values, the above

system is nothing but the Lagrange and Darboux–Halphen system, respectively. In ad-

3These RG flow equations were also worked out in [33], leading however to the wrong sign in the
first of them and consequently to the wrong conclusion that the ratio η/T is constant under the RG flow,
instead of the product as stated above.
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dition, the corresponding background solution, which we will not present, describes

the Eguchi–Hanson and the Taub–NUT self-dual gravitational instantons [34, 35] en-

dowed with an R n SU(2) structure.

Finally, a comment is in order concerning the relation of the η-deformed SU(2) model

studied in the case at hand and the λ-deformed one studied in Section 4.1. As it is

known, these models are related up to a Poisson–Lie T-duality and analytic continua-

tion [36, 37, 32, 38, 39], namely

λ =
i− η

i + η
, k =

i
4ηT

. (7.7)

This map is not consistent with the dynamical equations (4.10) and (7.4). Specifically,

the product ηT is time dependent whereas k is not. Therefore, the Poisson-Lie duality

does not commute with the insertion of time-dependence.

8 Conclusions

In this present paper we studied the result of a modification of some important classes

integrable σ-models under which the various constant parameters become dynamical,

i.e. functions of time. The aim was to satisfy the conditions for conformal invariance

at one-loop order. This is a reasonable demand but whether or not it would be mate-

rialized was far from clear.

As a concrete realization, we first considered the λ-deformed models interpolating

between a (gauged) WZW and the non-Abelian T-dual of a PCM [7]. The dynam-

ically obtained model satisfies a system of non-linear second-order ordinary differ-

ential equations, whose trivial solutions are the fixed points of the RG flow of the

parental model. Specifically, we considered the two-dimensional λ-deformed coset

CFT SU(2)k/U(1) [7], interpolating from the coset CFT SU(2)k/U(1) at t → −∞ times a

linear dilaton background to a strong coupling regime in which λ(t)→ 1−, occurring

at a finite value for t.

We applied the above set-up to the scale-invariant deformation of the SL(2,R)−k/SO(2)

coset CFT [13] and to the λ-deformed SU(2)k [7]. In the latter case and for a dy-

namically promoted marginal deformation we obtained the Nappi–Witten expanding

universe SU(2)k×SL(2,R)−k
U(1)×U(1) [14], see also [11, 12] for earlier considerations. In addition,

we also considered the dynamical promotion of the Yang–Baxter deformed SU(2)
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PCM [9] to a conformal model. In this case and for a constant dilaton the system

of non-linear second-order ordinary differential equations admits a first-order sub-

sector corresponding to the Eguchi–Hanson and the Taub–NUT self-dual gravitational

instantons [34, 35] endowed with an R n SU(2) structure.

We extended the above results in the λ-deformed Gk1×Gk2 and SU(2)k1
×SU(2)k2/SU(2)k1+k2

,

which interpolate between exact (coset) CFTs [15, 16]. The corresponding dynamical

extension corresponds to a conformal model and it satisfies ordinary non-linear dif-

ferential equations, which are trivially solved by the fixed points of the RG flow of

the initial model. In addition, by appropriately choosing initial conditions the time-

dependent conformal model interpolates between the RG fixed points as the time

varies from the far past to the far future.

Let us emphasize that in the class of the λ-deformed WZW and gauged-WZW exam-

ples this procedure generates marginal deformations, at least at one-loop order. Note

however, that in the η-deformed SU(2) model, which was studied in Section 7, the

dynamical deformation restores the conformal invariance, at least at one-loop order,

since the model is a deformation of a PCM and not of a CFT.

Two comments are in order concerning the models studied in the present work. Firstly,

although most of the models under consideration are classically integrable (apart from

the generic ones in Section 5.2) we do not expect their dynamical promotion to pre-

serve classical integrability. In that respect, we note that achieving conformality re-

quired the introduction of the dilaton field. Nevertheless, it would be of some interest

to investigate separately the classical integrability of the aforementioned dynamical

models. Secondly, we focused for simplicity on models based on rank-1 groups but

the results of the present work can be extended for generic semisimple groups.

An immediate question is whether conformal invariance persists beyond the one-loop

order. The simplest examples to consider would be the λ-deformed Gk1 ×Gk2 [15] and

also the η-deformed SU(2) PCM [9]. We have studied the corresponding dynamically

promoted models at two-loop order using the results of [40–44]. We found that confor-

mality persists. We will not present the corresponding systems of ordinary non-linear

differential equation, obeyed by the dynamically promoted deformation parameters

and the dilaton, as they are rather complicated while conceptually there is not some-

thing new in their form. More precisely, in the λ-deformed Gk1 × Gk2 the derived sys-

tem of differential equations admits as trivial solutions the RG fixed points λ = 0, λ0.
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An asymptotic analysis, similar to that of Section 5.1.1, around those fixed points, can

be performed ensuring the existence of an interpolating solution. Monotonicity of the

solution needs to checked independently using numerical methods.

Recall that, the system of non-linear second-order ordinary differential equations ad-

mits a first-order sub-sector in the case of dynamically promoted η-deformed SU(2)

PCM. It would be worth studying whether there exist analogue first-order sub-sectors

for the other dynamically promoted models considered in the present work. This will

facilitate the search for exact solutions for all values of time.

Finally, it would be worth extending the present set-up to generic σ-model (Gµν, Bµν, Φ)

by promoting the constant moduli to time-dependent ones and demanding one-loop

conformality. For generic σ-models this is a rather formidable task but given our anal-

ysis in Section 5.2, (and in Appendix A.2) we would expect in the cases that this works

several consistency constraints (like (5.24)) aside from the dynamical evolution of the

deformation parameters (the analogues (5.22) and (5.23)).
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A RG flows and geometry

A.1 Generalities

Let us consider a σ-model of the form (1.1) whose metric and the two-form can be ex-

pressed in the tangent space, such that GMN = eA
MeB

NGAB and BMN = eA
MeB

NBAB.

This tangent space is spanned by the vectors eA = eA
M ∂

∂XM and their dual one-forms

eA = eA
MdXM satisfy the torsion-free condition

∇eA = deA + ωA
B ∧ eB = 0 , (A.1)
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where∇ is the covariant exterior derivative and ωA
B is the spin-connection. Similarly,

we introduce the action of the covariant exterior derivative on a mixed tensor VA
B

∇VA
B = dVA

B + ωA
C ∧VC

B −ωC
B ∧VA

C . (A.2)

From the above we define the Riemann two-form ΩAB and the Riemann tensor RAB|CD

∇2VA
B = ΩA

C ∧VC
B −ΩC

B ∧VA
C ,

ΩA
B =

1
2

RA
B|CDeC ∧ eD = dωA

B + ωA
C ∧ωC

B , ΩAB = −ΩBA .
(A.3)

To compute the spin-connection we use (A.1) and we also assume the metricity of the

covariant exterior derivative

∇GAB = 0 =⇒ dGAB = ωAB + ωBA , (A.4)

where we emphasize that ωAB is not anti-symmetric except if the tangent space metric

GAB is constant. Combining the latter with (A.2) yields the practical expression for the

frame components of the spin-connection

ωAB = ωAB|CeC , ωAB|C = ω0
AB|C + GADΓBC

D ,

ω0
AB|C =

1
2
(CABC + CBCA − CCAB) ,

ΓBC
A =

1
2

GAD (∂BGDC + ∂CGDB − ∂DGBC) ,

(A.5)

with ∂A = eA
M∂M and we have also introduced the structure coefficients

deA =
1
2

CA
BC eB ∧ eC , CA

BC := −CA
CB . (A.6)

The above spin-connection can be generalized with the inclusion of a torsion term

∇±eA = ∓1
2

TA
BC eB ∧ eC , ω±A

B = ωA
B ±

1
2

TA
BC eC . (A.7)

Using (A.6) and the torsion-full analogue of (A.3) we can compute the corresponding

Riemann tensors

R± A
B|CD = ∂Cω± A

B|D− ∂Dω± A
B|C +ω± A

B|ECE
CD +ω± A

E|Cω±E
B|D−ω± A

E|Dω± E
B|C

30



and the Ricci tensors

R±AB = ∂Cω±C
A|B −∇±B ω±C

A|C −ω±C
A|Dω∓D

B|C , (A.8)

where ω±C
A|C is a vector.4 We may now rewrite the one-loop equations (1.2) in the

compact form

R−MN + 2∇+
N∂MΦ = 0 , (A.9)

where the torsion-full Ricci tensor and the covariant derivative are built in terms of

the torsion-full connections

Γ±KL
M = ΓKL

M ± 1
2

HM
KL , (A.10)

yielding

R±MN = RMN −
1
4

H2
MN ±

1
2
∇PHPMN , R± = R− 1

4
H2 . (A.11)

We can also rewrite (A.9) in the tangent space

R−AB + 2∇−B ∂AΦ = 0 , (A.12)

where

∇−B ∂AΦ = ∂B∂AΦ−ω−C
A|B∂CΦ . (A.13)

A.2 Single λ-deformed Gk1 × Gk2

In this section we derive the differential equations that the time depended defor-

mation matrix λab(t) and the dilaton background Φ = Φ0(t) should obey, for the

construction to respect conformal invariance. Moreover, we obtain a number of con-

straints which ensure that the chosen background is consistent with conformality. We

closely follow the analysis of [30]. The line element which represents the target space

of the time depended model is given by5

ds2 = RaRa + λ−2
0 LâLâ + 2λ−1

0 RaLb̂ + dt2, (A.14)

4To prove this we employ (A.7) and ∇MeM
A = 0, yielding

ω±C
A|C = ∂MeM

A +
1
2

∂A ln det GMN ±
1
2

TC
AC ,

from which it can be easily shown that this transforms appropriately as a vector.
5For simplicity, we have ignored an overall k1 factor and also redefined t→ λ1/2

0 t.
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where
Ra = −i Tr

(
tadg1g

−1
1

)
, Lâ = −i Tr

(
tag
−1
2 dg2

)
dRa = −1

2
fabcRb ∧ Rc, dLâ =

1
2

fabcLb̂ ∧ Lĉ.
(A.15)

Hence, the unhatted and hatted indices denote the Maurer–Cartan forms of g1 and g2

respectively. By introducing the vielbeins

ea = Ra, eâ = λba(t)Rb + λ−1
0 Lâ, e0 = dt, (A.16)

as well as the double index notation A = (0, a, â) we move to the tangent space of the

theory where the line element can be written as

ds2 = g̃abeaeb + eâeâ + e0e0 = GABeAeB, (A.17)

where g̃ = I − λλT and we have also defined g = I − λTλ for later convenience.

Using these data one computes the spin connection using equations (A.5) as in [30].

Moreover, one needs to consider the torsion contribution from the B-field. The B-field

is given by the following expression

B = B0 + λ−1
0 λab(t)Ra ∧ Lb̂. (A.18)

Hence, one finds for the torsion

H =− 1
6
( fabc − 3 fabd(λλT)cd + 2λ0λadλbeλc f fde f )e

a ∧ eb ∧ ec+

+
1
2
(λ0λbdλce fade − λda fdbc) eâ ∧ eb ∧ ec − λ0

6
fabce

â ∧ eb̂ ∧ eĉ+

+ λ̇abe0 ∧ ea ∧ eb̂−(λ̇λT)abe0 ∧ ea ∧ eb

(A.19)

where as in [30] we have

H0 = dB0 = −1
6

fabcRa ∧ Rb ∧ Rc −
λ−2

0
6

fabcLâ ∧ Lb̂ ∧ Lĉ. (A.20)

Then from (A.7) we compute the new relevant components of the spin connection

where we also used (A.4). Note that the components of the time independent model
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can be found in [30] and are still relevant for this analysis. The full result is

ω+
ab =

(
− fabc − λ0λadλbeλc f fde f + (λλT)ad fdbc + (λλT)bd fadc

)
ec − (λ̇λT)abe0,

ω+
âb = (λ0λbdλce fade − λda fdbc) ec − λ̇bae0,

ω+
âb̂
= −λ0 fabdλcdec,

ω+
0a = (λλ̇T)abeb ,

ω+
â0 = λ̇baeb ,

ω−ab =
(

λ0λadλbeλc f fde f − (λλT)cd fdab

)
ec + (λdc fdab − λ0λadλbe fdec) eĉ − (λλ̇T)abe0,

ω−âb = 0 ,

ω−
âb̂
= −λ0 fabdλcdec + λ0 fabce

ĉ,

ω−0a = (λ̇λT)abeb − λ̇abeb̂ ,

ω−â0 = 0 .

(A.21)

Inserting the results into (A.8) we find the following components for the Ricci tensor

R−
ab̂
= −λ̈ab + λ̇abTr(λ̇g−1λT)− 2(λ̇g−1λTλ̇)ab + λ0Nac

dNbd
(T)c ,

R−ab = −R−aĉλT
cb ,

R−00 = Tr(g̃−1λ̈λT) + Tr(λ̇λT g̃−1λ̇λT g̃−1) ,

R−a0 = −λ0λab fbcd(g−1λTλ̇g−1)cd − fabc(g̃−1λλ̇T g̃−1)bc ,

R−0b = λ0λbc fcde(g−1λTλ̇g−1)de − (λλT)bc fcde(g̃−1λλ̇T g̃−1)de ,

R−
0b̂

= λ0 fbcd(g−1λTλ̇g−1)cd + (g̃λλ̇T g̃−1)deλcb fcde ,

R−â0 = 0 ,

R−âb = 0 ,

R−
âb̂
= 0 ,

(A.22)

where we used the identity λT g̃−1 = g−1λT and the N ’s are defined in (5.5).

Considering a background time dependent dilaton Φ0(t) we obtain from (A.12) and

(A.21) nine components corresponding to various values of A = (0, a, â) and B =
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(0, b, b̂). The resulting expressions are summarized in three different cases:

1. The components ab̂, ab and 00 leading to the equations (A.23) and (A.24).

2. The components 0b, 0b̂ and a0 leading to the two constraints (A.25).

3. The components â0, âb and âb̂ which trivially vanish.

Let us now analyze separately the first two cases. In the first case, the components

ab̂, ab and 00 yield the following differential equations for λab(t) and h(t) = Φ̇0(t)

λ̈ab = λ̇abTr(λ̇g−1λT)− 2(λ̇g−1λTλ̇)ab +Nac
dNbd

(T)c + 2λ̇abh (A.23)

and

2ḣ + Tr(λ̈g−1λT) + Tr(λ̇g−1λTλ̇g−1λT) = 0 , (A.24)

where we also took into account the redefinition of t described in footnote 5. The

above differential equations dictate the dynamical evolution of the deformation ma-

trix and the dilaton field in a way which ensures that the deformed theory is confor-

mally invariant at one-loop.

In the second case the components 0b, 0b̂ and a0, for which the dilaton contribution

vanishes, lead to the following compatibility constraints

fabc(g−1λTλ̇g−1)bc = 0 , fabc(g̃−1λλ̇T g̃−1)bc = 0 , (A.25)

which are mapped to each other upon λ ↔ λT. These ensure that the model we

consider is consistent with (A.12). They are trivially satisfied when λ is part of the

integrable sector, i.e. λab = λδab, reproducing the results of the previous sections. It

is important to note, that searching for actual solutions of the above dynamical equa-

tions, one obtains new constraints. In particular, starting from a deformation matrix

λab, with a number of vanishing entries, (A.23) indicates that these should not be intro-

duced by the time evolution. This is an additional constraint which appears in special

choices of the initial deformed theory, where the deformation is not switched on in

every direction. The above requirements ensure that such a set up admits dynamical

solutions. We have explicitly worked out the equations (A.23), (A.24) and the con-

straints (A.25) in several examples, including the SU(2), SU(3), SU(4), G2 and Sp(4)

for different choices of the deformation matrix λab. The resulting expressions are quite

complicated and we will not present them here.
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Finally, we also work out the dilaton beta function (1.3), which can be rewritten

upon using (A.11), (A.13) and the conformality equation (A.12)

w =
1
6

H2 + 2∇2Φ− 4
(
∂Φ
)2 . (A.26)

Reinserting the overall k1 and also taking into account of footnote 5 we find
(
∂Φ
)2

=

h2/k and we also evaluate H2 using (A.19)

H2 =
λ0

k

(
Iabc Ipqr g̃ap g̃bq g̃cr + 3Nab

cNpq
r g̃ap g̃bqg2

cr + cGdG

)
+

6
k

(
Tr(λ̇g−1λ̇T g̃−1)− Tr(λ̇g−1λTλ̇g−1λT)

)
,

(A.27)

where we have defined

Iabc = λ−1
0 fabd g̃cd +Nbc

d(g−1λT)da +Nca
d(g−1λT)db . (A.28)

Similarly, we evaluate ∇2Φ using (A.13) and (A.21)

∇2Φ =
1
k

(
ḣ− Tr(λ̇g−1λT)h

)
. (A.29)

Putting altogether into (A.26) we find

w =
λ0

6k

(
Iabc Ipqr g̃ap g̃bq g̃cr + 3Nab

cNpq
r g̃ap g̃bqg2

cr + cGdG

)
− 4h2

k

+
1
k

(
Tr(λ̇g−1λ̇T g̃−1)− Tr(λ̇g−1λTλ̇g−1λT)

)
+

2
k

(
ḣ− Tr(λ̇g−1λT)h

)
.

(A.30)

or equivalently with the help of (A.23) and (A.24)

w =
λ0

6k

(
Iabc Ipqr g̃ap g̃bq g̃cr + 3Nab

cNpq
r g̃ap g̃bqg2

cr + cGdG

)
− 4h2

k

+
1
k

Tr(λ̇g−1λ̇T g̃−1)− 1
k

(
Tr(λ̇g−1λT)

)2
− 1

k
Nac

dNbd
(T)c(g−1λT)ab

− 4
k

Tr(λ̇g−1λT)h .

(A.31)
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