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Abstract

We propose and analyze a protocol to create and control the superfluid flow in a one
dimensional, weakly interacting Bose gas by noisy point contacts. Considering first a
single contact in a static or moving condensate, we identify three different dynamical
regimes: I. a linear response regime, where the noise induces a coherent flow in pro-
portion to the strength of the noise, II. a Zeno regime with suppressed currents, and III.
a regime of continuous soliton emission. Generalizing to two point contacts in a con-
densate at rest we show that noise tuning can be employed to control or stabilize the
superfluid transport of particles along the segment which connects them.

Contents

1 Introduction 2

2 Model 3

3 Noisy point contact in a static BEC 4

4 Noisy point contact in a moving BEC 6
4.1 Linear-response regime 7
4.2 Zeno regime 7
4.3 Soliton-emission regime 8

5 Controlling superfluid flow with two noisy contacts 8

6 Experimental implementation and perspectives 10

A Derivation of the noise averaged SGPE 12

B Coherent particle number 13

C Estimate of the transition point between linear response and Zeno regimes 13

References 15

1



SciPost Physics Submission

1 Introduction

Quantum interference plays a key role in mesoscopic transport phenomena where impurities
or dots are employed as ’shunts’ for transferring particles, energy and information without
degrading phase coherence in the process [1–3]. In recent years a novel route to investigate
this field of quantum transport emerged by employing ultracold atoms confined by optical or
magnetic potentials [4]. The ability to control and manipulate the effective dimensionality
and geometry of the systems, the possibility to tune the inter-particle interaction strength, to
add or eliminate disorder and to choose between fermionic or bosonic quantum particles made
ultracold atoms an ideal testing ground for quantum transport phenomena [5,6]. In these sys-
tems effects are accessible which were out of reach or very challenging to investigate in solid
state. E.g. the periodic velocity change of a quantum particle moving in a lattice under the ac-
tion of a constant driving force, known as Bloch oscillation, is difficult to observe in condensed
matter systems due to impurity scattering but has beautifully been demonstrated with ultra-
cold atoms in optical lattices [7,8]. Transport experiments of ultra-cold Fermi atoms through
point contacts [9–11] verified the quantization of conductance predicted by the Landauer the-
ory of transport, which has previously been observed only in electronic systems. Both bosonic
and fermionic superfluids can be created using ultra-cold atoms and frictionless flow has been
observed [12, 13]. Persistent currents in ring geometries have been realized in atomic super-
fluids [14,15] and cold-atom analogues of Josephson junctions have been constructed [16,17]
with the potential for an atomtronic analogue of a SQUID. Finally the coupling between par-
ticle and heat transport has been observed in fermionic cold atoms providing a cold-atom
analogue of the thermoelectric effect [18]. However, despite of all experimental advances in
the field, the creation and precise control of superfluid currents remains a challenge in atom-
tronics. Besides moving potential barriers or time-dependent artificial gauge fields, currents
are typically generated by a difference of chemical potentials between the ends of a channel,
i.e by fixing "voltage" rather than "current".

Figure 1: Scheme for controlling superfluid flow in a one dimensional interacting
Bose gas using one a) or two b) noisy impurities, with or without an external current
at velocity v. c) Induced superfluid current at a noisy point contact of noise strengthσ
in a moving condensate at velocity v. For weak noise the current grows monotonically
with σ, but for stronger noise the system enters a Zeno regime, where the current
decreases. For the two largest velocities the system enters a regime of dynamical
instabilities beyond a certain value of σ, where the current is no longer stationary
and thus not shown.

In the present work we suggest and analyze a different method to create and manipulate the
superfluid flow in a one-dimensional quasi-condensate of Bose atoms, see Fig. 1. Importantly
here we control the superfluid current directly rather than fixing chemical potentials. In par-
ticular we make use of the interaction of the condensate with quantum impurities that are
coupled to the Boson’s density with a fluctuating, i.e. noisy strength. Analyzing the system we

2



SciPost Physics Submission

identify different dynamical regimes, including a linear response regime, a Zeno-regime [19]
with negative differential current to noise-strength characteristics, and a regime with dynami-
cal instabilities characterized by continuous soliton emission. Impurities in interacting systems
have been instrumental to develop our understanding of the extended pattern of correlations in
quantum many particle systems, by employing them as probes [20–22], tunable perturbations,
or even seeds for entanglement [23]. In unitary quantum dynamics, examples range from the
’catastrophic’ effect of a scattering potential intruding in a Fermi sea [24, 25], to strongly en-
tangled magnetic impurities coupled to fermionic or bosonic reservoirs, or the dressing of
static and moving particles in Fermi gases or Bose-Einstein condensates as it occurs in polaron
formation [26–34]. The last decade has also witnessed a growth of attention towards the dis-
sipative counterpart of the problem of quantum impurities embedded in interacting extended
quantum systems [11,35–53]. Pioneering results of one decade ago illustrates e.g. the action
of a localized dissipative potential on a macroscopic matter wave by shining an electron beam
on an atomic BEC [54, 55]. Atomic losses induced by local dissipation were monitored as a
function of noise strength, providing a proxy for a many-body version of the Zeno effect. The
stabilisation of dark solitons by engineered losses has been studied in [56]. Fluctuations in
the condensate can build up strong correlations with localized dissipation, resulting in a sup-
pression of transport at large noise strength which can be regarded as non-equilibrium phase
transition [57,58].
In this work, we illustrate how density rearrangements provoked by local dephasing can be
utilized to control coherent superflows in a one-dimensional Bose condensate. Specifically,
we consider a static or uniformly moving condensate coupled to a noisy local impurity. The
noisy point contact acts as a source of incoherent, i.e. non-condensed atoms, which due to
total particle-number conservation creates a superfluid flow towards the impurity. The super-
fluid flow increases monotonically with growing noise up to some critical value at which the
system becomes dominated by the quantum Zeno effect which leads to a reduction of trans-
port corresponding to a negative differential current - noise characteristics. We furthermore
demonstrate that the archetypal effect of transport suppression due to Zeno effect is drastically
altered in a moving rather than a static condensate. In particular, we observe a lowering of the
critical threshold of noise strength for entering the Zeno regime when the background speed
of the condensate is increased. This is shown in Fig. 1c where the onset of the Zeno regime
drifts towards smaller values of dissipation strength. As outreach, we demonstrate complete
tunability of a supercurrent in a static condensate by a pair of noise point contacts.

2 Model

We consider a homogeneous one-dimensional Bose gas with weak repulsive interactions (g > 0)
and boson mass m. We study the effect of a noisy point contact in a Bose gas moving relative to
the impurity with fixed velocity v. The impurity-BEC coupling is modeled by a Gaussian white
noise processη(t), with meanη(t) = 0 and varianceη(t)η(t ′) = δ(t−t ′), multiplied by a local
potential V (x + vt), whose profile will be specified subsequently. Since we consider a weakly
interacting condensate [59], quantified by a small Lieb-Liniger parameter γ = gm/n ≪ 1,
where n is the average boson density in the 1D gas, we apply a phase-space description of the
quantum Bose field using the Glauber-P distribution [60]. Due to the action of the noisy point
contact, we cannot ignore fluctuations even in the limit of a highly occupied condensate mode
at very low temperatures. Within the phase space approach normal-ordered correlations of
the Bose field operator ψ̂(x , t) are given by stochastic averages of a c-number field ψ(x , t).
The time evolution of ψ(x , t) in the rest frame of the moving Bose gas is then determined by
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a Gross-Pitaevskii-type equation with an additional stochastic term (SGPE) [61,62]

i dψ(x , t) =
�

−
∂ 2

x

2m
+ g|ψ(x , t)|2
�

ψ(x , t)dt + V (x + vt)ψ(x , t) ◦ dW. (1)

Here dW = η(t)dt is a infinitesimal Wiener process [60]. Since the delta-correlated white
noise η(t) results from colored noise in the limit of small correlation times, Eq. (1) has to
be interpreted as a Stratonovich stochastic differential equation [60], denoted by ◦. In order
to gauge away the explicit time dependence of the potential V (x + vt), we apply a Galilean
transformation to the reference frame where the point contact is at rest. This results into a
SGPE with static potential and with a spatial gradient term proportional to v:

i dφ(x , t) =
�

−
∂ 2

x

2m
− iv ∂x + g|φ(x , t)|2

�

φ(x , t)dt + V (x)φ(x , t) ◦ dW. (2)

φ(x , t) describes the average Bose field in the rest-frame of the impurity, which includes both
a quantum mechanical average and one over classical fluctuations induced by the noisy point
contact. We refer to φ as the coherent amplitude of the Bose field.

3 Noisy point contact in a static BEC

We start our analysis by reviewing the physics of a single point contact placed at x = 0 in a
static BEC (v = 0). The effect of the noisy impurity on the Bose gas shares at a first sight some
similarities with the physics of local losses in Bose wires [54, 55, 63, 64]: they both scatter
particles out of the macroscopically populated ground state φ(x , t). However, the dissipative
impurity considered here conserves the total number of particles, which is crucial for potential
applications in atomtronic devices. In order to compare with the dynamics resulting from local
losses, we first analyse the coherent amplitude φ. Therefore we consider the noise average of
the SGPE Eq. (2)

i
d
dt
φ = −

∂ 2
x

2m
φ + g |φ|2φ −

i
2

V (x)2φ. (3)

While the fluctuating potential vanishes on average it does have an effect on the average field
φ. This is because it is a multiplicative noise and the field φ(t) at a given time depends on the
noise such that φ(x , t)dW ̸= 0 (Stratonovich calculus [60]). As a result of this, the average
field experiences an effective loss, which physically describes nothing else than the scattering
of particles out of the condensate into excited modes of the Bose gas, for more details see
Appendix A.
Eq. (3) matches the evolution of the noise-averaged amplitude subject to local particle loss
(cf. [54,55,63,64]) with the identification V (x)2 = 2σδ(x). We consider this potential as the
limit of a Gaussian potential Vl(x)2 = 2σ/

p
πl2 exp(−x2/l2), with the length l acting as a

regulator, such that V (x) itself is well defined. If l is chosen smaller than the healing length
of the Bose gas ξ = 1/

p

2gnm ≫ l the internal structure of the impurity potential becomes
irrelevant.
As shown in [54,55,63,64] the effective local loss in Eq. (3) will induce currents. This can be
seen most easily from the continuity equation of the modulus of the average field |φ|2, which
contains the coherent current

jcoh =
1
m

Im(φ̄∗∂x φ̄). (4)

Note that here the noise is averaged over the individual fields first and then bilinear combi-
nations are formed. jcoh is in general not equal to the average total particle current, which

4



SciPost Physics Submission

is defined by deriving the continuity equation for φ∗φ from the original SGPE, Eq. (2), and
performing the noise average afterwards. The total current reads

jtot =
1
m

Im(φ∗∂xφ). (5)

We analyze both currents as well as their difference, which we refer to as the incoherent
current. It describes the flow of particles in excited modes of the Bose field created by the
local noise. To evaluate analytically the dynamics of Eq. (3) we assume that the nonlinear
term factorizes under average |φ(x , t)|2φ(x , t) ≃ |φ(x , t)|2φ(x , t); this approximation turns
out to be in excellent agreement with numerics provided the coherent state φ(x , t) describing
the mean-field dynamics of the Bose gas is macroscopically populated. We show the adequacy
of this approximation by solving the full SGPE Eq. (2) and evaluating the coherent |φ(x , t)|2

and total density |φ(x , t)|2 (cf. with Fig. 2).
For weak dissipation the system is in a linear-response phase and the analytic solution of Eq. (3)
reads

φ(x , t) =
p

n0 exp(−imσ|x | − iµt), (6)

(cf. also [63]). After switching on the local noise the system will assume this quasi-stationary
state within a spatial region which grows in time with the local speed of sound c0 =

p

gn0/m.
The density of the condensate in this area is reduced to n0 < n and the constant phase gradient
describes a coherent current

jcoh = −n0σ sgn(x) for σ < σc (7)

flowing towards the point contact. As jcoh is proportional to the noise strength σ, the regime
is called "linear-response regime". Here the chemical potential is µ= gn0 +mσ2/2.
Above a critical noise strength [63]

σc =
2
3

c =
2
3

p
2gnξ (8)

the system crosses over into a Zeno phase [19], where the current ceases to further increase
with the strength of the dissipation. The critical point is reached when the velocity of the
coherent flow u0 = jcoh/n0 attains the local speed of sound. For σ > σc a grey soliton (a
local density depletion of the size of the healing length [59]) forms at the position of the
point contact, cf. with Fig. 2b. The density reduction associated with the formation of the
grey soliton decreases the scattering rate at the point contact, which results in a reduction of
the coherent current, which in turn determines self-consistently the depth of the grey soliton.
As a consequence the functional dependence of the coherent current from the noise strenth
changes from a linear increase σ to an inverse scaling:

jcoh = −n0
c2
0

σ
sgn(x) for σ > σc . (9)

This is characteristic of the Zeno phase in extended systems [19]: at strong enough dissipation
transport across the dissipative impurity is impeded as a result of the frequent measurement of
the observable to which the noise couples at x = 0. Outside the depleted area (which travels
at the sound speed) the density n0 < n remains constant.
In contrast to the case of local loss, the noisy potential conserves the total particle number,
which at first glance seems at odds with a current of particles flowing towards the point con-
tact, while the particle density remains constant over time. Simulating the dynamics of the
total SGPE Eq. (2) one finds, however, that the total current vanishes in the area of constant
density, see insets of Fig. 2. This shows that the noisy point contact scatters particles out of the
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Figure 2: Snapshots of density close to a static noisy point contact in a) the linear-
response phase σ = 0.2gnξ and b) in the Zeno phase σ = 8gnξ. Solid lines are total
densities |φ(x , t)|2 while dashed lines are the coherent ones |φ(x , t)|2. The density
of incoherent particles is low. The insets show the coherent (dashed) and total (solid)
particle current. The point contact scatters particles out of the coherent state, leading
to a coherent current towards the noise contact and an incoherent counterflow, which
exactly balances the coherent flow. The dotted vertical lines mark the size of the
’sound’ cone, moving at the average speed of sound c =

p

gn/m. Colors match the
ones of the related density profiles evaluated at the same time.

condensate state, causing a coherent inward flow. At the same time it is a source of particles in
excited modes of the Bose field leading to an incoherent outward flow of particles. Since these
particles are removed from the coherent state, the noise affects the coherent amplitude of the
Bose gas similarly to a local loss. This means that a local non-unitary rearrangement of the
system generates a coherent superfluid flow. In the next Sections, we harness this mechanism
to engineer the coherent transport properties of the Bose gas by using purely incoherent point
contacts.

4 Noisy point contact in a moving BEC

In this section we generalize our results to a noisy point contact in an externally imposed
coherent current or equivalently to a noisy impurity moving at a constant velocity v relative to
the condensate. An important difference with respect to a static point contact is the emergence
of a third dynamical phase (which we label ’phase III’ in the following), that is characterized
by the absence of stationary particle flows at the point contact. This phase occurs in addition
to the linear-response I and Zeno phases II. We characterize the phases by evaluating the
coherent current on the left and on the right of the noisy point contact; their difference is
equal to the change in the number of particles of the coherent fraction of the field and therefore
proportional to the scattering rate of particles off the dissipative impurity, cf. Appendix B Since
we work in the frame in which the point contact is stationary there appears an additional term
in the expression of jcoh

jcoh =
1
m

Im
�

φ̄∗∂x φ̄
�

+ v φ̄∗ φ̄. (10)

The scattering rate of particles out of the condensate and thus the total coherent current flow-
ing towards the impurity depends both on the velocity v of the point contact and on the noise
strength σ as shown in Fig. 3a. We distinguish the three phases, depending on whether this
current increases or decreases as the noise strength changes.
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Figure 3: a) Phase diagram of a noisy point contact of strength σ in a BEC moving
with velocity v. We plot the total coherent current flowing towards the impurity on
the left and on the right of the point contact, which equals the scattering rate of the
dissipative impurity. We average in space over the interval x ∈ ±[2, 5]ξ and in time
over t ∈ [10,20]/gn, where the intervals are chosen to be within the ’sound’ cone,
but large enough to average over multiple oscillations in the dynamically unstable
phase III. The red line marks the estimated transition between linear response and
Zeno regime which agrees well with the local maximum for fixed v, see Appendix C
for details. The white dashed line marks the transition form the Zeno to the soliton
regime. The analytical result σc = 2c/3 of the transition form normal to Zeno phase
at v = 0 [63] is shown by the black circle. b)-d) Density close to the noisy point
contact at different times. Shown are in b) the normal phase I for σ = 0.2gnξ and
v = 0.2c, in c) the Zeno phase II for σ = 0.7gnξ and v = 0.2c; and in d) the soliton
phase III for σ = 2gnξ and v = 0.8c. The times marked in color are the same in all
three plots. Solid, dashed and dotted lines are chosen as in Fig. 3. The red dotted
line in d) is the profile of a grey soliton fitted to the simulated density.

4.1 Linear-response regime

Phase I, cf. with Fig. 3b, is akin to the linear-response phase of a static noisy point contact,
since the scattering rate increases with increasing dissipation strength, inducing an increasing
coherent current flowing towards the noise source. Due to the motion of the condensate
relative to the contact, the coherent currents on the left and on the right side are unequal in
magnitude. This results also in a different density on the left nl and on the right nr of the
point contact. Our numerical simulations show that, like in the static case, a quasi-stationary
state is established in an area growing over time, but with different velocities (cl− v) for x < 0
and (cr + v) for x > 0. The two halves of the system are characterized by different velocities
for two distinct reasons: the speed of sound cl,r =

Æ

gnl,r/m is different as a result of density
differences on the two sides of the dissipative impurity, and the velocity v breaks the directional
symmetry in the 1D gas.

4.2 Zeno regime

Upon increasing the dissipation strength, the system undergoes a transition into the Zeno phase
II (Fig. 3c), however this occurs at a smaller critical value as in the static case. An estimate
for the crossover point can be obtained as follows: The transition to the Zeno regime occurs
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when the local speed of sound c(x) and the velocity of the coherent current u become equal

c(x)≡

√

√ gn(x)
m

= u(x)≡
jcoh(x)
n(x)

, (11)

at any point in the system. The reduction of the critical noise strength in a moving condensate
can then be traced back to two effects. First the coherent current is modified by to the back-
ground flow at velocity v. Second the local speed of sound is smaller on one side of the contact
when compared to the stationary case, because of the reduced density. The overall coherent
current in the system can therefore become supersonic already at a smaller critical dissipation
strength. As explained in detail in Appendix C one can derive an approximate expression for
the transition point by utilizing Eq. (11). The result is marked by the red line in Fig. 3a and
agrees very well with the observed local maximum of the current. As in the static case a grey
soliton forms in the Zeno phase II at the position of the point contact and the smaller density
leads to a decrease of the scattering rate with increasing dissipation strength. However, due
to the motion of the condensate relative to the point contact the coherent current cannot go
to zero but must always stays finite, allowing for the onset of a new phase III.

4.3 Soliton-emission regime

The minimum density of the grey soliton close to the point contact would drop to zero for
strong dissipation σ≫ gnξ obstructing any particle current at x = 0. However, the external
flow forces particles to pass the noise contact, which can no longer be facilitated by a grey
solition solution ifσ increases. This then leads to instabilities and a continuous train of solitons
is formed moving in the direction of the external current, see Fig. 3d. The system becomes
dynamically unstable, when the external current becomes so large that the condition for the
self-consistent formation of a grey soliton can not be fulfilled any more. The minimum density
in a stable grey soliton is related to the velocity u of the total coherent current passing it by
nmin/n0 = u2/c2

0 [59]. A similar effect of a continuous creation of solitons also occurs in the
case of a constant repulsive potential in a moving condensate [65]. It happens when the Bose
gas density is locally reduced to an extent that a constant coherent current (superfluid flow)
cannot be sustained anymore. To verify that the moving density oscillations are indeed soliton
trains, we fit the analytic expression for a grey soliton wave function [59] to it, which agrees
well with the observed density, see red dotted line in Fig. 3d.

In summary, a moving Bose gas responds to a local noisy impurity like a stationary Bose
gas, resulting in a linear response I and a Zeno phase II with renormalized transition points
between the phases. The key difference is the formation of a soliton phase III, which only exists
in the presence of an external current, preventing the formation of a quasi stationary state
close the impurity and a constant current flow. Different from the Zeno regime the "shooting"
of solitons leads again to an increase in the time-averaged number of scattered particles with
growing dissipation strength.

5 Controlling superfluid flow with two noisy contacts

In this section we show how superfluid flow can be controlled using a pair of noisy point con-
tacts. Each contact creates a coherent current of particles flowing towards it, which is balanced
out by an incoherent one. After a time t = r/c, where r is the distance between the contacts,
the coherent current created by one reaches the other contact. Each of the two dissipative
impurities thus experiences an effective coherent flow generated by the other impurity, and
thus can sustain one of the three previously discussed phases. In the following we determine
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Figure 4: Phase diagram of a configuration of two noisy point contacts. a) Scat-
tering rate out of the condensate at the right point contact for impurity separation
r = 10ξ, plotted for different noise strengthsσl andσr . The current is averaged over
time t ∈ [25−35]/gn and space x ∈ [−4.5, 4.5]ξ; intervals are chosen as in Fig. 3a.
The dashed lines mark the border between different phases as in Fig. 3, calculated
by assuming a single contact in motion, see main text. b)-d) Density in the vicin-
ity of two dissipative point contacts at distance r = 10 at equal dissipation strength
σr = σl = σ. Their positions are marked with the red dotted lines. Parameters are
chosen for both contacts to be in b) the normal phase σ = 0.2gnξ, c) the Zeno phase
σ = .5gnξ and d) the soliton phase σ = 2.2gnξ. Solid and dashed lines are chosen
as in Fig. 3

the phase diagram of the wire depending on the noise strength of the left (σl) and right (σr)
noisy contacts. Evaluating the resulting currents in between the contacts we will demonstrate
that a segment with two noisy defects at its edges, can act as a current shunt.
We assume the noises dWr and dWl acting on the left and right impurity to be uncorrelated
dWr dWl = 0, such that the time evolution is determined by the SGPE

dφ(x , t) = −i
�

−
∂ 2

x

2m
+ g|φ(x , t)|2
�

φ(x , t)dt − i
Æ

2σl δ(x + r/2) φ(x , t) ◦ dWl

− i
Æ

2σr δ(x − r/2) φ(x , t) ◦ dWr .

(12)

We consider, in the following, a separation of the contacts larger than the healing length r ≫ ξ;
the latter is, in fact, the minimum length over which a coherent current can be established [59],
and therefore a necessary requirement to apply the tools developed in the previous Sections.
The scattering out of the condensate at the right noisy contact is plotted in Fig. 4a for different
noise strengths. For a fixed noise strength of the left contact (σl), the number of scattered par-
ticles at the right impurity grows upon increasing the noise strength σr in the linear-response
phase Fig. 4b, and then it shows Zeno physics above a critical value of σr , see Fig. 4c. Upon
further increasing the noise strength on the right point contact, the effect of solitons ’shooting’
discussed in the previous Section sets in, leading again to an increase of scattered particles
when averaged over time; solitons move downstream towards the other point contact result-
ing in an oscillatory density patter in space and time between them (cf. Fig. 4d).
We now show that the critical thresholds for the dissipation strength of two contacts can be
approximated using the results for a single moving defect. Let us assume that the left con-
tact is placed into a initially static gas. This then leads to an onset of a coherent current, as
discussed in Sec. 3. We determine the velocity of this current by interpolating the results in
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Fig. 3a at zero velocity (v = 0). The right contact is then placed into this background current;
we further assume that its presence will not affect the scattering rate at the left impurity and
that the system near the right impurity is determined by its own dissipation strength σr and
the velocity of the coherent background current. Under these assumption we can determine
the system response following the lines of Sec 4, and estimate the crossovers in the setup of
a pair of noise contacts. These crossover points are marked with the white dashed lines in
Fig. 4a and we recognize that they agree well with the observed extrema especially for small
values of σl/gnξ. This shows that only the coherent current is relevant for characterizing
the steady state of the system under the noisy drive of the two impurities. For larger values
of σl the assumption of a constant coherent background current created by the left impurity
no longer holds and the scattering rate out of the condensate at the left contact depends also
on the noise strength of the right one. This explains the poorer agreement of the numerical
results with the above physical picture for larger values of σl .
A possible application of the system of two noise contacts is the creation of a coherent current
in the space between them. We note that in the proposed scheme the current is controlled di-
rectly and not via differences in chemical potentials. In Fig. 5 the coherent current between the
contacts, averaged over space and a finite time interval, is plotted as function of the two noise
strengths. Note that it is anti-symmetric since the exchange of the two interaction strengths
leads to a reversal of the current. For a small sumσ+ = σr+σl ≪ gnξ both contacts are in the
normal phase and the scattering rate of each contact is independent from the noise strength of
the other. The coherent current in between the contacts is therefore the sum of two indepen-
dent contacts. This is shown in the inset of Fig. 5, were the coherent current is normalized to
gn2

0ξ0, with n0 being the average density between the contacts, depending weakly onσl,r , and
ξ0 = 1/
p

2gmn0 is the corresponding healing length. For small σ+ ≡ σl +σr the normalized
current depends only on the difference σ− = σr − σl and it is equal to the current created
by a single contact at dissipation strength σ−. For larger σ+ at least one of the two contacts
is not in the linear response phase, which results in a different slope and a non monotonous
dependency on σ−.

6 Experimental implementation and perspectives

In this work we have revisited the Zeno crossover for particle currents traversing a moving
noisy defect. We have shown that the speed of the impurity can be used as a knob to boost
transport suppression. As a possible experimental implementation we envisage the use of noisy
in-situ potentials, to control superfluid flows. Such potentials can be realized with two-color
time-dependent optical potentials and tailored conservative potentials. We first note that it is
crucial to have a vanishing mean of V (x) for all positions x (see section 2. This is important
in order to avoid residual repulsive or attractive potentials, which interfere with the effect of
the dephasing. This condition can be fulfilled by using two laser beams, which are red- and
blue-detuned with respect to an atomic transition [66]. Both beams have to share the same
spatial mode, which can be ensured by guiding them through the same optical fiber. For the
defect considered in this work, it is sufficient to use Gaussian beams, which are focues onto the
atoms with a high numerical aperture objective. To achieve a defect size, which is smaller than
the healing length (as assumed in this work), one has to find a proper combination of numeri-
cal aperture (NA=0.4 or higher is necessary for most parameter settings), a short wavelength
(higher energy atomic transitions are the better choice as not much optical power is needed
to create the necessary potential height) and atomic density and interaction in order to en-
large the healing length. In 1D (as considered here) or 2D configurations, the Rayleigh length
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Figure 5: Coherent current between two noisy impurities as a function of the indi-
vidual noise strengths σr and σl . The current is averaged over time t ∈ [25−35]/gn
and space x ∈ [−4.5,4.5]ξ. The inset shows the coherent current as a function of
the difference σ− and sum σ+/gnξ (different colors) of the two noise strengths. The
current is rescaled to the density n0 and the healing ξ0 = 1/

p

2gn0m of the Bose
gas inbetween the two contacts. The plot shows that the current does not depend
on σ+, for small σ+ ≤ gnξ. The black dashed line is the coherent current created
by a single stationary point contact at noise strength σ−, which agrees well with the
two-contacts result at small σ+.

should be larger than the thickness of the sample in order to treat the impurity as independent
of the perpendicular direction.
Regarding the time dependence of the optical potential, a large bandwidth of the modulation
is another necessity. Modulating the intensity with acousto-optical modulators typically results
in a bandwidth of more than 1 MHz. This is much faster than any intrinsic timescale (interac-
tion energy, kinetic energy, potential energy, transverse confinement) of a typical experimental
setting. The corresponding correlation time of less than 1µs is therefore short enough to pro-
vide an effective δ-correlated noise potential. In order to provide white or colored noise in
the defect, both laser beams have to be driven with an arbitrary waveform generator, whose
temporal signals are either inherently provided by the function generator or are computer
generated, providing the required correlation functions. We note that experimentally, it is
straightforward to generate much more complex correlation functions for the defect potential,
thus bridging noisy defects and Floquet driven defects.
Measurements of the superfluid density in a quantum gas experiment are always challenging
since in most schemes it is the total atomic density which is imaged. In the case of 1D systems,
heterodyning with a twin system is the method of choice in order to access the motion of the
superfluid as well as its amplitude [67]. To this end, one has to prepare a twin 1D system
aside with the system under investigation. Upon measuring, one lets both systems interfere
with each other and the fringe distance encodes the local velocity of the atoms, while the fringe
contrast encodes the amplitude of the superfluid density.

From the theory side, it would be interesting to extend the control of transport properties
through the segment in systems without a macroscopic condensate occupation. For instance,
studying the effect of two Markovian time-dependent noisy fields coupled to local densities
in an interacting fermionic wire. The non-interacting case could be solved exactly as for the
single impurity [68], while the RG-scattering theory of Refs. [69] could be used to assess

11



SciPost Physics Submission

the role of strong quantum fluctuations in enhancing or eradicating the semi-classical effect
discussed in this paper. We expect that studying real time dynamics of the problem with
bosonization could serve equally well for this purpose. For what concerns the results disussed
in our work, we expect that adding quantum fluctuations on top of the macroscopic occupation
of the Bose gas, would not significantly alter the dynamics discussed in the paper. On one
hand, quantum effects would become sizeable only on times that are parametrically large in
the condensate occupation. On the other hand, the region traversed by the density waves
produced by the impurity can be regarded effectively as a driven-open systems and therefore
subject to decoherence: the energy is pumped into the system via the noisy contact (which
is held at infinite temperature) and dissipated by the ’bath’ given by the rest of the system
which stays at zero temperature, till the heat front will reach it. The dynamics within the
’sound’ cone will therefore wash out quantum fluctuations through decoherence as any other
open quantum system would. In a semi-classical quantum trajectory description it is in fact
impossible to distinguish the noise averaging used to derive the dynamics in our work, from
sampling over a probability distribution function given by the quantum fluctuations inherent
in the initial state: the trajectories sampled from the classical noise imprinted by the impurity
would quickly dephase those arising from quantum fluctuations.
Another interesting direction would consist in generalizing the setup of our work to interacting
quantum spin chains in view of applications to spintronics.
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A Derivation of the noise averaged SGPE

In the following we derive the noise average of the SGPE Eq. (12), which can be written as

dφ(x , t) = A[φ,φ∗]dt + B[φ] ◦ dW, (13)

where

A[φ,φ∗] = −i
�

−
∂ 2

x

2m
− iv ∂x + g|φ(x , t)|2

�

φ(x , t)

B[φ] = −i V (x)φ(x , t).
(14)

This equation is a Stratonovich stochastic differential equation, where the noise is corre-
lated with φ(x , t), so that B[φ] ◦ dW ̸= 0. To evaluate the noise average we transform the
Stratonovich into an Ito equation, where the noise and field are not correlated B[φ]dW = 0,
see [60]. The Ito equation is then given by

dφ(x , t) =
¦

A[φ,φ∗] +
1
2

B[φ]
δ

δφ(x , t)
B[φ]
©

dt + B[φ]dW. (15)

The noise average results in the Gross-Pitaevskii equation for the coherent state φ(x , t)
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d
dt
φ = −i
�

−
∂ 2

x

2m
− iv ∂x −

i
2

V (x)2
�

φ − i g |φ|2φ. (16)

The complex potential shows that the local noise scatters particles out of the coherent state φ,
resulting in the incoherent current flowing away form the noise source.

B Coherent particle number

In this section we show that the jump in the coherent current between the left and right sides
of a noise contact is equal to the change in the number of particles of the coherent fraction
of the field. We start by deriving a continuity equation for the modulus of the average field
ncoh(x , t) = φ

∗
φ from the noise averaged mean-field equation Eq. (16)

∂t ncoh(x , t) + ∂x jcoh(x , t) = −2σδ(x)ncoh(x , t). (17)

Note that since the left hand side of this equation is nonzero Ncoh =
∫ L/2
−L/2 d x ncoh(x , t) is not

conserved. The local noise scatters particles out of the coherent state. This is follows from
integrating Eq. (17) over the whole system

Ṅcoh =

∫ L/2

−L/2
dx ∂t ncoh(x , t) = −σ ncoh(0, t), (18)

where the current term vanishes because we use periodic boundary conditions. Integrating
Eq. (17) again, but over a small interval around the impurity shows

∆ jcoh =

∫ ε

−ε
dx ∂x jcoh = −2σ ncoh(0, t), (19)

where we used that ncoh(x , t) is constant close to the impurity in the long time limit, which
we showed by simulating the dynamics of the total SGPE Eq. (2). This yields

Ṅcoh =∆ jcoh. (20)

C Estimate of the transition point between linear response and
Zeno regimes

In the following we estimate the linear response to Zeno transition of a noisy point contact in
an external driven current of velocity v. We do so by deriving four equations containing the
local speeds of sound ci =

p

gni/m and current velocities ui = jcoh,i/ni at the left (i = l) and
right side (i = r) of the noise contact, which determine the crossover point.
The system undergoes a transition, once the current velocity is equal to the speed of sound
ci = |ui| on either of the two sides of the contact. For v > 0 the simulation show cl < cr and
|ul |> |ur |, see Fig. 6, causing the critical condition to be fulfilled first on the left side

cl = ul , (21)

13
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Figure 6: a) Qualitative sketch of the density profile (i.e. local speed of sound) at
a dissipative point contact in a constant background current vn, within the linear
response regime. The size of the blue arrows indicates the strength of the current at
their position. b) Simulation of the coherent current in the linear response regime
(σ = 0.2gnξ, v = 0.2c and t = 20/gn). The two lines agree close to the contact,
since it induces equally strong currents on both sides.

which is the first equation we use. We determine the other three by analyzing the system in
the linear response regime and assuming that the conditions are still valid at the critical point.
Since the state in the depleted area is quasi stationary, the chemical potential

µ= gni +
1
2

mu2
i −

1
2

mv2 (22)

on both sides of the contact must be equal, from which the second equation is derived

c2
l +

1
2

u2
l = c2

r +
1
2

u2
r . (23)

For the third equation we utilize the numerical evidence, that the contact induces equally
strong currents on both sides, which is either added to or subtracted form the background
current vn, see Fig. 6b. This symmetry can be written as

jcoh,r + jcoh,l = 2vn ⇒ c2
l ul + c2

r ur = 2vc2. (24)

At last we derive an equation for the difference of the currents, which is equal to the change in
the number of particles of the coherent fraction of the field Ṅcoh, see Eq. (20). We assume that
these particles are only removed from the ”transition area” in between the quasi stationary
state at density ni and the unperturbed area at density n. To estimate it we approximate the
density profile as being linear, as illustrated in Fig. 6a. This results in

Ṅcoh = −
1
2
(n− nl)(cl + c − 2v) −

1
2
(n− nr)(cr + c + 2v). (25)

The fourth equation is then given by

2c2
l ul − 2c2

r ur = (c
2 − c2

l )(cl + c − 2v) + (c2 − c2
r )(cr + c + 2v). (26)

To determine the critical values we solve Eqs. (21), (23), (24) and (26) numerically and in
order to calculate the corresponding critical noise strength σc we use Eq. (19), with the ap-
proximation ncoh(0, t) = (nr + nl)/2. This eventually yields

σc =
c2

l ul − c2
r ur

c2
l + c2

r

. (27)

The critical dissipation strength derived in this way agrees very well with the local maximum
in the coherent current, which we calculated numerically, see Fig. 3a. In the stationary case
(v = 0) we get σc = 0.74c, which is only slightly larger as the exact value σc = 2c/3 [63].
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