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Abstract

In this paper, we study the Carrollian and Galilean conformal field theories (CCFT

and GCFT) in d > 2 dimensions. We construct the highest weight representations (HWR)

of Carrollian and Galilean conformal algebra (CCA and GCA). Even though the two alge-

bras have different structures, their HWRs share similar structure, because their rotation

subalgebras are isomorphic. In both cases, we find that the finite dimensional representa-

tions are generally reducible but indecomposable, and can be organized into the multiplets.

Moreover, it turns out that the multiplet representations in d > 2 CCA and GCA carry not

only the simple chain structure appeared in logCFT or 2d GCFT, but also more generally

the net structures. We manage to classify all the allowed chain representations. Further-

more we discuss the two-point and three-point correlators by using the Ward identities.

We mainly focus on the two-point correlators of the operators in chain representations.

Even in this relative simple case, we find some novel features: multiple-level structure,

shortage of the selection rule on the representations, undetermined 2-pt coefficients, etc..

We find that the non-trivial correlators could only appear for the representations of cer-

tain structure, and the correlators are generally polynomials of time coordinates for CCFT

(spacial coordinates for GCFT), whose orders depend on the levels of the correlators.
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1 Introduction

Conformal bootstrap provides a nonperturbative way to read the spectrum and the OPE

coefficients of the theory by imposing conformal symmetry, unitarity and crossing symmetry.

It was firstly proposed in 1970s [1,2], and it had been successfully applied to the study of 2D

conformal field theory(CFT), in particular 2D minimal models in 1980s [3]. It is experiencing a

renaissance, starting from the seminal work of [4]. Various numerical techniques and analytical

methods have been developed. For nice reviews, see [5,6]. The conformal bootstrap not only

allows us to study the properties of various models with conformal symmetry, for example the

critical 3d Ising model [7, 8], but also sheds light on the study of AdS/CFT correspondence

[9–12] and S-matrix bootstrap.

Conformal bootstrap relies very much on the conformal symmetry. It would be inter-

esting to investigate the bootstrap program if the conformal symmetry is replaced by other

conformal-like symmetries. These symmetries often partially break the Lorentz symmetry but

keep some kind of scale invariance. They include Schrödinger symmetry, Lifshitz symmetry,

Galilean conformal symmetry and Carrollian conformal symmetry etc. In two dimensions,

the global symmetries can be enhanced to local ones under suitable conditions, and the re-

sulting algebras lead to more restrictions on the dynamics [13–16]. There have been some

efforts in developing bootstrap program for conformal-like symmetries. In [17–22], conformal

bootstrap has been studied in the theories with Schrödinger conformal symmetry. In [23,24],

the Bondi-Metzner-Sachs(BMS) bootstrap was studied. In [25–27], two-dimensional Galilean

conformal bootstrap has been initiated.

In this work, we would like to study Carrollian conformal field theory (CCFT) and

Galilean conformal field theory (GCFT) in dimension d > 2. The Carrollian conformal sym-

metry can be obtained by taking the ultra-relativistic limit of conformal symmetry. The Car-

rollian symmetry was first introduced by Levy-Leblond in 1965 [28,29]. In the ultra-relativistic

limit, the speed of light turns to zero, and the lightcones close up. It has been discussed in

various physical systems, see [30–43]. Very recently, the Carrollian symmetry appears in the

study of fractons [44–48]. Remarkably, the infinitely extended Carrollian conformal algebras

in d = 2, 3 are isomorphic to the algebra BMSd+1, which generate the asymptotic symmetry

groups in flat space-time [32]. On the other hand, the Galilean conformal symmetry can be

read by taking the non-relativistic, i.e. the speed of light c → ∞ limit, of the conformal

group. Its physical implications have been widely studied, see for example [49–51]. In par-

ticular, it turns out that the two-dimensional Galilean conformal symmetry is closely related

to the flat holography, as the GCA2 is isomorphic to BMS3 [52]. It is also worth mentioning

that there exist BMS-like extension of Carrollian algebra, as the asymptotic symmetry of

four-dimensional Carrollian gravities [43,53].
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The Carrollian conformal symmetry is generated Carrollian conformal algebra (CCA),

with the generators being {D,Pµ,Kµ, Bi, J ij} i, j = 1, . . . , d−1, µ = 0, 1, . . . , d−1, where Bi

are Carrollian boost operators. The commutation relations can be found in (2.1). The highest

weight representations of CCA, analogous to the ones in conformal field theory (CFT), are the

eigenstates of the dilation generator D, and are annihilated by the generators Kµ. This means

that although the Lie algebra CCAd
∼= iso(d, 1), its highest weight representations are not

constructed in the same way as the famous Wigner’s classification1. One major difficulty is

to construct the representations for the “CCA rotation”, which includes the spatial rotations

{J ij} and the CCA boosts {Bi}. Different from the SO(d) group and its algebra, the CCA

rotation is not semi-simple, thus the finite dimensional representations are generally reducible

but indecomposable, and can be organized as multiplet representations. The multiplet repre-

sentations for d > 2 CCA have much complicated structures. They are made up of non-trivial

SO(d− 1) representations joined by the action of Carrollian boosts, and this generally leads

to net representations rather than just chain-like ones in LogCFT or 2d GCFT. The gen-

eral structure of net representations is beyond the scope of this work. We manage to work

out all the allowed chain representations, and find that they can be categorized into a few

classes: the decreasing chain, the increasing chain and two exceptional cases, besides rank-1

singlets. With the representations of the CCA rotation being well defined, the highest weight

representations and the definitions of local operators follow immediately, which complete the

discussions of local operators in CCFT.

In contrast, the Galilean conformal symmetry can be obtained by taking non-relativistic

limit, and is also generated by {D,Pµ,Kµ, Bi, J ij} but with Bi being the Galilean boost op-

erators. The Galilean conformal algebra (GCA) has a different algebraic structure (2.3) from

CCA, and the symmetry generators of GCA act differently as the symmetries on the space-

time. Nevertheless, the highest weight representations we need have similar structures with

the ones in CCA. The reason is that the GCA rotation {J ij , Bi} shares the same algebraic

structure with the CCA rotation, thus the finite dimensional representations of GCA rotation

and further the highest weight representations and local operators have similar structures

with the ones in CCA. The essential difference originates from the action of the Bi gener-

ators. Consequently the covariant tensor representations of the CCA rotation become the

contravariant tensor representations of the GCA rotation.

Furthermore, we discuss the two-point and three-point functions in CCFT and GCFT. In

principle, these correlators can be constrained by the Ward identities, just as in CFT. In this

work, we mainly focus on the correlators of chain representations in CCFT4. Even in this rel-

atively simple case, there present some novel features. First of all, as the time coordinate and

1In this work, we focus on the highest weight representation. The representations from Wigner’s classifica-
tion may be useful for other purposes.
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spacial coordinates behave differently under symmetry transformation, the time-dependence

of the correlators is absent in many cases. We find that the non-trivial correlators with time

dependence could only appear for the representations of certain structure, and the correlators

are generally polynomials of time coordinates for CCFT (spacial coordinates for GCFT). Sec-

ondly, due to the multiplet structure, the 2-pt correlators present multi-level structures. At

each level, there could be 2-pt coefficients, which generally cannot be fixed by the Ward iden-

tities. Moreover, as the representations are reducible, Schur lemma cannot be applied such

that the selection rules on the representations are absent. Consequently the 2-pt correlators

of the operators in different representations in CCFT could be nonvanishing. For the 2-pt

correlators of net representations and the 3-pt correlators of the operators in chain represen-

tation, the discussion by using the Ward identities is similar, but becomes more tedious. In

this work, we only briefly discuss these cases.

The rest of the paper is organized as follows: in section 2, we review the Carrollian and

Galilean conformal symmetry; in section 3 we construct the highest weight representations of

CCA and GCA; and further in section 4 we calculate the 2-pt and 3-pt correlation functions in

4d CCFT; in 5 we briefly discuss the correlators in 4d GCFT; finally in section 6 we conclude

this paper with some discussions. In a few appendices, we not only present some technical

details in calculations, and some discussions on 3d CCFT, but also show how the Carrollian

conformal algebra can be induced on the null hypersurface from a Lorentzian CFT.

2 Carrollian and Galilean conformal symmetries

In this section, we introduce the Carrollian and Galilean conformal symmetries. They can

be obtained by taking special limits of the relativistic conformal symmetry [54]: the Carrollian

case corresponds to the ultra-relativistic limit c → 0, while the Galilean one corresponds to

the non-relativistic limit c → ∞. Another intrinsic way of deriving them is to consider

the conformal transformations in the framework of Carrollian geometry and Newton-Cartan

geometry [30,31]. Let us discuss them case by case.

2.1 Carrollian conformal symmetry

One can obtain the Carrollian Conformal Algebra (CCA) in d dimensions by taking

the ultra-relativistic limit c → 0 from the usual d-dimensional conformal algebra [54]. The

generators are labeled by {D,Pµ,Kµ, Bi, J ij} with µ = 0, 1, . . . , d − 1, i, j = 1, . . . , d − 1,

where the Carrollian boost generators Bi come from the rotation generators: J i0 c→0−→ Bi. The
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commutation relations are

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [D,Bi] = [D,J ij ] = 0,

[J ij , Gk] = δikGj − δjkGi, G ∈ {P,K,B}

[J ij , P 0] = [J ij ,K0] = 0,

[J ij , Jkl] = δikJ jl − δilJ jk + δjlJ ik − δjkJ il,

[Bi, P j ] = δijP 0, [Bi,Kj ] = δijK0, [Bi, Bj ] = [Bi, P 0] = [Bi,K0] = 0,

[K0, P 0] = 0, [K0, P i] = −2Bi, [Ki, P 0] = 2Bi, [Ki, P j ] = 2δijD + 2J ij .

(2.1)

We may re-list the commutators of K and P in the following matrix:

[Kµ, P ν ] =



0 −2B1 −2B2 −2B3 . . .

2B1 2D 2J12 2J13 . . .

2B2 2J21 2D 2J23 . . .

2B3 2J31 2J32 2D . . .
...

...
...

...
. . .


. (2.2)

The actions of these generators as the symmetries of space-time are listed in Table 1.

Notice that the commutators of the symmetry charges differ from the ones of the vector fields

by a minus sign due to the definition of symmetry generators Qϵ = −
∫
dSµϵνT

µν .

Table 1: Action of CCA symmetry generators as the vector fields on the space-time.

generator vector field finite transformation

d t∂t + xi∂i λxµ

pµ
(
∂t , ∂⃗

)
xµ + aµ

kµ
(
−x⃗2∂t, 2x⃗x

µ∂µ − x⃗2∂⃗
) (

t−a0x⃗2

1−2a⃗·x⃗+a⃗2x⃗2 ,
x⃗−a⃗x⃗2

1−2a⃗·x⃗+a⃗2x⃗2

)
bi x⃗∂t (t+ v⃗ · x⃗, x⃗)

mij xi∂j − xj∂i (t,M · x⃗)

Another interesting thing is that the CCA is isomorphic to the Poincare algebra, ccad ≃
cad−1⋉Rd+1 ≃ iso(d, 1), where cad−1 ≃ so(d, 1) is the (d−1)-dimensional Euclidean conformal

algebra. One can reorganize the generators to see this relation

P̃−2 ≡ 1

2
(K0 − P 0), J̃−2,i ≡ 1

2
(Ki − P i),

P̃−1 ≡ −1

2
(K0 + P 0), J̃−1,i ≡ 1

2
(Ki + P i),

P̃ i ≡ −Bi, J̃−2,−1 ≡ D, J̃ ij ≡ −J ij .

(2.3)
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This reorganization keeps the anti-symmetric relation J̃ab = −J̃ba, where a, b = −2,−1, 1, . . . , d−
1 (here we skipped label 0 to avoid miss-leading). The commutation relations are then

[J̃ab, J̃cd] = ηacJ̃bd − ηadJ̃bc + ηbdJ̃ac − ηbcJ̃ad,

[J̃ab, P̃ c] = ηacP̃ b − ηbcP̃ a, with η = diag{
−2
−1,

−1
1 ,

1
1, . . . ,

d−1
1 },

(2.4)

which is exactly the Poincaré algebra. Thus one can easily find the Casimir operators of the

algebra. Let us consider for example the d = 4 case. From the algebra iso(4, 1), we know

that there are three independent Casimir operators C2, C
′
3, C4, which have the following forms

respectively

C2 =P 0K0 +BiBi,

C ′
3 =ϵijk(2−D)J ijBk +

1

2
ϵijkP

0J ijKk − 1

2
ϵijkP

iJ jkK0 + ϵijkP
iBjKk,

C4 =4D(D − 4)BiBi − ϵijkϵmnlJ
ijJmnBkBl

+ 6P 0(D − 4)K0 + P 0P 0KiKi + P iP iK0K0 − 2P 0P iKiK0

+ 2P 0(3− 2D)BiKi + 4P i(2D − 7)BiK0 + 4P iBiBjKj − 4P iBjBjKi

+ 4P 0J ijBiKj − 4P iJ ijBjK0 + 2P 0J ijJ jiK0.

(2.5)

We can obtain these Casimir operators by taking ultra-relativistic limit from the ones of ca4.

Since ca4 ≃ so(d, 2), its Casimir operators C̃2, C̃
′
3 and C̃4 are given by standard formalism.

The two sets of Casimir operators are related as

C̃2
c→0−→ C2 C̃ ′

3
c→0−→ C ′

3

1

2
(C̃4 − C̃2

2 )
c→0−→ C4 (2.6)

It is also remarkable that there exists an infinite extension of d-dimensional CCA which is

isomorphic to BMSd+1 algebra [54]. For d = 3, the extended algebra is bms4 = {Ln, L̄n,Mrs}
with the commutation relations

[Ln, Lm] = (n−m)Ln+m, [L̄n, L̄m] = (n−m)L̄n+m,

[Lm,Mr,s] =

(
m+ 1

2
− r

)
Mr+m,s, [L̄m,Mr,s] =

(
m+ 1

2
− s

)
Mr,s+m,

[Mr,s,Mt,u] = 0, m, n, r, s, t, u ∈ Z.

(2.7)
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The algebra cca3 can be identified to the global part of bms4

D = L0 + L̄0, J12 = −i(L0 − L̄0),

B1 = −1

2
(M0,1 +M1,0), B2 =

i

2
(M0,1 −M1,0),

P 0 = −M0,0, P 1 = L−1 + L̄−1, P 2 = −i(L−1 − L̄−1),

K0 = M1,1, K1 = L1 + L̄1, K2 = i(L−1 − L̄−1).

(2.8)

The corresponding vector fields on the space-time are2

ln = zn+1∂z +
n+ 1

2
znt∂t, l̄n = z̄n+1∂z̄ +

n+ 1

2
z̄nt∂t, mr,s = −zrz̄s∂t, n, r, s ∈ Z,

(2.9)

where z = x1 − ix2, z̄ = x1 + ix2 are the complex coordinates of the celestial sphere.

For d ≥ 4, the infinitely extended algebra is bmsd+1 = {D,P i,Ki, J ij ,M m⃗}, where M m⃗

are infinite generators with m⃗ = (m1, . . . ,md−1),mi ∈ Z. The M m⃗ generators are commuting

with each other, [M m⃗1 ,M m⃗2 ] = 0, and the rest parts make up a (d−1)-dimensional conformal

algebra cad−1 = {D,P i,Ki, J ij}. The commutation relations of cad−1 with M ’s are

[D,M m⃗] =

(
1−

∑
i

mi

)
M m⃗,

[P i,M m⃗] = −miM
m⃗−e⃗i ,

[Ki,M m⃗] =

2 +mi −
∑
j

2mj

M m⃗+e⃗i +

∑
j ̸=i

mj

M m⃗−e⃗i+2e⃗i ,

[J ij ,M m⃗] = miM
m⃗−e⃗i+e⃗j −mjM

m⃗+e⃗i−e⃗j .

(2.10)

The identifications of the generators of ccad with the ones of the global part of bmsd+1 are

P 0 = M 0⃗, Bi = M e⃗i , K0 = −
∑
i

M2e⃗i , e⃗i = (0, . . . ,
i
1, . . . , 0), (2.11)

plus the obvious ones D,P i,Ki, J ij . And the vector fields corresponding to M m⃗ act on the

space-time as

mm⃗ ≡

(
d−1∏
i=1

(xi)mi

)
∂t, m⃗ = (m1, . . . ,md−1), mi ∈ Z. (2.12)

2Notice once again the minus sign caused by the definition Qϵ = −
∫
dSµϵνT

µν .
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2.2 Galilean conformal symmetry

To obtain the Galilean Conformal Algebra (GCA), one takes the non-relativistic limit

c → ∞ [55]. The generators of the algebra can also be denoted by {D,Pµ,Kµ, Bi, J ij} with

i, j = 1, . . . , d− 1, µ = 0, 1, . . . , d− 1. They obey different commutation relations, especially

for B’s,

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [D,Bi] = [D,J ij ] = 0,

[J ij , Gk] = δikGj − δjkGi, G ∈ {P,K,B},

[J ij , P 0] = [J ij ,K0] = 0,

[J ij , Jkl] = δikJ jl − δilJ jk + δjlJ ik − δjkJ il

[Bi, P 0] = −P i, [Bi,K0] = −Ki, [Bi, Bj ] = [Bi, P j] = [Bi,Kj] = 0,

[K0, P 0] = 2D, [K0, P i] = −2Bi, [Ki, P 0] = 2Bi, [Ki, P j] = 0.

(2.13)

Note that the commutators in bold are different from the ones in CCA. We re-list the com-

mutators of K’s and P ’s in the following matrix

[Kµ, P ν ] =



2D −2B1 −2B2 −2B3 . . .

2B1 0 0 0 . . .

2B2 0 0 0 . . .

2B3 0 0 0 . . .
...

...
...

...
. . .


. (2.14)

The generators can be understood as the vector fields acting on the space-time, as listed in

Table 2.

Table 2: GCA symmetry generators as the vector fields on the space-time.

generator vector field finite transformation

d t∂t + xi∂i λxµ

pµ
(
∂t , ∂⃗

)
xµ + aµ

kµ
(
2txµ∂µ − t2∂t,−t2∂⃗

) (
t

1−a0t
, x⃗−a⃗t2

(1−a0t)2

)
bi −t∂⃗ (t, x⃗− tv⃗)

mij xi∂j − xj∂i (t,Mx⃗)

The structure of this algebra is gcad ≃ (so(3) × so(d − 1)) ⋉ R3(d−1), where so(3) =

{P 0, D,K0}, so(d − 1) = {J ij}, and {P i, Bi,Ki} = R3(d−1), and the semi-direct product is

slightly non-trivial as shown in Figure 1.
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Figure 1: Structure of Galilean conformal algebra.

We can construct the Casimir operators of GCA by using the standard method: first

construct the combinations of the generators in the universal enveloping algebra and then

require them to be invariant under the action of the generators to fix the relative coefficients.

After some tedious work, we manage to find the Casimir operators for 4-dimensional GCA

C2 =P iKi +BiBi,

C ′
3 =ϵijkP

iBjKk,

C4 =P iP iKjKj − P iP jKjKi + 4P iBiBjKj − 4P iBjBjKi.

(2.15)

Similar to the case of CCA, the Casimir operators of GCA can be obtained by taking non-

relativistic limit of the Casimir operators C̃2, C̃
′
3, C̃4 of conformal algebra as well,

C̃2
c→∞−→ C2 C̃ ′

3
c→∞−→ C ′

3 C̃4
c→∞−→ C4 (2.16)

There exists an infinite extension {Ln,M
i
n, J

ij} for general d dimension as well, with the

commutation relations

[Ln, Lm] = (n−m)Ln+m, [Ln,M
i
m] = (n−m)M i

n+m, [M i
n,M

j
m] = 0,

[J ij , Ln] = 0, [J ij ,Mk
n ] = δikM j

n − δjkM i
n, n ∈ Z.

(2.17)

Its global part is the same as the gcad, with the following nontrivial identifications

D = L0, Bi = M i
0, P 0 = L−1, P i = −M i

−1, K0 = L1, Ki = M i
1. (2.18)

The corresponding vector fields are of the forms

ln = tn+1∂t + (n+ 1)tnxi∂i, mi
n = −tn+1∂i n ∈ Z, (2.19)

besides the ones mij given in table 2.
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2.3 Space-time structure

In the discussions above, we interpret the Carrollian/Galilean conformal symmetry as

ultra/non-relativistic limit of relativistic conformal symmetry. In fact, there exists an intrin-

sic way to understand Carrollian/Galilean group as the symmetries of the underlying space-

time structure [30–32, 37]. The two space-times are united into the Bargmann manifold: the

Carrollian space-time is a null hyper-surface of the Bargmann manifold, while the Galilean

space-time is the base space of the Bargmann manifold. The corresponding (extended) con-

formal group is the conformal extension of space-time symmetry group with isotropic scaling.

To be more specific, the Carrollian group is the space-time symmetry of Carrollian mani-

fold (C, gC, ξ), where C is a d-dimensional smooth manifold endowed with a degenerate metric

gC and a vector ξ which generates the kernel of gC. In a modern language, the manifold C

is described as a fiber bundle with an 1-dimensional fiber of the coordinate t and (d − 1)-

dimensional base space BC of the coordinates xi. The simplest Carrollian manifold is the flat

Carrollian space-time with BC = Rd−1, C = BC × R1, gC = δijdx
i ⊗ dxj and ξ = ∂t. The

Carrollian group generated by {Pµ, Bi, J ij} is naturally the space-time symmetry of the flat

Carrollian manifold C.

However, to make the finite conformal extension of Carrollian symmetry close under

ki transformations, we should compactify the space-time, which requires us to define the

“infinity” properly. As the inversion iE : xµ → xµ

x2 plays an important rule in the case of

Euclidean conformal symmetry, the spacial inversion i in the Carrollian space-time is essential

to define the “infinity”. The definition of the spacial inversion and its adjoint actions for the

flat Carrollian space-time are3

i :(t, x⃗) →
(

t

x⃗2
,
x⃗

x⃗2

)
, i2 = id,

idi = −d, ipµi = −kµ,

ikµi = −pµ, ibii = bi, imiji = mij ,

(2.20)

where id is the identity transformation. The above action of i on the finite transformations

can be checked easily, for example:

ipµi : (t, x⃗)
i−→
(

t

x⃗2
,
x⃗

x⃗2

)
pµ−→
(

t

x⃗2
+ a0,

x⃗

x⃗2
+ a⃗

)
i−→ (t+ a0 x⃗2, x⃗+ a⃗ x⃗2)

1 + 2a⃗ · x⃗+ a⃗2x⃗2
. (2.21)

The spacial inversion i is not in the connected component of the Carrollian conformal group,

but acting even times of i on a finite transform keeps it in the same connected component of

3There are actually four different well-applied choices for i: (t, x⃗) →
(
± t

x⃗2 ,± x⃗
x⃗2

)
, while the adjoint actions

are the same up to a minus sign. However, different choices lead to the same result for the discussions in this
sub-section.
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the Carrollian conformal group.

It is expected that the spacial inversion i should map the “origin” to the “infinity”.

This requires us to handle the fiber bundle structure carefully. Firstly, we deal with the

compactification of the base space BC. Projecting to BC, the Carrollian conformal group is

reduced to the (d− 1)-dimensional conformal group, and the spacial inversion i is reduced to

the inversion iE in (d− 1)-dimensional space:

d|BC = dE , pi|BC = piE , ki|BC = kiE , mij |BC = mij
E ,

p0|BC = K0|BC = bi|BC = idE , i|BC = iE ,
(2.22)

where the symmetries with the label “E” represent the symmetries in (d − 1)-dimensional

Euclidean space. Thus we can add the infinity point ∞⃗ to Rd−1 and define the compactification

of the base space BC as a (d− 1)-dimensional sphere Sd−1.

We further consider i2 = id acting successively on the fiber near the origin of the base

space

(t, ϵ⃗)
i−→ (t/ϵ⃗2, ϵ⃗/ϵ⃗2)

i−→ (t, ϵ⃗). (2.23)

Taking ϵ⃗ → 0⃗, we have

(t, 0⃗)
i−→ (t, ∞⃗)

i−→ (t, 0⃗), (2.24)

where t = limϵ⃗→0⃗ t/ϵ⃗
2 (with t1 = limϵ⃗→0⃗ t1/ϵ⃗

2 ̸= t2 = limϵ⃗→0⃗ t2/ϵ⃗
2 for t1 ̸= t2) generates a

1-dimensional space: t ∈ R̃ ∼= R, such that the second i acts properly. Thus the compactified

Carrollian space-time is C = Sd−1×R with the base space BC = Sd−1. It is possible to choose

other set of coordinates for BC to avoid awkward definition of t ∈ R̃, but in this paper we do

not need to make such choice.

The Galilean group is the space-time symmetry of a Newton-Cartan manifold (N, gN, θ),

where N is a d-dimensional smooth manifold endowed with a symmetric (2, 0)-tensor gN and a

1-form θ which generates the kernel of gN. N is a fiber bundle with BN being its 1-dimensional

base space. For the flat case we have BN = R, N = BN × Rd−1, gN = δij∂i ⊗ ∂j and θ = dt.

The Galilean group is generated by {Pµ, Bi, J ij}, where Bi is the Galilean boost. Similar to

the Carrollian case, the Galilean conformal symmetry is the conformal extension of space-time

symmetry on the compactified manifold N = S1 ×Rd−1. In this case, it is temporal inversion

i: (t, x⃗) →
(
±1

t ,±
x⃗
t2

)
relating the “origin” to the “infinity”. The discussions are quite similar

and we omit the details.

2.4 Conformal invariants

It is very different from the d = 2 case that the conformal invariants of 4-point insertions

in higher-d (d ≥3) Carrollian space-time do not depend on the time-like degrees of freedom.
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We can always firstly fix the temporal coordinates tn = 0 by using d + 1 ≥ 4 differential

operators: {p0 = ∂t, bi = xi∂t, k0 = x⃗2∂t}. The rest symmetries are just (d− 1)-dimensional

conformal symmetry and it is standard to fix the insertions in the configuration4

(0, 0⃗) (0, 1⃗) (0, z⃗) (0, ∞⃗). (2.25)

This leaves us with two independent conformal invariants (z, z̄), which are exactly the same

as the 4-point conformal invariants in CFTd−1.

In fact, the number of time-like degrees of freedom of n-insertions is n − (d + 1). Thus,

when the number of insertions is not too large, the conformal invariants would be independent

of time-like coordinates, and are the same as the ones in CFTd−1. The dependence of time-

like coordinates appears only in the conformal invariants of higher-point insertions. To be

specific, we have

CCFTd n-pt invariants = CFTd−1 n-pt invariants, 4 ≤ n ≤ d+ 1.

This is indeed the case for n ≤ d + 1 insertions, since the d + 1 ≥ 4 differential operators

{p0, bi, k0} always fix all the temporal coordinates. Taking d = 4 for example, the 4-point

and 5-point invariants do not depend on the time-like coordinates, being the same as the ones

in 3-dim CFT, while the time-like dependence appears in the 6-point and even higher-point

conformal invariants

4-pt: (u, v) = (u, v)|(CFT3)

5-pt: za5 = za5 |(CFT3) a = 1, . . . , 5

6-pt: za6 = za6 |(CFT3) a = 1, . . . , 8, z96 contains time-like d.o.f.

n-pt: zan = zan|(CFT3) a = 1, . . . , 3n− 10,

zan a = 3n− 9, . . . , 4n− 15 contain time-like d.o.f.

(2.26)

It is obvious that this feature does not occur in d = 2, because there are only three relating

differential equations, not enough to constrain all the time-like degrees of freedom.

There is no such strangely behaved invariants for the insertions in the Galilean space-

time. It can be checked that for general d > 2 GCA, there are only two invariants which look

similar to the ones in 2d GCA [25]. For 4-pt insertions in 4d GCA, the two invariants are t

and r, with

t =
t12t34
t13t24

,

r = |x⃗| =
∣∣∣∣t( x⃗12

t12
+

x⃗34
t34

)
− t

(
x⃗13
t13

+
x⃗24
t24

)∣∣∣∣ . (2.27)

4Recall that t4 is defined in the sense that 0 = limϵ⃗→0⃗ 0/ϵ⃗
2.
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Obviously the invariants are not independent of the space-like coordinates. The key dif-

ference is that the base space of Galilean space-time is 1-dimensional S1 and the fiber is

(d − 1)-dimensional Rd−1. The differential equations are not enough to fix all the space-like

coordinates.

At first looking, the conformal invariants in the Carrollian space-time are unusual. An-

other way to understand them is from taking the limits on the usual conformal invariants in

Minkowski space-time. Actually the conformal invariants for the Carrollian or Galilean space-

time could be obtained by taking ultra- or non-relativistic limit of the conformal invariants

in usual space-time.

3 Representations and Local Operators

The systematic way of constructing and classifying local operators in relativistic CFTs

dates back to Mack and Salam’s work [56], and the resulting highest weight representations5

contain only primary operatorsOa and their descendants (derivative operators) ∂nOa, without

other unidentified operators to close the action of the symmetry algebra. We first briefly review

this method of constructing local operators, and then apply it to discuss finite-component field

operators in CCFT and GCFT. Since the structures of the involved algebras are similar, we

consider the case of CCA and CCFT in details and leave the discussions of GCA and GCFT

to section 3.5.

In section 3.1 we explain the induction method of constructing local operators. In section

3.2 we introduce the tensor representations of CCA rotation as motivating examples. In

section 3.3 we discuss the constraints on general finite-dimensional representations of CCA

rotation. In section 3.4 we give the definition of the highest-weight representations and local

operators of CCA.

The highest-weight representations for GCFT and CCFT have been discussed to some

extent in the literature [36,54]. In particular, the scale-spin representations were studied and

were nicely applied to the study of specific Galilean/Carrollian field theories [36]. The finite-

dimensional scale-spin representation in fact fits in the multiplet representation in section 3.4,

and we compare them in 3.6.

For concreteness, the discussions in this section mainly focus on d = 4, and can be applied

to other dimensions d ≥ 3 as well. In Appendix C, we discuss the cases of other dimensions,

especially for the special d = 3 case.

5More precisely, they are parabolic Verma modules, see e.g. the explanations in [10].
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3.1 Construction of local operators

In the following we use the terms ”group” and ”algebra” interchangeably. Similar to

the relativistic case, to include the spinors in non-Lorentzian theories we need to replace the

conformal group by its covering group. For example, the Carrollian case is ISO(d, 1) →
Spin(d, 1)⋉Rd+1.

The method of constructing local operators is as follows:

1. Denoting the conformal group as G with Lie algebra g, a symmetry transformation

g ∈ G is represented as a unitary operator U(g) on the Hilbert space, and acts on other

operators adjointly, O → O′ = U(g)OU(g)−1. A local operator O(x) depends only on

its insertion point and should respect the symmetry, hence O(x)′ is an operator located

at g(x). Now assuming a complete basis of local operators {Oa(x)}, by the logic above

Oa(x)′ can be expanded into linear combinations of Oa(g(x)),

Oa(x)′ = Ra
b (g

−1, x)Ob(g(x)), (3.1)

where Ra
b (g

−1, x) are the combination coefficients, and the inverse g−1 is to preserve the

composition g1g2.

2. To determine Ra
b (g, x), consider the transformations g0, which keep the origin x = 0

intact. These transformations compose a stabilizer subgroup (little group) G0 with Lie

algebra g0. By (3.1) they act on Oa := Oa(0) as

U(g0)OaU(g0)
−1 = Ra

b (g
−1
0 , 0)Ob. (3.2)

Hence Ra
b (g0, 0) is a representation of G0, and we need to construct and classify repre-

sentations of g0.

3. Choosing a representation R of g0 on vector space VR, let the operators Oa ∈ VR freely

move away from the origin, by the action of translation operator U(x) = expxµPµ,

Oa(x) = U(x)Oa(0)U(x)−1 (3.3)

then the action of the conformal group G ∋ g on Oa(x) is induced by the representation

R. To be concrete, the action of g on O(x) is equivalent to the action of (gx) ∈ G on

O(0). Using the coset decomposition gx = x′g0 with g0 ∈ G0, the action turns to locate
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the action of g0 on O at x′:

U(g)Oa(x)U(g)−1 = U(gx)Oa(0)U(gx)−1

= U(x′)(U(g0)Oa(0)U(g0)
−1)U(x′)−1

= Ra
b (g

−1
0 )Ob(x′).

(3.4)

In practice, we use the BCH formula to derive the infinitesimal transformations of G.

In the cases of CFT, CCFT and GCFT, the stabilizer algebras g0 share a similar structure

that helps us to simplify the discussion. They are all made up of three subalgebras: dilation

D, generalized rotations6 M = {J,B} and special conformal transformations (SCTs) K re-

spectively. And the commutation relations are: [D,M ] = 0, and [D,K] ⊂ K, [M,K] ⊂ K,

i.e., K is a representation of D and M . The commutativity of the dilatation and the rotations

implies that the local operators Oa can be diagonalized into the eigenstates of the dilation7,

[D,O] = ∆OO, and simultaneously into a representation of the rotations, [M,Oa] = Ma
b Ob.

Following the terminology of [56], the finite-dimensional representations of G0 are called

as type I, describing finite-component field operators, and infinite-dimensional ones are type

II. Furthermore, the representations satisfying the primary-like conditions [K,Oa] = 0 are

called type a, otherwise are called type b.

In compact CFTs where the dilatation spectrum is discrete and bounded below, [K,O] =

0 can always be satisfied. However, in non-unitary CFTs, CCFT and GCFT, a priori there

is no physical reason guaranteeing this condition. For simplicity, in this work we focus on

the type Ia case. Hence the remaining task is to construct and classify finite-dimensional

representations of the rotation subalgebra M .

For CFT2 with only global symmetries SO(3, 1) or SO(2, 2), and Galilean/Carrollian

CFT2 with ISO(2, 1), the rotation groups are SO(2) and R respectively and hence are non-

semisimple. The finite dimensional representations give logarithmic multiplets, e.g. [57] and

boost multiplets [25] respectively.

For CFTd, with d ≥ 3, the rotation group SO(d) or SO(d−1, 1) is semisimple, and finite

dimensional representations are completely reducible. However for d ≥ 3 CCFT and GCFT,

the generalized rotation group, CCA and GCA rotation group respectively, is the Euclidean

group ISO(d − 1). The finite dimensional representations are not completely reducible, and

the building blocks are indecomposable representations.

6Here J is the spatial rotation, and B is the Lorentzian, Carrollian or Galilean boost respectively.
7The local operators can be generalized eigenstates of D, accounting for the logarithmic multiplets in

logarithmic CFTs.
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3.2 Tensor representations of CCA rotation

To construct all representations of CCA rotation ISO(3) is difficult. In this subsection,

we start from the examples of tensor representations, and get some hints of the constraints

on general representations. The tensor representations can be found in two ways: the first is

taking ultra-relativistic limit c → 0 of SO(4) tensor representations; the second is defining the

vector representation and then using tensor product to get higher-rank tensor representations.

In the following, we mainly use the second approach and leave the detailed discussions of taking

limit to Appendix A.

The simplest case is the scalar representation: the primary operator O is invariant under

CCA rotations

[J ij ,O] = [Bi,O] = 0. (3.5)

The interesting structures appear in the following non-trivial representations.

3.2.1 Vector representations

The simplest non-trivial case is the vector representation, denoted as V . The vector

operators Oµ ∈ V transform as covariant vectors Pµ under the CCA rotation, and thus from

(2.1) the actions of CCA rotation are

[J ij ,Ok] = δikOj − δjkOi, [Bi,Oj ] = δijO0, [J ij ,O0] = [Bi,O0] = 0. (3.6)

From the inclusion SO(3) ⊂ ISO(3), this vector representation can be organized as spin-1

and spin-0 SO(3) representations, which are related to each other by the boost operators. The

explicit relations are shown in Figure 2, where for simplicity, we organize the CCA rotation

generators as

J = −iJ12, J± =
1√
2
(∓J23 + iJ31), B± =

1√
2
(iB1 ±B2) (3.7)

with the commutation relations:

[J, J±] = ±J±, [J+, J−] = J,

[J,B±] = ±B±, [J,B3] = 0,

[J+, B+] = 0, [J+, B3] = B+, [J+, B−] = B3,

[J−, B+] = B3, [J−, B3] = B−, [J−, B−] = 0.

(3.8)

The spin-1 SO(3) part Oi is organized as O± = 1√
2
(iO1 ±O2), being the eigen-operators of

J and related to each other by J±.

From Figure 2 it is immediately noticed that O0 spans a subrepresentation V0 ⊂ V of
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Figure 2: The vector representation of CCA rotation group. The meaning of this Young diagram
structure will be introduced in section 3.2.2.

CCA rotation and there is no other sub-representation V ⊥ such that V0 ⊕ V ⊥ = V . Hence

the vector representation V is reducible but indecomposable.

The reducibility of vector representation can also be seen from the taking-limit procedure.

For simplicity consider the two operators (O0,O3), after taking limit we have[
−iJ03,

1√
2
(iO0 ±O3)

]
= ± 1√

2
(iO0 ±O3)

c→0−→ i

[
B3,

1√
2
(iO0 ±O3)

]
= ± i√

2
O0. (3.9)

Namely, the representation matrix of B3 becomes non-diagonalizable after taking limit:

J03 =

(
0 1

−1 0

)
c→0−→ −B3 =

(
0 0

−1 0

)
. (3.10)

Other B-matrices also contain Jordan blocks, hence the operators cannot be organized as the

eigen-operators of the B generators. And from the Jordan blocks we can find the nontrivial

subrepresentation.

Not only for the vector representation, the breakdown of complete reducibility is an

unavoidable feature for generic representations of the CCA rotation ISO(d − 1). To conve-

niently describe this kind of representations we firstly introduce some terminologies. We call

the multiplet representations as such type of reducible but indecomposable representations:

they are finite direct sums of subspaces V =
⊕N

n=1 Vn, where Vn are irreducible represen-

tations of SO(3) and are connected by B generators. These subspaces Vn are named as

sub-sectors of a multiplet. Due to the finiteness of N , the operators in each sub-sector can be

annihilated by finite times of B’s actions, and the minimal number of times is called the order

of the sub-sector8. The rank of a multiplet representation is defined as the maximal order of

all sub-sectors. The rank-1 multiplet representations are also called singlet representations,

which are in fact SO(3) irreducible representations. For example, the vector representation

is a rank 2 multiplet with {O+,O3,O−} and {O0} being the irreducible SO(3) sub-sectors of

8The definition of order here is good enough for tensor representations, but not for general representations.
A self-consistent definition can be found in section 3.3.
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order 2 and 1 respectively. We will elaborate these points in section 3.3, and now turn to the

construction of tensor representations.

3.2.2 Higher rank tensor representations

Taking tensor product of vector representations V and decomposing it into indecompos-

able ones, we get tensor representations of CCA rotation, V ⊗k =
⊕N

n=1 Vn. And to describe

the structure of Vn, we need to generalize the Young diagram to label the mixed symmetry of

indices and the boost action. We briefly recall the idea of Young diagram and then generalize

it to the CCA rotation ISO(d− 1).

The idea of Young diagram is as follows. Starting from the vector representation V of

GL(d) (or its compact form U(d)), the general linear group GL(d) and the symmetric group

Sk simultaneously act on the the tensor representation V ⊗k. The joint actions of GL(d)×Sk

commute, hence V ⊗k should split into V ⊗k =
⊕N

n=1 Vn, where Vn are irreducible represen-

tations of Sk and are in one-to-one correspondence with Young diagrams. Moreover by the

Schur-Weyl theorem Vn are also irreducible with respect to GL(d). But some representations

of GL(d) are missing. For example, the determinant R : g 7→ det(g) corresponds to the Young

diagram [n] with n rows and 1 column, but Rm : g 7→ det(g)m,m ∈ Z with m < 0 cannot be

characterised by any Young diagram.

Descending to SL(d) ⊂ GL(d) (or the compact ones SU(d) ⊂ U(d)), the determinant

representations Rm are trivial and all the Vn remain irreducible, hence we arrive at the familiar

fact: the Young diagrams with the rows less than d are in one-to-one correspondence with

the representations of SL(d) or SU(d)9. Then for SO(d) ⊂ SL(d), Vn become reducible and

can be decomposed into irreducible ones after splitting the trace parts. The correspondence

between the Young diagrams and the irreducible representations could be broken at two

levels: firstly the spinor representations are missed; secondly there are redundancies of Young

diagrams. For SU(d), d ≥ 3 the quark [1] and anti-quark [d − 1] are not isomorphic, but for

SO(d) they are isomorphic due to the metric tensor. Only the Young diagrams with ≤ d
2 rows

gives non-isomorphic irreducible tensors.

Now for the CCA rotation ISO(d − 1), in the previous subsection we use SO(d − 1) ⊂
ISO(d−1) to label the spins of sub-sectors in the vector representation V and add the arrows

to characterise the boost actions between the sub-sectors. We can still decompose the tensors

Vn in terms of the Young diagrams, SO(d− 1) ⊂ ISO(d− 1) ⊂ SL(d), as we show below.

In the vector case V , before taking the limit c → 0 the index of va ∈ V is labeled by a

SO(4) box, and the 4 components of va correspond to the box filled by indices a = 0, 1, 2, 3.

9Strictly speaking, for SL(d) and GL(d), Vn are all holomorphic and there are also anti-holomorphic rep-
resentations by taking complex conjugate. For these groups, the complex conjugate representations are not
related to the dual representations.
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After taking the limit, the SO(4) symmetry is broken and by ISO(d − 1) ⊂ SL(d) we need

SL(4) or equivalently SU(4) boxes instead. The 4 components of the vector are decomposed

to 3 spacial components as an SO(3) vector denoted by , and 1 temporal component as

an SO(3) scalar denoted by 10. Then the arrows connecting different sub-sectors represent

the action of the boosts. This is illustrated in Figure 3.

Figure 3: The vector representation of CCA by taking the limit from vector representation of
SO(4).

For higher-rank tensors we need to bookmark the contractions of the spatial indices of

SO(3) in the SU(4) Young diagrams. The contraction of SO(3) indices is denoted by

explicitly. The results of the rank-2 and rank-3 tensor representations are shown in Figure

4 and 5 respectively. The rank-2 tensor representation of CCA rotations is decomposed into

a 10-dimensional representation and a 6-dimensional representation, and the rank-3 tensor

representation is decomposed into three 20-dimensional representations and a 4-dimensional

representation.

Figure 4: The rank-2 tensor representation of CCA.

From the above examples we find that for the decomposition V ⊗k =
⊕N

n=1 Vn of SL(d) ⊂
GL(d), all the Vn remain indecomposable with respect to ISO(d − 1) ⊂ SL(d). We believe

this is true for arbitrary rank k and dimension d. Then the algorithm of decomposition can

be summarized as follows:

1. Write down all the possible SU(d) Young diagram corresponding to Vn. Every diagram

corresponds to an indecomposable sector of ISO(d− 1);

10We apologize to the notation here: the 3 or 1 in boxes are not the third or first component, but the
dimension of SO(3) representations.
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Figure 5: The rank-3 tensor representation of CCA. The upper panel shows the decomposition in
terms of Young diagram, with the number in the box representing the spacial indices and temporal
indices respectively. The lower panel represents the same decomposition, but now the subsectors are

labeled by the representations of SO(3) directly, where (j) labels the spin-j representation of
dimension 2j + 1. The last summand (0) → (1) is isomorphic to the dual vector V ∨. Since

ISO(d− 1) is not in SU(d), the dual of V is not isomorphic to V itself.

2. For every diagram, fill every box in the first d − 1 rows with label d− 1 representing

the (d−1) spacial indices. Then write down all possible contraction of SO(d−1) indices

using notation similar to ;

3. Considering the action of the boosts, replace one d− 1 label by 1 to get a new sub-

sector and draw an arrow to this new sub-sector from the old one. Repeat this step

until there is one 1 label for every column (since there is only one temporal index and

it can not be anti-symmetric with itself);

4. Take other SU(d) Young diagrams in the step 1 and repeat the steps 2 and 3. The

dimensions of the sub-sectors can be read by peeling all boxes filled with 1 and the

contractions , and then view the rest as the Young diagram of SO(d− 1).

In this diagrammatic method, each of the SU(d) Young diagram in the net is an irre-

ducible SO(d− 1) representation, and corresponds to the projector P = PtracePsPtP0, where

P0 is the standard Young projector of SU(d), Ps, Pt are projectors to spatial and temporal

components, and Ptrace is the projector to ensure the traceless condition.

Since each sub-sector is a representation of SO(d − 1), this generalized SU(d) Young

diagrams can be equivalently replaced by SO(d − 1) Young diagrams. There are several

advantages of SU(d) Young diagrams comparing with SO(d−1) Young diagrams: the number

of boxes in every sub-sector of is equal to the rank of the tensor, and this fact gets lost if using
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the Young diagram of SO(d−1) directly; it is convenient for computation since the indices and

contractions are kept explicitly. The disadvantage is that there can be redundancies: different

generalized SU(d) Young diagrams can correspond to the same SO(d− 1) representation.

Back to d = 4, for future convenience we also introduce new notation in the lower panel of

Figure 5, where (j) labels a spin-j SO(3) sub-sector. As explained in Appendix A, one major

difference between the tensor representations of CCA rotation and SO(4) is that after taking

the limit some decomposable representations of SO(4) become indecomposable in CCA. For

example the symmetric part of the rank-2 tensor representation of SO(4) can be decomposed

into a symmetric traceless part and a trace part, as shown in Figure 14 in Appendix A, while

the symmetric part of the rank-2 tensor representation of the CCA rotation group can not

be decomposed into the traceless and the trace parts, which instead are connected by the Bi

generators as shown in Figure 4.

Besides the direct sum decomposition of the tensor product, a more broad class of ex-

amples are the subrepresentations of tensors, which can be found by selecting some SO(3)

sub-sectors and collecting all sub-sectors along the arrows till the end. This is feasible because

the arrows of B are one-way arrows - there is no generator sending the lower sub-sectors back

upwards (strictly upper triangular matrix in the sense of representation matrix), and thus

the lower sub-sectors form a sub-representation. For example, one can get a 5-dimensional

representation: (0) → (1) → (0) starting from the sub-sector in the first part of the

rank-2 tensor representation.

3.3 General representations of CCA rotation

The general representations of CCA rotation are rather complicated, but they are worthy

studying. Firstly they appear in the concrete models. For example, the Carrollian U(1) gauge

fields A [40] are in a chain representation, and as will be shown in a subsequent work the stress

tensor F is in a net representation. In some other papers, the operators other than the singlet

representation have been studied, see e.g. [36,38]. Secondly, if the operator product expansion

(OPE) exists in higher dimensional CCFT, the operators in all possible representations can

appear in the OPE even if the external operators are in some simple representations.

It turns out that not all finite-dimensional representations can be derived from the sub-

representations of tensor representations, and we need a bottom-up method of constructing

representations of the CCA rotation. The following theorem from [58] is useful for character-

izing the structure of finite dimensional representations of the CCA rotation:

Theorem 1. Set a Lie algebra g = g0 ⋉ n, where g0 is a semi-simple Lie algebra and n a

nilpotent Lie algebra. The representation of g on a finite dimensional vector space V is such

that there is a sequence of subspaces of V : 0 = W0 ⊊ W1 ⊊ · · · ⊊ Wr = V , where each Wi is
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invariant and completely decomposable under g0. The n elements maps subspace Wi to Wi−1

for i = 1, . . . , r.

Applying this theorem to our case g0 = so(3) and n = {Bi}, the finite-dimensional

representations of the CCA rotations are all multiplet representations with every sub-sectors

being irreducible representations of SO(3). The boost generators n map sub-sectors to sub-

sectors of one order lower since (adB)
1B = 0. Here we provide the rigorous definition of the

term “order”: the operators in W1 have order 1, and the operators in Wi/Wi−1 have order i.

It should be stressed that this theorem implies the action of the Bi generators on the

operator O cannot give the terms proportional to O itself. This means that the boost charge

in [51] should vanish ξ = 0 for all finite-component field operators in d ≥ 3.

To get full constraints, we consider the representation matrix. By the theorem 1, the

general representation matrix of the CCA rotations would be like the form shown in Figure

6, where the black blocks are non-zero. The diagonal black blocks of J ’s represent SO(3)

irreducible representations, and the blocks in the same big square are sub-sectors in the same

order. The B matrices, as discussed above, are off square-diagonal matrices mapping SO(3)

representations to SO(3) representations of lower order.

Figure 6: The matrix representation of the CCA rotations.

Using the specific algebraic structure, one can further fix the matrix blocks. For J ij ’s,

the matrix blocks are exactly the well-known matrices of irreducible SO(3) representations,

which we repeat here

Jj |j,m⟩ = m |j,m⟩ ,

J+
j |j,m⟩ =

√
1

2
(j +m+ 1)(j −m) |j,m+ 1⟩ ,

J−
j |j,m⟩ =

√
1

2
(j −m+ 1)(j +m) |j,m− 1⟩ .

(3.11)

There are three types of B matrix blocks. Since Bi’s form a spin-1 SO(3) representation,

by the tensor product decomposition (j)⊗ (1) = (j−1)⊕ (j)⊕ (j+1), their actions on SO(3)
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representation (j) give (j) or (j ± 1) representations. Using the Wigner-Eckart theorem we

can determine the B matrix blocks up to an overall coefficient, which further can be absorbed

into the SO(3) representations |ji,m⟩ → ci |ji,m⟩. The resulting matrix blocks are

(Bm=a
j→j+1)m1,m2 = δm2,m1+a ⟨j,m1; 1, a|j + 1,m1 + a⟩ ⟨j + 1, B, j⟩

= δm2,m1+a

√
(j + 1)(2j + 1) ⟨j,m1; 1, a|j + 1,m1 + a⟩ ,

(Bm=a
j→j )m1,m2 = δm2,m1+a ⟨j,m1; 1, a|j,m1 + a⟩ ⟨j, B, j⟩

= δm2,m1+a

√
j(j + 1) ⟨j,m1; 1, a|j,m1 + a⟩ ,

(Bm=a
j→j−1)m1,m2 = δm2,m1+a ⟨j,m1; 1, a|j − 1,m1 + a⟩ ⟨j − 1, B, j⟩

= δm2,m1+a

√
j(2j + 1) ⟨j,m1, 1, a|j − 1;m1 + a⟩ ,

(3.12)

where ⟨j2, B, j1⟩ is the reduced matrix element. Concretely they are11



B3
j→j+1 |j,m⟩ =

√
(j +m+ 1)(j −m+ 1) |j + 1,m⟩ ,

B+
j→j+1 |j,m⟩ =

√
1

2
(j +m+ 2)(j +m+ 1) |j + 1,m+ 1⟩ ,

B−
j→j+1 |j,m⟩ =

√
1

2
(j −m+ 2)(j −m+ 1) |j + 1,m− 1⟩ ,

(3.13)



B3
j→j |j,m⟩ = m |j,m⟩ ,

B+
j→j |j,m⟩ = −

√
1

2
(j +m+ 1)(j −m) |j,m+ 1⟩ ,

B−
j→j |j,m⟩ =

√
1

2
(j −m+ 1)(j +m) |j,m− 1⟩ ,

(3.14)



B3
j→j−1 |j,m⟩ = −

√
(j +m)(j −m) |j − 1,m⟩ ,

B+
j→j−1 |j,m⟩ =

√
1

2
(j −m)(j −m− 1) |j − 1,m+ 1⟩ ,

B−
j→j−1 |j,m⟩ =

√
1

2
(j +m)(j +m− 1) |j − 1,m− 1⟩ .

(3.15)

The remaining commutation relations [B,B] = 0 restrict the chain representations (which

11We relabel the magnetic quantum number of a SO(3)-vector V a by V m=±1 = V ±, V m=0 = V 3, to
distinguish it from the temporal component V 0.
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means (j1) → (j2) → · · · → (j3) without any branches) to be of the following forms

(0) → (1) → (0),

· · · → (j) → (j + 1) → (j + 2) → · · · ,

· · · → (j) → (j − 1) → (j − 2) → · · · .

(3.16)

For example, (2) → (1) → (0) is an allowed representation, but (0) → (1) → (2) → (1) → (0)

is forbidden since · · · → (1) → (2) → (1) → · · · is not an allowed pattern.

For more complicated net representations, the constraints by [B,B] = 0 are very weak.

For example, one can construct four kinds of net representations as shown in Figure 7 with

different middle level.

Figure 7: All the four net representations are legal although the middle level of the representations
are different.

Formally, an ISO(3) representation R can be labelled by a directed graph GR, including

a set of the vertices V each associated with an irreducible SO(3) representation and a set of

arrows E showing the actions of B’s. To take all the constraints from [B,B] = 0 into account,

we need to consider all directed-path between two vertices (j1), (j2) joined by two successive

arrows (j1) → (ji) → (j2).

Since the representation is finite-dimensional, we can insert a complete basis into [Ba, Bb] =

0, a, b = ±, 3, and find that there are only three possibly non-vanishing terms

⟨j2,m2| [Ba, Bb] |j1,m1⟩ =
∑
n

⟨j2,m2|Ba |n⟩ ⟨n|Bb |j1,m1⟩ − (a ↔ b)

= (c′1 ⟨j2,m2|Ba |j1 − 1,m1 + b⟩ ⟨j1 − 1,m1 + b|Bb |j1,m1⟩

+ c′2 ⟨j2,m2|Ba |j1,m1 + b⟩ ⟨j1,m1 + b|Bb |j1,m1⟩

+ c′3 ⟨j2,m2|Ba |j1 + 1,m1 + b⟩ ⟨j1 + 1,m1 + b|Bb |j1,m1⟩)

− (a ↔ b)

(3.17)

where we have applied the Wigner-Eckart theorem to calculate the matrix elements of B’s,

and c′1, c
′
2, c

′
3 are normalization factors of (j1 − 1), (j1) and (j1 + 1) respectively. Then the
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equation (3.17) turns to

c1B
a
j1−1→j2B

b
j1→j1−1 + c2B

a
j1→j2B

b
j1→j1 + c3B

a
j1+1→j2B

b
j1→j1+1 − (a ↔ b) = 0. (3.18)

This gives j1 × j2 over-constrained equations for ci’s. To solve them we firstly determine the

possible values of j2. The decomposition of BaBb |j1,m⟩ is

(1)⊗sym (1)⊗ (j1) = 2(j1)⊕ (j1 − 1)⊕ (j1 − 2)⊕ (j1 + 1)⊕ (j1 + 2) (3.19)

in which the symmetric tensor product ⊗sym is due to [B,B] = 0, hence there are five choices

of (j2).

1. Case 1: j2 = j1 ± 2. For j2 = j1 + 2, by the Wigner-Eckart theorem, the only non-

vanishing coefficient is c3, and there are no further constraints. And the case j2 = j1−2

is similar. This case leads to the chain representations

· · · → (j) → (j + 1) → (j + 2) → · · · ,

· · · → (j) → (j − 1) → (j − 2) → · · · .
(3.20)

2. Case 2: j2 = j1 ± 1. For j2 = j1 + 1, the non-vanishing coefficients are c2, c3, and the

equation (3.17) gives a linear relation of c2 and c3

c1 = j1c2 − (j1 + 2)c3 = 0, for j1 ≥ 1/2,

c1 = c2 = c3 = 0, for j1 = 0.
(3.21)

For j2 = j1 − 1 we have

c3 = (j1 − 1)c1 − (j1 + 1)c2 = 0, for j1 ≥ 3/2,

c1 = c2 = c3 = 0, for j1 = 1.
(3.22)

3. Case 3: j2 = j1. The equation (3.17) gives a set of linear relations for ci’s

(2j1 − 1)c1 = c2 + (2j1 + 3)c3, for j1 ≥ 1,

c1 = c2 + 4c3 = 0, for j1 = 1/2,

c1 = c2 = 0, for j1 = 0.

(3.23)

Notice that in the cases of j2 = j1 ± 1 or j2 = j1, if two of ci’s vanish, the other must vanish

due to the linear relations, except the trivial one (0) → (1) → (0). Hence the allowed chain
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representations can contain

· · · → (j) → (j + 1) → (j + 2) → · · · or · · · → (j) → (j − 1) → (j − 2) → · · · . (3.24)

In summary, the finite dimensional representations of CCA rotation {J,B} are SO(3)

spin representations (j) with spin j, unidirectionally connected by Bi: (j) → (j) ⊗ (1), and

consequently form a net or chain structure. The net representations are complicated and lack

of limits, while the possible chain representations must take the following patterns:

rank 2
(j) → (j + 1),

(j) → (j), j ̸= 0,

(j) → (j − 1).

(3.25)

rank 3 or more
(0) → (1) → (0),

· · · → (j) → (j + 1) → (j + 2) → · · · ,

· · · → (j) → (j − 1) → (j − 2) → · · · ,

(3.26)

where the patterns works for all possible values of j ∈ {0} ∪Z+/2. Note that the rank-2 case

(0) → (0) is exceptional, because the representation matrices of CCA rotation {J,B} are all

zero matrices so that this representation reduces to two decoupled rank-1 (0) representations.

The discussions above applies to all d ≥ 3 CCA cases. However, the 2-dimensional

case is special since the CCA rotation of 2d CCA or 2d GCA is simply {B1}. Thus the

theorem 1 can not be applied here and there exist finite dimensional representations with

non-zero boost charges for 2d CCA or 2d GCA [55]. Besides, the representation for every

order of the multiplet is trivially an 1-dimensional representation, and it is always possible

for a complicated net representation to reduce to the chain representations with the help of

basis change. See Figure 8 for an example.

Figure 8: Basis change for a 2d GCA representation to chain representations.

It is worth noticing that the Casimir operators (2.5) acting on the multiplet represen-

tations have nonvanishing kernels. This also happens in 2d GCFT with the multiplets [25],

leading to the multi-pole structure in the expansion of the 4-point functions by the conformal

blocks. It would be interesting to investigate if such multi-pole structure appears in higher
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dimensions as well.

3.4 Highest weight module

With the representation of the CCA rotation well-defined, the following procedure is

standard. A primary operator inserted at x = 0 is labeled by {∆, j,m, r, q} with ∆ and

m being the quantum numbers of D and J = −iJ12 respectively, j being the label of sub-

representation under SO(3), q being the multiplet order, and r being the total rank of the

multiplet. A conformal family (highest weight module) of finite dimensional representation is

thus

primary: O(m,q), [D,O(m,q)] = ∆O(m,q), [J,O(m,q)] = mO(m,q) [Kµ,O(m,q)] = 0,

descendants: [Pµ,O(m,q)] = ∂µO(m,q),

spin index: [J±,O(m,q)] ∝ O(m±1,q),

multiplet index: [B3,O(m,q)] ∝ O(m,q−1), [B±,O(m,q)] ∝ O(m±1,q−1).

(3.27)

For example, the second part of the rank-3 tensor representation in Figure 5 can be

re-labeled in the notation introduced here as in Figure 9.

Figure 9: The second part of the rank-3 tensor representation of CCA consists of a {∆, r = 3}
representation.

We reorganize the generators for simplicity

J± =
1√
2
(∓J23 + iJ31), G± =

1√
2
(iG1 ±G2), G ∈ {P,K,B} (3.28)

with the commutation relations

[J, J±] = ±J±, [J+, J−] = J,

[J,G±] = ±G±, [J,G3] = 0,

[J+, G+] = 0, [J+, G3] = G+, [J+, G−] = G3,

[J−, G+] = G3, [J−, G3] = G−, [J−, G−] = 0.

(3.29)

And in the following table, we list how the symmetry generators change the quantum numbers.

It is obvious that the multiplets also appear at the descendent level even if the primary is
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Table 3: The way that symmetry generators change the quantum numbers.

P 0 P± P 3 K0 K± K3 J± B± B3

∆ ∆+ 1 ∆+ 1 ∆+ 1 ∆− 1 ∆− 1 ∆− 1 ∆ ∆ ∆
m m m± 1 m m m± 1 m m± 1 m± 1 m
q q q q q q q q q − 1 q − 1

not multiplet, since Pµ naturally forms a vector representation and the tensor product with

multiplet structure is still a multiplet.

Finally, the local operators at the point xµ can then be defined as

O(x) = U(x)O(0)U(x)−1, U = exp(xµPµ). (3.30)

The action of the generators on the local operators O(x) can be further evaluated by using

the BCH formula, and the conformal family forms an induced representation of the CCA.

3.5 Representation and local operators of GCFT

As indicated earlier, since GCA rotation has exactly the same structure as the one in

CCA, all the discussion about the representations of the CCA rotations and the local operators

in CCFT apply to higher dimensional GCA and GCFT as well. By the Theorem 1, we know

that the finite dimensional representations of GCA rotation must have the same multiplet

structures and obey the same constraints. And then, we can define the highest weight modules

and the local operators in GCFT.

The difference from the CCA case only appears when regarding the tensor representations.

One finds that the tensor structures of GCA should be similar, but the covariant tensors of

the GCA rotation become the contravariant tensors of the CCA rotation. For example, the

covariant and contravariant vector representations in CCA and GCA are respectively

CCA covariant vector: (1) → (0), contravariant vector: (0) → (1),

GCA covariant vector: (0) → (1), contravariant vector: (1) → (0).
(3.31)

This is not surprising if considering the covariant vectors and contravariant vectors in Eu-

clidean space-time with explicit dependence on the speed of light c

xµ = (ct, x⃗), xµ = (t/c, x⃗), with g = diag(c2, 1, . . . ). (3.32)

It is obvious that the covariant vectors of the GCA rotation xµ|c→∞ transform similarly as

the contravariant vectors of the CCA rotation xµ|c→0.

It is convenient to define the dual representation ρdual of a given representation ρ. The
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dual representation ρdual has similar structure but inverse direction to ρ, showing the inverse

actions of B’s. For example, take ρ = (1) → (0), then ρdual = (0) → (1). The representation

matrices are related as

Jρ = Jρdual , J+
ρ = J+

ρdual
, J−

ρ = J−
ρdual

,

B3
ρ = −(B3

ρdual)
†, B+

ρ = (B−
ρdual

)†, B−
ρ = (B+

ρdual
)†.

(3.33)

One can easily check this result by plugging in (3.13), (3.14) and (3.15).12

Therefore, we say the representation of CCA and GCA rotation are dual to each other:

the covariant CCA tensor representations ρCCA are equivalent to the dual representations of

covariant GCA tensor representation ρGCA: ρCCA
∼= (ρGCA)

dual, and vice versa. This feature

is a result of the relation between two fiber bundle structures [31], i.e., C = Rd−1 × R1 for

Carrollian case and N = R1 × Rd−1 for Galilean case.

3.6 Relation to scale-spin representation

In this subsection, we discuss the relation between the scale-spin representations proposed

in [54] for GCFT and [36] for CCFT and the multiplet representations we constructed. As

the scale-spin representations are actually similar in GCFT and CCFT, we here focus on the

CCFT case.

The scale-spin representation is defined by

[Bk,Φ] = aφ+ bσkχ+ b̃σ̃kϕ+ sAk + rAtδΦk + · · · . (3.34)

The notation in this subsection follows the original paper, where φ is the scalar field, (ϕ, χ)

are fermionic fields, (At, Ai) are vector fields, “· · · ” represents possible higher spin fields, and

δΦk means the possible tensor index of Φ being equal to k.

All the representations in (3.34) can be found in the multiplet representations, and fur-

thermore, the theorem 1 indicates that [Bk,Φ] = · · ·+ 0 Φ + . . . since the diagonal blocks of

B matrices are vanishing blocks.

• The scalar φ is trivially identified with the scalar representation here with [Bi, φ] = 0,

and {a = 0, b = b̃ = 0, s = r = 0, . . . }.

• The spinor representations, although not being introduced in detail above, have the

same restrictions. One may set j’s to be half integers, and the above discussions imme-

diately gives the corresponding matrix blocks and other constraints. Since the SO(3)

12For the representations containing (j) → (j) structure, the relation on the B matrices differs by a minus
sign due to our convention. We can multiply i in (3.14) to set all the B matrices fit in the relation (3.33).
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representation
(
1
2

)
⊗ (1) =

(
1
2

)
⊕
(
3
2

)
,
(
1
2

)
→
(
1
2

)
is obviously a representation, which

the fermionic fields ϕ and χ are identified with the multiplet

ϕ ∈
(
1

2

)
↓

χ ∈
(
1

2

)
ϕ : a = 0, b = 0, b̃ =

1

2
, s = r = 0, . . . ,

χ : a = 0, b = b̃ = 0, s = r = 0, . . . .

(3.35)

• There is no difference between the covariant and the contravariant vector representa-

tions of SO(4). However, in taking ultra- or non-relativistic limit, the covariant and

contravariant vector representations behave very differently and not surprisingly, there

are two corresponding choices when re-scaling the vector fields Aµ, leading to electric

and magnetic sectors. The electric sector is identified with the covariant vector repre-

sentation (1) → (0)

Electric sector:

Ai ∈ (1)

↓

At ∈ (0)

Ai : a = 0, b = b̃ = 0, s = 1, r = 0, . . . ,

At : a = 0, b = b̃ = 0, s = r = 0, . . . .
(3.36)

And the magnetic sector is identified with the contravariant vector representation (0) →
(1)

Magnetic sector:

At ∈ (0)

↓

Ai ∈ (1)

At : a = 0, b = b̃ = 0, s = 0, r = 1, . . . ,

Ai : a = 0, b = b̃ = 0, s = r = 0, . . . .
(3.37)

In conclusion, the finite dimensional scale-spin representation perfectly fits in the multi-

plet representations. Besides, the scale-spin representation should further obey the constraint

ξ = 0 for finite dimensional representations.

4 Correlation Functions in 4d CCFT

In this section, we study the correlation functions in 4d CCFT. As one should expect,

the time coordinate and the spacial coordinates behave differently in the correlators, due

to the special space-time structure. In many cases, the correlators are independent of the

time coordinates, and will be referred to as the trivial correlators. Otherwise they are called

non-trivial correlators.
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The Carrollian and Galilean conformal symmetries are powerful enough to fix the struc-

tures of two-point and three-point correlation functions, similar to the conformal symmetry.

Due to the difficulties caused by the sophisticated representation structures, the correlators

are not easy to calculate directly by using the constraints of the symmetry. To make things

worse, the standard shortcuts in computing the correlators in the usual CFT are not appli-

cable. Firstly, the representations of CCFT/GCFT are reducible, which means we cannot

use the Schur lemma to read the selection rules on the representations. Secondly, the em-

bedding formalism seems too complicated to use. Therefore, in the following we will take the

brute-force approach and go through all the tedious calculations.

Our method of calculating correlation functions is to use the Ward identities. Suppos-

ing the uniqueness of the vacuum and the invariance of the vacuum under the symmetry

transformations, we have the Ward identity of the symmetry generator G

0 = ⟨[G,O1]O2 . . . ⟩+ ⟨O1 [G,O2] . . . ⟩+ . . . . (4.1)

As we have already defined the local operators in (3.30), we get the action of G on O easily

[G,O(x)] = U(x)
[
U−1(x)GU(x),O

]
U(x)−1 (4.2)

where by using the BCH formula, we have

U−1(x)GU(x)
BCH
= G+ [G, xµPµ] +

1

2
[[G, xµPµ] , xµPµ] + . . . . (4.3)

Since U(x) [Pµ,O]U−1(x) = ∂µO(x), the Ward identities finally turn into a set of differential

equations of the correlators. Taking some CCA symmetry generators for example, the BCH

formula gives

U−1(x)BiU(x) = Bi + xiP 0,

U−1(x)K0U(x) = K0 − 2xiBi − xixiP 0,

U−1(x)KiU(x) = Ki + 2(xiD + tBi + xjJ ij) + 2xixµPµ − (xjxj)P i,

(4.4)
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which lead to the partial differential equations (PDEs). The full set of Ward identities are:

W (Pµ) ≡ (∂µ
1 + ∂µ

2 ) ⟨O1O2⟩ = 0,

W (D) ≡ (xµ1∂
µ
1 + xµ2∂

µ
2 ) ⟨O1O2⟩+∆1 ⟨O1O2⟩+∆2 ⟨O1O2⟩ = 0,

W (J ij) ≡ ((xi1∂
j
1 − xj1∂

i
1) + (xi2∂

j
2 − xj2∂

i
2)) ⟨O1O2⟩+

〈
(J ijO1)O2

〉
+
〈
O1(J

ijO2)
〉
= 0,

W (Bi) ≡ (xi1∂t1 + xi2∂t2) ⟨O1O2⟩+
〈
(BiO1)O2

〉
+
〈
O1(B

iO2)
〉
= 0,

W (K0) ≡ (−xi1x
i
1∂t1 − xi2x

i
2∂t2) ⟨O1O2⟩ − 2xi1

〈
(BiO1)O2

〉
− 2xi2

〈
O1(B

iO2)
〉
= 0,

W (Ki) ≡ ((2xi1x
µ
1∂

µ
1 − xj1x

j
1∂

i
1) + (2xi2x

µ
2∂

µ
2 − xj2x

j
2∂

i
2)) ⟨O1O2⟩

+ 2(∆1x
i
1 ⟨O1O2⟩+ t1

〈
(BiO1)O2

〉
+ xj1

〈
(J ijO1)O2

〉
)

+ 2(∆2x
i
2 ⟨O1O2⟩+ t2

〈
O1(B

iO2)
〉
+ xj2

〈
O1(J

ijO2)
〉
) = 0.

(4.5)

Solving these PDEs gives the constraints on the correlators. In particular, for the 2-point and

3-point correlators, since the number of degrees of freedom in them are less than the number

of the generators, the Ward identities can fix them completely, just as what happened in CFT.

Different from the usual CFT case, the correlators in CCFT often present multiple-level

structure, due to the operators belong to some sophisticated indecomposable representations,

as shown in the last section. The correlators can be classified by the levels with respect to

the orders in multiplet representations. We will discuss such multiple-level structure in the

two- and three-point functions carefully.

Moreover, as there is no selection rule on the representations, the 2-pt correlators for the

operators in different representations are generally not vanishing. And generically one can

not diagonalize these correlators by changing basis or absorb the coefficients by redefining

the operators. Consequently the 2-pt coefficients are generally not fixed by the symmetry.

Similarly, in the 3-pt correlators there could be multiple 3-pt coefficients as well. It should

be point out that if one try to bootstrap CCFT, the propagating operator may be in various

representations since there is no selection rule.

It should be stressed that the correlators are defined as the vacuum expectation values

of operators

⟨O1O2 · · · ⟩ ≡ ⟨vac| O1O2 · · · |vac⟩ . (4.6)

Because there has not been a quantization scheme which admits the operator-state correspon-

dence, by this step we cannot interpret the correlators as the inner products of states. The

issue of quantization is subtle and we leave this for further study.

In the remaining parts of this section, we discuss the correlators in 4d CCFT. We mainly

focus on the 2-pt functions of the operators in chain representations, which already present

some novel features. The discussions on the 2-pt correlators of the operators in net repre-

sentations become tedious due to complicated structures of the representations. Moreover we
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present some observations on the 3-pt correlators of the operators in chain representation.

4.1 Correlators for singlet representations

In this subsection we discuss the 2-pt correlators of the singlets in 4d CCFT, and it

turns out that there are two types of solutions of the conformal Ward identities. One of them

depends only on the spatial coordinates and is the same as the 2-pt function in CFT3. While

the other is proportional to δ(3)(x⃗12)|t12|a. In this paper, we focus on the structure of power

law correlators, and the discussions of δ correlators are similar.

As an illustration, we consider the 2-pt functions of scalar operators On, n = 1, 2 with

scaling dimensions ∆n and satisfying [Bi,On] = [J ij ,On] = [Kµ,On] = 0. The covariance

under the translation, the spatial rotation and the bosonic symmetry implies

⟨O1(t1, x⃗1)O2(t2, x⃗2)⟩ = G(t, r), (4.7)

where t = |t12|, r = |x⃗12|. The Ward identities of {Bi,K0} are

Bi : (xi1∂t1 + xi2∂t2)G(t, r) = 0,

K0 : (x⃗21∂t1 + x⃗22∂t2)G(t, r) = 0,
(4.8)

and interestingly the above equations have two independent solutions13

G(t, r) = c1f(r) + c2δ
(3)(x⃗12)g(t). (4.9)

Then the Ward identity of D gives

G(t, r) = c1
1

r∆1+∆2
+ c2δ

(3)(x⃗12)
1

t∆1+∆2−3
. (4.10)

If c1 ̸= 0, the Ward identities of Ki will force ∆1 = ∆2, and the resulting 2-pt function

coincides with the scalar 2-pt function in CFT3. If c1 = 0, there is no further constraint on

∆1 and ∆2.

Similar to the discussion in 2d [26], the two types of solutions in (4.10) can be understood

in the following concrete models:

• c1 ̸= 0, c2 = 0: the bilocal action of free scalar

S =

∫
d3x⃗1dt1d

3x⃗2dt2 ϕ(x⃗1, t1)|x⃗12|2∆ϕ−8ϕ(x⃗2, t2). (4.11)

This free action is Carrollian conformal invariant due to the chosen exponent of |x⃗12|.
13The existence of two kinds of solutions was also noticed in [41].
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By the field redefinition Φ(x⃗) :=
∫
dt ϕ(x⃗, t) we can eliminate the degeneracy and get

back to the action of generalized free scalar in 3d,

S =

∫
d3x⃗1d

3x⃗2Φ(x⃗1)|x⃗12|2∆ϕ−8Φ(x⃗2), (4.12)

with ∆Φ = ∆ϕ − 1. The two-point function is

⟨ΦΦ⟩ = c1|x⃗12|2−2∆ϕ , (4.13)

where c1 is an unimportant constant. This fits into the first solution in (4.10) with

∆1 = ∆2 = ∆ϕ − 1.

• c1 = 0, c2 ̸= 0: the Carrollian free scalar [36,40,59] with the action

S =

∫
d3x⃗dt ϕ∂2

t ϕ. (4.14)

The 2-pt function can be calculated by the path integral since the theory is free,

⟨ϕϕ⟩ = c2tδ
(3)(x⃗12), (4.15)

where c2 is an unimportant constant. This fits into the second solution in (4.10) with

∆1 = ∆2 = 1.14

In [25–27], the first type of correlation functions |x⃗12|−2∆ in 2d are shown to provide

convergent and associative OPEs in concrete models. This suggests that the first type of

correlation functions is suitable for discussing OPE and conformal block expansion. The

second type of correlation functions δ(3)(x⃗12)t
−∆1−∆2+3 appears in the Carrollian description

of celestial CFTs [60, 61]. However, due to the lack of analyticity and selection rule on ∆, it

can be harder to establish the OPE relations between local operators. The action (4.14) is the

electric sector of free scalar in [40], while there exists the magnetic sector of free scalar. The

2-point functions of the magnetic version take the form of δ(3)(x⃗12) as well. A more explicit

discussion on the correlators of Carrollian electric/magnetic sector of free scalar will appear

in an upcoming paper.

In the rest of the paper we will set c2 = 0 and focus on the first type of 2-pt functions

for all other representations as well. We leave the discussion on the second type for further

consideration. Repeating the above discussion, the 2-pt functions of spinning singlet operators

14For the 2d Carrollian free scalar model, there is another quantization scheme which leads to correlation
functions fitting into the first solution in (4.10) [42].
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On with SO(3) spin jn coincide with those in CFT3

⟨O1(x1)O2(x2)⟩ =
C12I2(x⃗1, x⃗2)

|x⃗12|2∆1
δ∆1,∆2δj1,j2 , (4.16)

where the tensor indices have been suppressed and the I2 is the 2-pt tensor structure15. The

3-pt functions of the singlet operators are also independent of time due to the Ward identities

of {P 0, Bi,K0}, and further coincide with the ones in CFT3:

⟨O1(x1)O2(x2)O3(x3)⟩ =
C123 I3

|x⃗12|∆123 |x⃗23|∆231 |x⃗13|∆312
, ∆ijk = ∆i +∆j −∆k (4.17)

where I3 is 3-pt tensor structure and C123 is the 3-pt coefficient.

One may suspect that the CCFT4 correlators of the first type all reduce to those in CFT3,

and the answer is no for two reasons. Firstly for chain and net multiplets there are non-trivial

temporal dependence in the correlators, as we will show in the following subsections. Secondly

even for the singlets, the temporal dependence can appear in the higher-point correlators.

When calculating the correlators, the Ward identities of {P 0, Bi,K0} give five differential

equations of time coordinates. With [Bi,O] = 0, the correlators with less than six insertions

of the singlets would not depend on time coordinates, and other Ward identities make them

further degenerate into the correlators of CFT3. However, for the 6-pt and even higher-point

correlators, there are only five independent differential equations of t’s, thus the t-dependence

certainly appears in the conformal invariants in the “stripped correlators” discussed in section

2.4. For the kinematic part, since the differential equations from the Ward identities of

{P 0, Bi,K0} are all of the forms (
∑

i g(x⃗i)∂ti)fn-pt = 0, the dependence on t’s does not show

up in the kinematic parts. This means that the kinematic parts of the correlators of the singlet

operators are exactly the same as the ones in the correlators of CFT3
16. The appearance of

time-like dependence tells us we cannot treat singlet operators exactly the same as the CFT3

operators.

4.2 Two-point functions for chain representations

It turns out that the correlators of net representations are rather sophisticated due to

the complicated structures of limitless net representations. Thus we first focus on the case of

chain representations here, and we will briefly discuss the net representations in section 4.3.

The calculation is nothing more but solving the Ward identities. It is easier to start

15For generic j1 and j2, the Ward identities of J ij fix the tensor structure Im1,m2
j1,j2

up to a set of relative
coefficients. We leave the detailed discussion on the relative coefficients for Im1,m2

j1,j2
to Appendix B.

16The term “kinematic part” here refer to the part totally fixed by the Ward identities, in contrast to the
definition in some literature where the kinematic part is defined up to multiplying some conformal invariants.
In this sense, the kinematic part of the correlators for CCFT4 singlets is exactly the same with the correlators
for CFT3 operators.
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from the lowest-order chain operators and to carry out the calculation level by level, since

the correlators of higher-order chain operators depend on the lower-order ones by the action

of B and K generators. Recall that the derivation of two-point correlators of the singlets is

relatively easy, because the singlets are annihilated by the B generators, so that the correlators

are independent of the time coordinates and are reduced to the ones in CFT3. For the same

reason, the calculation for the lowest-order chain operators could also be reduced to the

ones in CFT3 since the B generators also annihilate them. Besides, if the correlators of

the lowest-order chain operators do not satisfy the selection rule, they are limited to be

vanishing. Moreover, even though in the sense of operators BiO(q) ∝ O(q−1) ̸= 0, the B

generators may annihilate the higher operators in the correlators, such as
〈
. . . (BiO(q)) . . .

〉
∝〈

. . .O(q−1) . . .
〉
= 0, so that the corresponding correlators ofO(q) would again behave similarly

as the correlators in CFT3. One can apply the same argument recursively before finding the

lowest non-zero correlators, and using them one can further build the correlators of the higher-

order chain operators.

To make a clearer expression, we introduce the term “level” for the correlators of the

multiplets. The level in a n-pt correlator is defined as

Level =

n∑
i=1

qi − n+ 1, (4.18)

where qi is the order of the i-th operator in a multiplet. Then the correlator can be organized

by different levels. For example, the lowest level one comes from the correlator of the lowest-

order operators in every multiplets, while the highest level one comes from the correlator of the

highest-order operators. For a 2-pt correlator of the operators in multiplet representations,

we have the following structure:〈
O(m1,q1)

1 (x1)O(m2,q2)
2 (x2)

〉
= fm1,m2

q1,q2 (x12). (4.19)

The lowest-level correlator is of level number 1, corresponding to f1,1, and the second lowest

level correlator correspond to f1,2 and f2,1, etc.. For an explicit example, see the levels

labeled in (4.22). Thus the general strategy calculating the 2-pt functions of Oi in the chain

representations is as follows:

1. Use the Ward identities of {P,D, J} generators to determine the scaling structures

|x⃗12|−(∆1+∆2) and the SO(3) tensor structures I for each level of the correlators. Note

that here we would not impose any selection rules since they come from the Ward identi-

ties of K generators. This means that there exist non-zero tensor structures for j1 ̸= j2,

and the relative coefficients in the tensor structures are generally not determined;
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2. Starting from the lowest level correlators, use the Ward identities of B generators to

make them independent of t coordinates, and further apply the Ward identities of K

generators to read the selection rules and fix the relative coefficients in the tensor struc-

ture I. If the lowest-level correlator do not satisfy the selection rule, the one-level-higher

correlator would behave similarly as the lowest one. If the lowest level correlators are

vanishing, repeat this procedure for one higher level correlators until find out the first

non-zero correlators, which are independent of t coordinates and have the same struc-

tures with the ones in CFT3;

3. Use B generators to find the power law of (t12/|x⃗12|)n structures17 for the higher-level

correlators. Then impose the K Ward identities to check the selection rules for the

solutions;

4. For some cases, the solutions to the Ward identities of the higher-level correlators are

to set the coefficients of the lower-level correlators to zero. In these cases, these higher-

level correlators become the lowest non-zero level, and we return to step 2 for these

correlators. If the Ward identities are satisfied for all level correlators, we are done with

the 2-pt correlators of the operators in given representations.

In what follows next, we consider some explicit examples of 2-pt functions for the short

chain representations to get the restriction and the selection rules. Some details of the calcu-

lations are omitted, and the interested readers can find them in Appendix B.

4.2.1 Trivial 2-pt correlators

We start from an example where two primary operators are all in the vector represen-

tation. After considering the constraints from P generators, the 2-point functions have the

forms〈
O(m1,q1)

1 (x1)O(m2,q2)
2 (x2)

〉
= fm1,m2

q1,q2 (x12), O1,O2 ∈ (1) → (0), x12 = x1 − x2. (4.20)

Hereafter, we will frequently omit some quantum numbers in the operators and the correlators

for simplicity. Following the strategies above, the calculation on the lowest-level correlator f0,0
1,1

requires that f0,0
1,1 = C(0,0)|x⃗12|−2∆ with the constraint ∆1 = ∆2 = ∆, and C(j1,j2) denoting

the 2-pt coefficient.

17There may exist the solutions with the polynomials of t12/|x⃗12| for the operators in some specific represen-
tations. However, the polynomial solutions can always be modified into the power laws with suitable change
of the basis. The detailed discussions can be found in section 4.3.
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Next, considering f0,0
1,2 , the Ward identity of B+ and B3 give rise to

B+ : (ix112 + x212)∂t12f
0,0
1,2 = 0,

B3 : x312∂t12f
0,0
1,2 + f0,0

1,1 = 0.
(4.21)

The first equation shows that f0,0
1,2 is independent of time coordinates, and thus the second

equation yields f0,0
1,1 = 0, leading to the 2-pt coefficient C(1,1) = 0. Further, although the

actions of B’s on O(m2,2)
2 are not vanishing, [B,O(m2,2)

2 ] ∝ O(m2,1)
2 , the actions of B’s in the

correlators are vanishing as
〈
O(0,1)

1 (BiO(m2,2)
2 ) . . .

〉
= 0. This results in f0,m2

1,2 behaving as

the correlators in CFT3. Moreover, the selection rule j1 = j2 requires f0,m2
1,2 = 0. The same

argument applies to the other level-2 correlator and leaves fm1,0
2,1 = 0. Finally, fm1,m2

2,2 is just

the 2-pt function of spin-1 operators in CFT3. In the resulting 2-pt functions only the highest

level survive and reduce to the ones in CFT3:

Level 3: fm1,m2
2,2 =

C Im1,m2
1,1

|x⃗12|2∆
,

Level 2: f0,m2
1,2 = 0, fm1,0

2,1 = 0,

Level 1: f0,0
1,1 = 0,

O1 ∈

(1)

↓

(0)

O2 ∈

(1)

↓

(0)

with ∆1 = ∆2 = ∆.

(4.22)

Here C is the 2-pt coefficient, and Im1,m2
j1,j2

is the 2-pt tensor structure with spin j1 and j2,

whose explicit expression can be found in Appendix B. Here we do not hurry to diagonalize

the 2-pt correlators for later convenience.

In the following for a 2-pt correlator, when only its top-level correlators are non-zero and

independent of t coordinates, we will call it “trivial”, otherwise call it “nontrivial”. The above

2-pt correlator is a trival one.

In fact, since there are only two time coordinates t1 and t2 for the 2-pt correlators, one

can prove that for the 2-pt correlators being non-trivial, there must be at least one operator in

the increasing chain representation, which is of the form · · · → (j) → (j+1) → . . . . The proof

is as follows. Consider a specific correlator f0,0
1,2 . If there is one B generator annihilating both

operators in the sense of acting on the correlators, the Ward identity of this B together with

the one of P 0 ensure that the correlator is independent of t coordinates and reduces to that in

CFT3. If furthermore there exist another B generator relating this correlator to a lower-level

one, say B3 relating f0,0
1,2 to f0,0

1,1 , it is clear by its Ward identity that this lower-level correlator

must vanish, i.e. f0,0
1,1 = 0 and thus C(0,0) = 0. Such kind of situations is not rare. In fact

for the 2-pt functions of the operators both in the non-increasing chain representations, there

always exist some B generators which allow us to repeatedly use the above argument and

find the correlators trivial. This means that the following correlators for the rank-2 chain
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representations are all trivialO1 ∈ (1) → (0),

O2 ∈ (1) → (1),

O1 ∈ (1) → (1),

O2 ∈ (1) → (1).
(4.23)

Besides, this is not the only restriction on non-trivial 2-pt correlators. It turns out that

the Ward identities of B’s and K’s can give more constraints. Consider the following 2-pt

correlators
...

...

Level 2: fm1,m2
1,2 . . . ,

Level 1: fm1,m2
1,1

O1 ∈ · · · → (j),

O2 ∈ · · · → (j − 1) → (j),

with ∆1 =∆2 = ∆.

(4.24)

where O2 is in an increasing chain. Following the bottom up algorithm, we first find fm1,m2
1,1 =

C(j,j)Im1,m2
j,j /|x⃗12|2∆, with relative coefficients in Im1,m2

j,j being totally fixed by the Ward iden-

tities of K’s on fm1,m2
1,1 . Secondly, the Ward identities of B’s on fm1,m2

1,2 lead to

xi12∂t12f
m1,m2
1,2 + 0 +

∑
m

(Bi)(j−1)→j
m2,m fm1,m

1,1 = 0 (4.25)

which requires that C(j,j) = 0 and fm1,m2
1,2 is independent of time coordinates. In fact, the

2-pt correlators are non-trivial only if the actions of B’s on both operators give non-zero

correlators. The proof is rather tedious, and the interested reader can refer Appendix B for

details. Finally, due to the selection rule j1 = j2 for the 2-pt correlators in CFT3, f
m1,m2
1,2 = 0,

resulting in
...

...

Level 2: fm1,m2
1,2 = 0, . . .

Level 1: fm1,m2
1,1 = 0,

O1 ∈ . . . → (j)

O2 ∈ · · · → (j − 1) → (j)

with ∆1 =∆2 = ∆.

(4.26)

The following are two explicit examples of rank-2 multiplets with one operator in an

increasing chain. Their 2-pt correlators are both trivial. The first one is

Level 3: fm1,0
2,2 = 0,

Level 2: fm1,0
1,2 = 0, fm1,m2

2,1 = 0,

Level 1: fm1,m2
1,1 = 0,

O1 ∈

(1)

↓

(1)

O2 ∈

(0)

↓

(1)

(4.27)

In this case, all 2-pt correlators are vanishing. The second case is the 2-pt correlators of two
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contravariant vectors

Level 3: f0,0
2,2 =

C

|x⃗12|2∆
,

Level 2: fm1,0
1,2 = 0, f0,m2

2,1 = 0,

Level 1: fm1,m2
1,1 = 0,

O1 ∈

(0)

↓

(1)

O2 ∈

(0)

↓

(1)

with ∆1 = ∆2 = ∆

(4.28)

4.2.2 The simplest non-trivial example: covariant and contravariant vectors

The simplest non-trivial case is the correlators of two operators in the vector and con-

travariant vector representations, respectively:〈
O(m1,q1)

1 (x1)O(m2,q2)
2 (x2)

〉
= fm1,m2

q1,q2 (x12), O1 ∈ (1) → (0), O2 ∈ (0) → (1). (4.29)

Following the algorithm, we know that the lowest-level correlator is determined to be vanishing

by the selection rule j1 = j2, i.e fm1,0
1,1 = 0, and thus the two second-lowest-level correlators

fm1,m2
2,1 and f0,0

1,2 are independent of t

f0,0
1,2 =

C(0,0)

|x⃗12|2∆
, fm1,m2

2,1 =
C(1,1)Im1,m2

1,1

|x⃗12|2∆
, ∆1 = ∆2 = ∆. (4.30)

The action of B on the highest-level one requires C ≡ C(0,0) = C(1,1) and

fm1,0
2,2 =

(C t12/|x⃗12|Im1
1,0 + C

(1,0)
0 Ĩm1

1,0 )

|x⃗12|2∆
. (4.31)

The Ward identities of K’s further require C(1,0) = 0. In the end, we have the following

non-trivial result

Level 3: fm1,0
2,2 =

C t12/|x⃗12| Im1
1,0

|x⃗12|2∆
,

Level 2: f0,0
1,2 =

C

|x⃗12|2∆
, fm1,m2

2,1 =
C Im1,m2

1,1

|x⃗12|2∆
,

Level 1: f0,m2
1,1 = 0.

O1 ∈

(1)

↓

(0)

O2 ∈

(0)

↓

(1)

with ∆1 = ∆2 = ∆.

(4.32)

Note that the highest-level correlator fm1,0
2,2 is linear in t12/|x⃗12|.

The discussions above applies to all the correlators of rank-2 operators with the structures
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(3.25). The non-trivial 2-pt correlators are

Level 3: f2,2 =
C t12/|x⃗12| Ij+1,j

|x⃗12|2∆
,

Level 2: f1,2 =
C Ij,j
|x⃗12|2∆

, f2,1 =
C Ij+1,j+1

|x⃗12|2∆
,

Level 1: f1,1 = 0.

O1 ∈

(j + 1)

↓

(j)

O2 ∈

(j)

↓

(j + 1)

with ∆1 = ∆2 = ∆,

(4.33)

where f1,2 = f
(CFT)
j,j and f2,1 = f

(CFT)
j+1,j+1 are the same with the 2-pt correlators in CFT. The

details for this result can be found in Appendix B.

4.2.3 Longer chains

With the case of rank-2 chains being well discussed, let us now consider the longer chains.

The long chain representations have the form of (3.26) which we repeat here for convenience:

(0) → (1) → (0),

· · · → (j) → (j + 1) → (j + 2) → · · · ,

· · · → (j) → (j − 1) → (j − 2) → · · · .

(4.34)

We start from the increasing and the decreasing chains and get back to the special case

(0) → (1) → (0) later. Following the standard algorithm and the previous discussions, we

find that the 2-pt correlators for both the operators in the increasing or the decreasing chains

are trivial: non-zero for top-level correlator with the highest-order operators having the same

spin, and vanishing for all other cases. This leaves us the following possible cases for non-trivial

2-pt correlators:

• Case 1: Two operators whose representations are of entirely inverse pattern;

• Case 2: Two operators whose representations are at least partially inverse in the sense

that the representation of one operator have the inverse pattern to the leading sub-sector

of the representations of the other operator.

We refer to the first one as the entirely inverse case, and refer to the second one as the partially

inverse case. However, there are two exceptions:

• For O1,O2 ∈ (j) → (j), their 2-pt correlator is trivial;

• For O1 ∈ (j) → · · · , O2 ∈ (j) → · · · , their 2-pt correlator is also trivial.

For instance, Oi in the same non-self-inverse representation belongs to the second exception.

Note that the two exceptional cases has the same top sub-sector which has only one SO(3)
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representation. Therefore we refer to the entirely inverse case or the partially inverse case as

the case in which the inverse pattern involves at least two SO(3) representations related by

B.

For the following example in the entirely inverse case, we have

Level 5: fm1,0
3,3 =

C t212/|x⃗12|2 Im1
2,0

|x⃗12|2∆
,

Level 4: fm1,0
2,3 =

C t12/|x⃗12| Im1
1,0

|x⃗12|2∆
, fm1,m2

3,2 =
C t12/|x⃗12| Im1,m2

2,1

|x⃗12|2∆
,

Level 3: f0,0
1,3 =

C

|x⃗12|2∆
, fm1,m2

2,2 =
C Im1,m2

1,1

|x⃗12|2∆
, fm1,m2

3,1 =
C Im1,m2

2,2

|x⃗12|2∆
, (4.35)

Level 2: f0,m2
1,2 = 0, fm1,m2

2,1 = 0,

Level 1: f0,m2
1,1 = 0,

O1 ∈ (2) → (1) → (0), O2 ∈ (0) → (1) → (2), with ∆1 = ∆2 = ∆. (4.36)

The non-zero 2-pt correlators start from the middle level where j1 = j2, having the same

form with those in CFT3. The higher-level ones are of power laws in t12/|x⃗12| with the

power increasing along with the level. The closed form of the 2-pt correlators for generic

O1 ∈ (j + n) → · · · → (j) and O2 ∈ (j) → · · · → (j + n) can be found in (B.36).

Let us turn to a partially inverse case. Consider the operator O1 in the representation

(1) → (0) and the operator O2 in the representation (0) → (1) → (2). Their 2-pt correlators

have the following structure

Level 4: fm1,0
2,3 =

C t12/|x⃗12| Im1
1,0

|x⃗12|2∆
,

Level 3: f0,0
1,3 =

C

|x⃗12|2∆
, fm1,m2

2,2 =
C Im1,m2

1,1

|x⃗12|2∆
,

Level 2: fm1,m2
1,2 = 0, fm1,m2

2,1 = 0,

Level 1: fm1,m2
1,1 = 0,

O1 ∈

(1)

↓

(0)

O2 ∈

(0)

↓

(1)

↓

(2)

with ∆1 = ∆2 = ∆

(4.37)

where the correlators at the top level are exactly the same as (4.32). It turns out that the

(2) sub-sector of O2 gives no contribution. The lower-order sub-sector of the representation

giving no contribution is typical for the 2-pt correlators in the partially inverse case.

The requirement that the inverse pattern must start from the leading sub-sectors is

necessary and can be easily understood. We build the 2-pt correlators from bottom to top,

and the Ward identities on the higher-level correlators give constraints back to the lower-level

ones. If the higher-level sub-sectors does not have non-zero solution, the lower-level sub-sectors
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are also vanishing, resulting in vanishing 2-pt correlators for the whole representations. For

example,

Level 4: fm1,0
3,2 = 0,

Level 3: fm1,0
2,2 = 0, fm1,m2

3,1 = 0,

Level 2: f0,0
1,2 = 0, fm1,m2

2,1 = 0,

Level 1: f0,m2
1,1 = 0.

O1 ∈

(2)

↓

(1)

↓

(0)

O2 ∈

(0)

↓

(1)

(4.38)

In this example, without considering fm1,m2
3,1 directly, we have f0,m2

1,1 = 0 at level 1, and

f0,0
1,2 = C(0,0)|x⃗12|−2∆, fm1,m2

2,1 = C(1,1)Im1,m2
1,1 |x⃗12|−2∆ at level 2, then the Ward identities

require fm1,m2
3,1 = 0 and C(0,0) = C(1,1) = 0, resulting in vanishing 2-pt correlators.

The discussions also apply to the non-vanishing 2-pt correlators with one operator in

O ∈ (0) → (1) → (0) and the other operator in a decreasing chain, as the increasing chains

do not have the inverse pattern to (0) → (1). The special case is the 2-pt correlators of the

operators both in O ∈ (0) → (1) → (0). Using the Ward identities only, we have the following

result

Level 5: f0,0
3,3 =

−2C t212/|x⃗12|2 + C ′

|x⃗12|2∆
,

Level 4: fm1,0
2,3 =

C t12/|x⃗12| Im1
1,0

|x⃗12|2∆
, f0,m2

3,2 =
C t12/|x⃗12| Im2

0,1

|x⃗12|2∆
,

Level 3: f0,0
1,3 =

C

|x⃗12|2∆
, fm1,m2

2,2 =
C Im1,m2

1,1

|x⃗12|2∆
, f0,0

3,1 =
C

|x⃗12|2∆
,

Level 2: f0,m2
1,2 = 0, fm1,0

2,1 = 0,

Level 1: f0,0
1,1 = 0,

O1 ∈

(0)

↓

(1)

↓

(0)

O2 ∈

(0)

↓

(1)

↓

(0)

with ∆1 = ∆2 = ∆.

(4.39)

It is obvious that f0,0
3,3 is a polynomial rather than a power law of t12/|x⃗12|. But with a change

of basis

(0)3

↓

(1)2

↓

(0)1

→

(0)3−
C ′

2C
(0)1

↓

(1)2

↓

(0)1

(4.40)

The coefficient C ′ can be cancelled, where the subscripts label the orders of the original

representation. This is a relatively special basis change that mixes the lower order operators

and the higher order ones while keeping the chain structure. After having gone through all

the 2-pt correlators for chain representations, we found that (0) → (1) → (0) representation
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is the unique example that is possible to do this type of basis change. However for net

representations, there exist numerous cases that we can apply this type of basis change and

thus we leave the detailed discussions for this type of basis changes in section 4.3.

4.2.4 An indelible stain: lack of selection rules

One interesting question is if we can do some basis change such that the structure of the

correlators could be simplified. For example, we can do Schmidt orthogonalization on the

operators with the same quantum numbers such that the 2-pt correlators are diagonalized. In

the CCFT, the sub-sectors of the representations of d ≥ 3 CCA rotation are irreducible SO(d−
1) representations. The basis change should respect the CCA rotation group, and thus the

mixing of the operators could only happen between the operators carrying the same SO(d−1)

representations. There are only three types of basis changes that keeps the representation

structure, namely,

• Type 1: the basis changes between the operators of different orders in the same repre-

sentation, for example, (4.40);

• Type 2: the basis changes between different representations with the same leading part,

defined as (4.41) and shown in Figure 10;

• Type 3: the basis changes between different operators in the same representations, i.e.

Schmidt orthogonalization.

Figure 10: The representation ρA′ have the same structure as the leading parts of the
representation ρA, and ρA′ = ρdualB . The basis change we consider here is ρA → ρA + cρA′ .

In practice, Type 1 basis change will help us to set the 2-pt correlators to be of power-law

structure, as mentioned in the last section. For chain representations, (4.40) is the unique

example, so we leave the discussions on Type 1 basis changes to section 4.3 after we briefly

discuss the 2-pt correlators of net representations. Besides, we can always do the Schmidt

orthogonalization first, which has nothing to do with the 2-pt correlators of operators in

different representations.
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The only possibility to simplify the 2-pt correlators of different representations is to use

Type 2 basis changes. Thus, in the following, we try to discuss the implication of Type 2 basis

change on the nonvanishing 2-pt correlators of the operators in different representations. As

we shown before, the nonvanishing 2-pt correlators of chain representations come from two

classes, the entirely inverse pattern which actually require the two operators to be in the dual

representations, and the partially inverse pattern. The former one can be simply normalized,

and we only need to consider the latter one. It turns out that Type 2 basis changes are not

enough to give rise to the selection rules.

Consider the 2-pt correlator of two operators in the representations ρA and ρB, which are

in partially inverse pattern. The representation ρA′ have the same structure as the leading

parts of representation ρA, and is entirely inverse to ρB. Following the earlier discussion, we

have non-vanishing 2-pt correlators ⟨O1O2⟩ for O1 ∈ ρA and O2 ∈ ρB, which are the same

as the 2-pt correlators ⟨O′
1O2⟩ for O′

1 ∈ ρA′ and O2 ∈ ρB up to 2-pt coefficients. It is indeed

the case because that in the partially inverse case, the lower-order operators do not give any

contribution. Therefore, we can always make a basis change

ρA ⇒ ρ̃A =ρA + cρA′

with O1 =O(q)
1 → · · · → O(q−q′+1)

1 → O(q−q′)
1 → · · · → O(1)

1

⇒ Õ1 =O1 + cO′
1

≡(O(q)
1 + cO′(q′)

1 ) → · · · → (O(q−q′+1)
1 + cO′(1)

1 ) → O(q−q′)
1 → · · · → O(1)

1

(4.41)

with a suitable c such that
〈
Õ1O2

〉
= 0. It seems that Type 2 basis changes can indeed make

some 2-pt correlators for the operators in different representations vanish.

However, Type 2 basis changes can not fix all the 2-pt coefficients. For a specific example,

consider the following representations:

ρ1 = (2), ρ2 = (1), ρ3 = (2) → (1), ρ4 = (1) → (2). (4.42)

We list all the 2-pt correlators between these representations in Table 4. Obviously, there

are seven independent 2-pt coefficients Cρiρj if we require the exchange symmetry ⟨O1O2⟩ =
⟨O2O1⟩. But, there are only two options on Type 2 basis change

ρ3 → ρ3 + c5,1ρ1, ρ4 → ρ4 + c6,2ρ2. (4.43)

They are not enough to fix all the 2-pt coefficients, even after taking into account of the

re-normalizations on four operators. We can actually make the 2-pt correlators of partially

inverse pattern vanishing in this example, the price we pay is that other 2-pt correlators could
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become complicated. Therefore, we do not do any Type 2 basis change in the following, as it

doe not lead to much simplification.

Table 4: The 2-pt correlators between the operators in (4.43), where we have left out the scaling
part |x⃗|−∆i−∆j for simplicity. Here we require the exchange symmetry ⟨O1O2⟩ = ⟨O2O1⟩, and thus

there are seven independent 2-pt coefficients.

ρ1 ρ2 ρ3 ρ4

(2) (1) (2) → (1) (1) → (2)

ρ1 (2) Cρ1ρ1 [I2,2] [0] Cρ1ρ3

[
I2,2 0

] [
0 0

]
ρ2 (1) [0] Cρ2ρ2 [I1,1]

[
0 0

]
Cρ2ρ4

[
I1,1 0

]
ρ3

(2)

↓
(1)

Cρ1ρ3

 I2,2

0

  0

0

 Cρ3ρ3

 I2,2 0

0 0

 Cρ3ρ4

 t
|x⃗|I2,1 I2,2

I1,1 0


ρ4

(1)

↓
(2)

 0

0

 Cρ2ρ4

 I1,1

0

 Cρ3ρ4

 t
|x⃗|I1,2 I1,1

I2,2 0

 Cρ4ρ4

 I1,1 0

0 0


Things become worse if we consider longer chains. For example, consider the following

nine18 chain representations with rank≤ 3 and j = 1, 2, 3

rank = 1 : (3), (2), (1),

rank = 2 : (3) → (2), (2) → (1), (1) → (2), (2) → (3),

rank = 3 : (3) → (2) → (1), (1) → (2) → (3),

(4.44)

we even can not make all the 2-pt correlators of partially inverse pattern vanishing in this

case. Roughly speaking, if we consider chain representations with rank ≤ r and j = 1, . . . , r,

the following numbers grow with r as

(#representation) = (#re-normalization d.o.f.) = r2,

(#Type 2 basis change d.o.f.) =
1

3
r(r + 1)(r − 1),

(#non-zero 2-pt coefficients) =
1

6
r(5r2 + 1),

⇒ (#unfixed 2-pt coefficients) =
1

6
r(5r2 + 1)− 1

3
r(r + 1)(r − 1)− r2 =

1

2
r(r − 1)2.

(4.45)

The number of unfixed 2-pt coefficients grows as O(r3), which means we can not get a simple

18Here we only consider the increasing or decreasing chain representations. The other possibilities are
(j) → (j) and (0) → (1) → (0). These representations contribute to the counting of d.o.f. in (4.45) as the
subleading terms.
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selection rule.

4.2.5 Short summary for 2-pt correlators of chain representations

In the above discussions, we have dealt with all possible 2-pt correlators for the oper-

ators in chain representations and obtained the constraints on non-trivial 2-pt correlators.

The non-trivial 2-pt correlators with t dependence come from the operators with entirely

or partially inverse chain representations. The trivial 2-pt correlators include three types:

(a) The operators of the same SO(3) representations for rank-1 singlets; (b) Both operators

O1,O2 ∈ (j) → (j); (c) The operators with the same SO(3) representations in the top sub-

sector. The 2-pt correlators in other cases are all vanishing. The non-zero 2-pt correlators

consist of some power of |x⃗12| representing the scaling behavior, the tensor structure Im1,m2
j1,j2

representing the SO(3) structure, and the power law of t12/|x⃗12|

⟨O1O2⟩ =
C (t12/|x⃗12|)n Im1,m2

j1,j2

|x⃗12|(∆1+∆2)
, with ∆1 = ∆2. (4.46)

The tensor structure Im1,m2
j1,j2

including the relative coefficients within are also fixed. The 2-pt

coefficients C, however, are not generally fixed19. It should be stressed that different from

the CFT case where we have the selection rule that the 2-pt correlators for the operators in

different representations vanish, the 2-pt correlators for the operators in different represen-

tations in CCFT can be non-zero. This will cause some difficulties when we try to do basis

change. See section 4.3 for more details.

4.3 Two-point correlators for net representations

The 2-pt correlation functions of net representations are quite involved, although the

symmetries are good enough to fix the 2-pt correlators for net representations. The difficulty

comes from that the B generators link a SO(3) sub-sector to the lower order sub-sectors in a

multiplet. Omitting the coefficients, we have: [Bi,O(j,q)] = O(j+1,q−1)+O(j,q−1)+O(j−1,q−1),

resulting multiple terms in Ward identities〈
(BiO(j+1,q−1)) . . .

〉
=
〈
O(j+1,q−1) . . .

〉
+
〈
O(j,q−1) . . .

〉
+
〈
O(j−1,q−1) . . .

〉
. (4.47)

19This result seems to be in mismatch with the results in [38]. However, it should be in mind that our
discussions are purely based on the symmetry, requiring all the operators to be primary operators. In that
paper, the authors calculated 2-pt functions of covariant and contravariant vector gauge fields (electric and
magnetic sectors, as discussed in section 3.6). In fact, the gauge fields in that paper are not primary operators,
and moreover their correlators were studied based on Carrollian electrodynamics within an unfixed gauge,
leading to two unfixed coefficients in the electric-electric correlator:

⟨ϕi (t1, x1)ϕj (t2, x2)⟩ =
γ1
r2

δij +
γ2
r4

xixj , with ∆ = 1

where r = |x⃗12|.
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Generally, these three terms are all non-vanishing, and the calculation in chain representation

could not directly apply here.

Figure 11: Representation (a) and (c) in Figure 7 repeated here.

Here we present a non-trivial examples that two operators O1,O2 in (a) representation

in Figure 7. We recall the representation here in Figure 11 for convenience. As discussed

in section 3.3, the relative coefficients between middle three SO(3) sub-sectors obey the con-

straint c1 = c2 + 5c3 from (3.23). Re-normalizing the lowest sub-sector (1) rescales the three

coefficients and thus there left one degree of freedom. This gives a representation family la-

beled by one parameter. We can set the coefficients for O1 and O2 differently, denoting as

c1,a and c2,a. We choose the rescaling that ci,3 = 1 to fix the coefficients and the resulting

2-pt correlators satisfying the Ward identities are20

Level 5: f
(1),(1)
3,3 =

Cδ t212/|x⃗12|2Ĩ
m1,m2
1,1 + C ′Im1,m2

1,1

|x⃗12|2∆
,

Level 4:

f
(2),(1)
2,3 =

Cδ t12/|x⃗12|Im1,m2
2,1

|x⃗12|2∆
, f

(0),(1)
2,3 =

Cδ t12/|x⃗12|Im2
0,1

|x⃗12|2∆
, f

(1),(1)
2,3 = 0,

f
(1),(2)
3,2 =

Cδ t12/|x⃗12|Im1,m2
1,2

|x⃗12|2∆
, f

(1),(1)
3,2 = 0, f

(1),(0)
3,2 =

Cδ t12/|x⃗12|Im2
1,0

|x⃗12|2∆
,

Level 3:

f
(1),(1)
1,3 =

Cδ Im1,m2
1,1

|x⃗12|2∆
, f

(2),(2)
2,2 =

Cδ Im1,m2
2,2

|x⃗12|2∆
, f

(2),(1)
2,2 = 0, f

(2),(0)
2,2 = 0,

f
(1),(2)
2,2 = 0, f

(1),(1)
2,2 = 0 f

(1),(0)
2,2 = 0,

f
(0),(2)
2,2 = 0, f

(0),(1)
2,2 = 0, f

(0),(0)
2,2 =

Cδ

|x⃗12|2∆
, f

(1),(1)
3,1 =

Cδ Im1,m2
1,1

|x⃗12|2∆
,

20This rescaling dose not work when ci,3 = 0. However this case won’t cause any difference. The non-trivial
2-pt correlators with C ̸= 0 in (4.48) only appear for ci,2 = 0, while other cases are trivial with C = 0, and
particularly ci,3 = 0 also gives C = 0. The C′ can be chosen arbitrarily no matter how we rescale the lowest
(1) sub-sectors.
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Level 2:
f
(1),(2)
1,2 = 0, f

(1),(1)
1,2 = 0, f

(1),(0)
1,2 = 0,

f
(2),(1)
2,1 = 0, f

(1),(1)
2,1 = 0, f

(0),(1)
2,1 = 0,

Level 1: f
(1),(1)
1,1 = 0,

with ∆1 = ∆2 = ∆, O1,O2 ∈ (a) in Figure 11,

δ = 1 for c1,2 = c2,2 = 0, δ = 0 otherwise

(4.48)

The tensor structure Im1,m2
1,1 and Ĩm1,m2

1,1 are both the tensor structures for O1,O2 ∈ (1), but

with different coefficients. For O1 and O2 both in (c) representation in Figure 11, the 2-pt

correlators are polynomials of t12/|x⃗12| since the C ′ term in the former case can be cancelled

by basis change, similar to the case in (4.39). For either one of O1 and O2 in (a) with non-zero

ci,2, the correlators are trivial with C = 0. The big difference comes from the fact that there

is no Ward identities applied on the middle (1) sub-sector for the former case, and thus we

have extra solutions proportional to C.

In the above discussions, we have used the trick of changing basis. The purpose using the

basis changes are different from the one in CFT case, and here we give some brief comments.

This basis-changing technique is frequently used in the calculations of the CFT 2-pt correla-

tors. The purpose there is to make the 2-pt correlators diagonalized. To be more specific, the

2-pt correlators from the Ward identities are non-vanishing for the operators in the same rep-

resentations: f (CFT) ∝ δ∆1,∆2δρ1,ρ2 , where Oi ∈ ρi and ρi’s are the representations of SO(d),

the rotation part of CFT. Particularly, the 2-pt correlators for different O1 and O2 carrying

the same scaling dimension ∆1 = ∆2 and in the same SO(d) representation are non-vanishing.

Using the basis change, or Schmidt orthogonalization, we can set the correlator diagonalized

with f (CFT) ∝ δO1,O2 .

In the case of LogCFT [57], the 2-pt correlators are non-vanishing for different multiplet

representations. However, the sub-sectors are all 1-dimensional, and we can always do the

basis change between the multiplet representations. Taking O1 = A of rank-3 and O2 = B

of rank-221 for example, the constraints from the Ward identities would not require the 2-pt

correlators of different multiplets ⟨AB⟩ to be vanishing. However, we can do the basis change

21We borrow our notation introduced in Figure 2. The real log-multiplet representation is slightly different
in the sense that the multiplet is defined with respect to the dilatation operator. Thus the arrow linking Ar to
Ar−1 means [D,Ar] = ∆Ar + Ar−1. The case for 2d GCFT is similar, but with the multiplet representation
is defined with respect to the boost operator.
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

A3

↓

A2

↓

A1

,

B2

↓

B1


⇒



A3 + a1A2 + a2A1 + c1B1 + c2B2

↓

A2 + a1A1 + c1B2

↓

A1

,

B2 + b1B2

↓

B1


, (4.49)

such that the 2-pt correlators of the same multiplets ⟨AA⟩ and ⟨BB⟩ are proportional to the

powers of (lnx)m with carefully chose parameters {ai, bi}, and the 2-pt correlators of different

multiplets ⟨AB⟩ vanishes with carefully chose {ci}. The proof can be reached in Appendix A

in [57], and the argument can be generalized to 2d GCFT.

These basis changes in LogCFT that keeps the structure of the representations intact can

be classified in two types, namely the basis change carried by {ai, bi} corresponding to the

basis change between the operators at different order in the same representation, i.e. Type

1, and the basis change carried by the parameters {ci} corresponding to the basis change

between different representations, i.e. Type 2. Both of them appear for chain representations

as mentioned in previous section. They are sure to appear for net representations. The Type

2 basis changes for chain representations have been discussed in section 4.2.4. The discussions

naturally apply to general net representations, leading to the conclusion that there is no

selection rule for the 2-pt correlators. Here we focus on the Type 1 basis changes which is

helpful to express the 2-pt correlators in terms of powers of t12/|x⃗12|. Such basis exchanges

exist for the representations with self-symmetric structure. By self-symmetric structure, we

mean some sub-representations match the form of the top part, shown in Figure 12. The

example (a) is clearly self-symmetric that the red (1) sub-sector is a sub-representation and

matches the form of top blue (1) sub-sector. For the example (b), the sub-representation

shown in red matches the top blue part thus it is a self-symmetric representation. More

generally, a representation may have multiple top parts, and it is referred to as self-symmetric

if the sub-representation match some top part, as shown in (c). And there may exist multiple

self-symmetric structures in one representation, as shown in (d).

Figure 12: Some examples of self-symmetric representations.
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It appears that the 2-pt correlators of the operators in the representations having self-

symmetric structure would generally not obey the power laws by the constraints from the

symmetry, but there always exist a basis change such that the correlators of the operators in

the changed representations obey the power laws.

4.4 Three-point correlators of chain representations

In this subsection, we would like to give some observations on the 3-point correlators for

the operators all in chain representations. The algorithm of calculating the 3-pt corrlators

is similar to the 2-pt case. At the lowest level, which have the same Ward identities as the

ones in CFT3, there is no selection rule for the spin representations, which means there are

non-zero correlators among the operators of different spins. For instance, ⟨O1O2O3⟩ ≠ 0 with

O1,O2 ∈ (0), and O3 ∈ (1). The general 3-pt correlators are non-zero, and the restrictions

are much looser in CCFT.

Some ground rules can still be given by considering the Ward identities. One rule similar

to the 2-pt case is that there must be one non-decreasing chain for the 3-pt correlators to be

non-trivial. The argument is the same as the 2-pt case: since there are three degrees of freedom

of time coordinates, if there are three independent differential equations on time coordinates,

then the 3-pt correlator is independent of all the time coordinates and thus is trivial. It is

obvious that for all the three operators being in some decreasing chain representations, the

3-pt correlators are trivial. The simplest example is that

Level 2: f0,0,m3
1,1,2 ,

Level 1: f0,0,0
1,1,1 ,

O1,O2 ∈ (0), O3 ∈

(1)

↓

(0)

(4.50)

In this case, the generatorsB+, B3 annihilateO(mi=1,qi=2)
i , and theWard identities ofB+, B3, P 0

for f0,0,1
1,1,2 give the following differential equations

P 0 : (∂t1 + ∂t2 + ∂t3)f
0,0,1
1,1,2 = 0,

B3 : (x31∂t1 + x32∂t2 + x33∂t3)f
0,0,1
1,1,2 = 0,

B+ : (x+1 ∂t1 + x+2 ∂t2 + x+3 ∂t3)f
0,0,1
1,1,2 = 0, x+i = ix1i + x2i .

(4.51)

With suitable combinations, the above equations suggest that f0,0,1
1,1,2 and then f0,0,m3

1,1,2 are

independent of time coordinates. And furthermore the Ward identities of B− on f0,0,1
1,1,2 requires

f0,0,0
1,1,1 = 0 such that the 3-pt correlator is trivial with only the highest level one being non-zero.
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Here we present the simplest example of non-trivial 3-pt correlators:

Level 2: f0,0,0
1,1,2 =

C3 g + C ′
3

|x⃗12|∆1+∆2−∆3 |x⃗13|∆1−∆2+∆3 |x⃗23|−∆1+∆2+∆3
,

Level 1: f0,0,m3
1,1,1 =

C3 Im3
0,0,1

|x⃗12|∆1+∆2−∆3 |x⃗13|∆1−∆2+∆3 |x⃗23|−∆1+∆2+∆3
,

O1,O2 ∈ (0), O3 ∈

(0)

↓

(1)

(4.52)

where

g =
t12(x23x13 + y23y13 + z23z13)

|x⃗12||x⃗13||x⃗23|
+

t23(x12x13 + y12y13 + z12z13)

|x⃗12||x⃗13||x⃗23|

− t13(x12x23 + y12y23 + z12z23)

|x⃗12||x⃗13||x⃗23|
,

(4.53)

and

Im3
0,0,1 =



(x13 − iy13)x⃗
2
23 − (x23 − iy23)x⃗

2
13

|x⃗12||x⃗13||x⃗23|
,

−i
√
2(z13x⃗

2
23 − z23x⃗

2
13)

|x⃗12||x⃗13||x⃗23|
,

(x13 + iy13)x⃗
2
23 − (x23 + iy23)x⃗

2
13

|x⃗12||x⃗13||x⃗23|
.

(4.54)

There are two 3-pt coefficients: C3 and C ′
3. The level-2 correlator f0,0,0

1,1,2 is a polynomial in t

coordinates as expected.

5 Correlation functions in GCFT

Since the finite representations of GCA are exactly the same with the ones of CCA as

discussed in section 3.5, we can use the same strategy as introduced in section 4.2 to calculate

the correlation functions in GCFT. The results are even much simpler for GCFT.

The Ward identities in GCFT are different from the ones in CCFT, since the differential

operators and commutation relations of GCA are different. Here we present some useful Ward

identities. The BCH formula gives

U−1(x)BiU(x) = Bi − tP 0,

U−1(x)K0U(x) = K0 + 2(tD − xiBi) + t2P 0 + 2txiP i,

U−1(x)KiU(x) = Ki + 2tBi − t2P i,

(5.1)
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which lead to the Ward identities:

Bi : 0 = (−t1∂
i
1 − t2∂

i
2 + . . . ) ⟨O1O2 . . . ⟩+

〈
(BiO1)O2 . . .

〉
+
〈
O1(B

iO2) . . .
〉
+ . . . ,

K0 : 0 = ((t21∂t1 + 2t1x
i
1∂

i
1) + (t22∂t2 + 2t2x

i
2∂

i
2) + . . . ) ⟨O1O2 . . . ⟩

+ 2(t1∆1 ⟨O1O2 . . . ⟩ − xi1
〈
(BiO1)O2 . . .

〉
)

+ 2(t2∆2 ⟨O1O2 . . . ⟩ − xi2
〈
O1(B

iO2) . . .
〉
) + . . . ,

Ki : 0 = (−t21∂
i
1 − t22∂

i
2 + . . . ) ⟨O1O2 . . . ⟩+ 2t1

〈
(BiO1)O2 . . .

〉
+ 2t2

〈
O1(B

iO2) . . .
〉
+ . . . .

(5.2)

Let us start from the 2-pt correlators of the singlets. The Ward identities of {P i, Bi}
give 2(d− 1) differential equations. As Bi act trivially on the singlets, we find

P i : (∂xi
1
+ ∂xi

2
)f = 0,

Bi : (−t1∂xi
1
− t2∂xi

2
)f = 0.

(5.3)

These equations are enough to fix the form of the correlators. More explicitly, similar to the

CCFT case, there are actually two independent solutions of the Ward identities in GCFT.

For the scalar type operator, the 2-pt correlator is of the form

⟨O1O2⟩ = c1
1

|t12|2∆
+ c2

δ(t12)

|x⃗12|2∆−1
. (5.4)

For the operators Oi ∈ (j), there will be additionally non-trivial tensor structures I in the

second type solution proportional to δ(t12). However, as it is δ-functional distribution, the

second type solution is less interesting. For simplicity, we discard this kind of solution in

the following discussion. Consequently, the 2-pt correlators of the singlets can not have any

tensor structure, i.e.

⟨O1O2⟩ =
1

|t12|2∆
δ∆1,∆2 , O1,O2 ∈ (0), (5.5)

and all other 2-pt correlators for the singlet operators vanish.

Next, we consider the 2-pt correlators of the operators in the multiplet representations.

It turn out that there is no non-trivial 2-pt correlators for 4d GCFT. To get non-trivial 2-pt

correlators, the higher level correlators must be related to non-zero lower level correlators

by the Ward identities of B generators, and thus we should focus on the representations (no

matter a chain or a net representations) with an SO(3) spin-0 representation (0) at the lowest

level.22 Besides, from the constraints of the representations introduced in section 3.3, we

know that the representations with a sub-sector (0) at the lowest level must be of the form

22In general net representations, there may exist multiple ending (0) sub-sectors. A sub-sector (j) is referred
to as an ending, if there is no sub-sector (j′) such that B generators link (j) to (j′), i.e. [Bi, (j)] = 0. In this
case, the analysis also applies to every ending (0) sub-sectors.
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as in Figure 13 that only a (1) sub-sector links to the ending (0).

Figure 13: An example with two ending (0) sub-sectors (red ones), and there is only one (1)
sub-sector links to each one. Noticing the middle (0) sub-sector is not an ending.

Consider the following 2-pt correlators of chain representations

...
...

Level 2: f0,m2
1,2 ,

Level 1: f0,0
1,1 ,

O1 ∈ . . . → (0)

O2 ∈ · · · → (1) → (0)

with ∆1 =∆2 = ∆.

(5.6)

with the B generators acting on O(m2,q=2)
2 as its representation matrices Bi: [B,O(m2,q=2)

2 ] =

(Bi)m2,0 O(0,q=1)
2 . The Ward identities of Bi and Ki generators on f0,m2

1,2 require

−t12∂xi
12
f0,m2
1,2 + 0 + (Bi)m2,0 f0,0

1,1 = 0, (5.7)

(−t21∂
i
1 − t22∂

i
2)f

0,m2
1,2 + 0 + 2t2(B

i)m2,0 f0,0
1,1 = 0. (5.8)

Multiplying (5.7) by (t1 + t2) and minus (5.8), we find

t12(B
i)m2,0 f0,0

1,1 = 0, ∀i = 1, 2, 3, m2 = ±1, 0. (5.9)

This means that we have to set f0,0
1,1 = 0 for f0,m2

1,2 satisfying its Ward identities. With

the lowest level correlator vanishing, the level-2 correlators including f0,m2
1,2 behave like the

correlators for the singlet operators, and thus the non-vanishing level-2 correlators have the

same form as (5.5). Using this argument recursively, we conclude that there is no non-trivial

GCFT 2-pt correlators and the non-zero 2-pt correlators must be of the form

Highest Level: f2-pt =
C

(t12)2∆
,

Lower Levels: 0,

O1 ∈ (0) → . . .

O2 ∈ (0) → . . .

with ∆1 = ∆2 = ∆

(5.10)

where the representations of O1 and O2 can be different general net representations that
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starting from a (0) sub-sector. In general net representations, there can be multiple starting

(0) sub-sectors. In this case, there are multiple non-zero 2-pt correlators C(t12)
−2∆ between

those starting (0) sub-sectors with possibly different coefficients. Similar to the cases in CCFT,

the coefficients are generally not able to be normalized by basis change of the representations.

The 3-pt correlators of singlet operators are also independent of spacial coordinates by

the Ward identities of {P i, Bi} generators. Actually the non-zero 3-pt correlators for the

singlets are of the form

⟨O1O2O3⟩ =
C3

|t12|∆1+∆2−∆3 |t13|∆1−∆2+∆3 |t23|−∆1+∆2+∆3
, O1,O2,O3 ∈ (0) (5.11)

and others vanish. However, for general multiplet representations, the 3-pt correlators could

depend on the spacial coordinates. A non-trivial example is:

Level 2: f0,0,m3
1,1,2 =

C3 Im3
0,0,1

|t12|∆1+∆2−∆3 |t13|∆1−∆2+∆3 |t23|−∆1+∆2+∆3
,

Level 1: f0,0,0
1,1,1 =

C3

|t12|∆1+∆2−∆3 |t13|∆1−∆2+∆3 |t23|−∆1+∆2+∆3
,

O1,O2 ∈ (0), O3 ∈

(1)

↓

(0)

(5.12)

where the tensor structure is

Im3
0,0,1 =



1√
2

(
ix12 + y12

t12
+

ix13 + y13
t13

+
ix23 + y23

t23

)
,

(t13)
2z12 + t12(t12 − 2t13)z13

t12t13t23
,

1√
2

(
ix12 − y12

t12
+

ix13 − y13
t13

+
ix23 − y23

t23

)
.

(5.13)

6 Conclusion and Discussion

In this paper, we studied CCFT and GCFT in higher dimensions. We paid more atten-

tion to CCFT4. As the symmetry algebras in these theories are quite different from the ones

in usual CFT, we had to study the highest weight representations of ccad and gcad carefully.

It turns out that the representations can be of complicated multiplet structures: the relative

simple ones are chain representations, and the more general ones are net representations. An-

other remarkable feature of the representations is that they are reducible but indecomposable,

as the CCA/GCA rotation is not semisimple. We managed to classify all the allowed chain

representations, which include the singlets, the increasing chains, the decreasing chains and
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two exceptional cases of the following forms

(j) → (j), j ̸= 0, and (0) → (1) → (0). (6.1)

Furthermore we discussed the 2-pt and 3-pt correlators in CCFT and GCFT. In principle,

these correlators can be determined by the Ward identities of the symmetry transformations,

but due to the complicated structure of the representations, the correlators have some re-

markable features. For simplicity we focused on the correlators of the operators in chain

representations. Even for this simple case, the 2-pt correlators in CCFT present some novel

features.

• Not all the correlators have time-dependence. The non-trivial correlators with time de-

pendence appear only for the representations of certain structure. This is because the

temporal and spatial coordinates have different behaviors under symmetry transforma-

tions;

• Due to the multiplet structure of the representations, the correlators present multi-level

structures. At each level, there are more than one 2-pt coefficients. Even if considering

the basis change and renormalization of the operators, not all 2-pt coefficients can be

fixed by the Ward identities;

• As the representations are reducible, there is short of selection rule on the representa-

tions. This means that the 2-pt correlators of the operators in different representations

could be nonvanishing.

More precisely, the non-vanishing trivial 2-pt correlators of chain representations have only

three types, and the non-trivial 2-pt correlators comes from the two operators in entirely or

partially inverse chain representations. In spite of the multi-level structure, the structure of

the 2-pt correlators at each level in CCFT is quite similar with the one in CFT. It consists

of a scaling factor |x⃗12|−(∆1+∆2) representing the scaling behavior, a tensor structure I(x⃗)

representing the behavior under spacial rotations {J ij} and a factor being of powers of t12/|x⃗12|
representing the behavior under the Carrollian boosts {Bi}

f
(CCFT)
2-pt ∝ (t12/|x⃗12|)n I

|x⃗12|(∆1+∆2)
, with ∆1 = ∆2. (6.2)

We explored the 2-pt correlators of net representations and the 3-pt correlators of chain

representations. It turns out that the constraints from the Ward identities are quite loose,

and we had to compute them case by case. We found that not all the 2-pt correlators

of net representations obey the power laws of t12/|x⃗12|. Nevertheless, for the operator in

a representation with self-symmetric structure, its two-point function with itself obey the
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power-law, after suitable basis change. We have to admit that our investigation was not

thorough, and further studies are needed.

In the present study on CCFT, we focused on the correlators with nontrivial dependence

on spatial coordinates. As we discussed in section 4.1, there actually exists a δ-distribution

in spacial directions in the 2-pt correlator. Such correlators do appear in a class of Carrollian

free theories. Moreover, it was pointed out in [60, 61] that this kind of correlation functions

is related to celestial holography. It seems to us that the two kinds of correlators correspond

to different quantization scheme. The δ-distribution correlators certainly deserves further

studies. It is also important to construct specific theories whose correlators have nontrivial

dependence on spatial coordinates.

In contrast, for the GCFT, the structure for the 2-pt correlators are relatively simple due

to the action of Galilean boosts. For GCFT, all the 2-pt and 3-pt correlators of chain rep-

resentations are independent of spatial coordinates. It turns out that the only non-vanishing

2-pt correlator for GCFT appear for the representations with leading (0) sub-sector(s), and

it is independent of spacial coordinates

f
(GCFT)
2-pt ∝ 1

|t|(∆1+∆2)
. (6.3)

The structure of the 3-pt correlators of GCFT generally have non-trivial dependence on spacial

coordinates, since there are less constraints for the 3-pt correlators than the ones for the 2-pt

correlators.

One important question is whether the conformal bootstrap is valid for higher dimensional

CCFTs and GCFTs. The first step is to determine the operator product expansion (OPE)

O1(x1)O2(x2) =
∑
i

f12iP (x12, ∂)Oi(x), (6.4)

in which the differential operator P (x12, ∂) resums the contributions of descendant operators

in a highest weight representation and should be fixed by the CCA and GCA respectively23.

Assuming the convergence of OPE and inserting it into the 3-pt function, we get the relation

between the OPE coefficients f12i, the 2-pt coefficients C
(2)
ij and the 3-pt coefficients C

(3)
ijk ,

⟨O1O2O3⟩ =
∑
i

f12iP (x12, ∂2) ⟨Oi(x2)O3(x3)⟩ . (6.5)

Inserting the OPE into the 4-pt function we get the expansion depending on the squared OPE

23In CFT, this differential operator is called the OPE block, see e.g. [62, 63].
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coefficients and the 2-pt coefficients

⟨O1O2O3O4⟩ =
∑
i,j

f12if34jP (x12, ∂2)P (x34, ∂3) ⟨Oi(x2)Oj(x3)⟩ . (6.6)

For compact CFT whose spectrum is discrete and positive definite, the 2-pt coefficients can

be diagonalized to C
(2)
ij = δij , and the relation (6.5) gives the identification fijk = C

(3)
ijk . The

4-pt function (6.6) can be simply expanded in terms of the conformal blocks, each of which

encodes the contribution of an exchanged conformal family. The diagonalizability of 2-pt

coefficients is crucial for establishing the bootstrap equations.

For CCFT, the 2-pt correlators in (6.5) can not be diagonalized, since different represen-

tations may have non-vanishing 2-pt correlators and there are 2-pt coefficients that cannot

be determined by the symmetry. The relation between the OPE coefficients and the 3-pt

coefficients is not simple. For the 4-pt functions we have the expansion

⟨O1O2O3O4⟩ =
∑
i,j

f12if34jP (x12, ∂2)P (x34, ∂3) ⟨Oi(x2)Oj(x3)⟩ , (6.7)

in which the “conformal block” P1P3 ⟨Oi(x2)Oj(x3)⟩ depends on two conformal families in-

stead of one. This makes the equation much more involved and hard to analyze.

For GCFT, the only non-vanishing 2-pt correlators are from the operators in the repre-

sentations having (0) starting sub-sector(s), such that the matrix of the 2-pt coefficients C
(2)
ij

for GCFT is degenerate. Meanwhile, the 3-pt correlators are generally non-vanishing, which

means even if we assume

C
(3)
123 =

∑
i

f12iC
(2)
i3 , (6.8)

not all OPE coefficients appear in the relation. Thus it is not enough by only considering the

OPE limit 3-pt
OPE−→2-pt to read the OPE coefficients.

Another interesting question is on quantization and the operator-state correspondence

in higher dimensional CCFT and GCFT. As the space-time structure is a bit bizarre, the

discussion of CFT does not fit here. Two naive guesses for the quantization are: (1) tempo-

ral quantization foliating the space-time with equal time slices; (2) spacial radial quantiza-

tion foliating the space-time with equal spacial radius. Neither of them gives a well-defined

operator-state correspondence.

It would be interesting to consider the super-symmetric version of Carrollian/Galilean

conformal field theory. It is natural to expect that the super-Carrollian/Galilean conformal

algebras (SSCA/SGCA) may show up by taking the ultua- or non-relativistic limit on the

superconformal algebra. It is well known that there is no super conformal symmetry in d > 6

dimensions [64,65]. From this point of view, it seems that one cannot find d > 6 SSCA/SGCA.
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However, this restriction may break down for super-Carrollian/Galilean conformal symmetry.
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A Representation of SO(d) and its limits

In this appendix, we try to interpret the multiplet representations of CCA/GCA rotation

from the point of view of taking the limit, i.e. taking the Inonu-Wigner contraction, from

irreducible representations of SO(d) [66, 67]. The main steps of taking such a limit goes

as follows: firstly, separate the generators of sod into the spacial rotation {J ij} and the

Euclidean boost {J i0}; then, decompose the representations of SO(d) as a direct sum of

irreducible representations of SO(d− 1) generated by J ij , which are connected by the action

of J i0; finally, we get the multiplet representation by taking the Inonu-Wigner contraction,

after carefully choosing the scaling behavior of J i0’s action under the limit.

The first step is automatic, and the commutation relations of the generators separate

into two groups, the ones among J ij and the ones involving J i0

[J ij , Jkl] = δikJ jl − δilJ jk + δjlJ ik − δjkJ il,

[J ij , Jk0] = δikJ j0 − δjkJ i0,

[J i0, J j0] = J ij ,

(A.1)

where J i0 acts as a vector under the action of J ij .

The second step is the branching problem, i.e. decompose the irreducible representations

of group G into direct sum of the irreducible representations of its subgroup H ⊂ G. Here

we decompose the irreducible representations of SO(d) into the irreducible representations of

SO(d − 1) ⊂ SO(d), and this problem is solved by using the Gelfand–Tsetlin patterns [68].

Recall that the irreducible representations of SO(d) group are labeled by

[λ1, . . . , λn], λi ∈ Z/2, with

λ1 ≥ · · · ≥ |λn| ≥ 0 d = 2n even,

λ1 ≥ · · · ≥ λn ≥ 0 d = 2n+ 1 odd.
(A.2)

Here we only concern the decomposition of the irreducible representation of SO(d) into the
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irreducible representations of SO(d− 1), and we have

d = 2n : [λ1, . . . , λn] =
⊕
{µ}

M{µ}[µ1, . . . , µn−1],

with

M{µ} = 1 for λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ |λn|,

M{µ} = 0 otherwise;

(A.3)

d = 2n+ 1 : [λ1, . . . , λn] =
⊕
{µ}

M{µ}[µ1, . . . , µn],

with

M{µ} = 1 for λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ |µn|,

M{µ} = 0 otherwise,

(A.4)

where M{µ} is the multiplicity representing the number of times the representation [{µ}]
appearing in the decomposition.

To do the final step taking Inonu-Wigner contraction, we consider d = 4 for simplicity.

The decomposition goes as

[λ1, λ2] =
⊕
µ

[µ], with λ1 ≥ µ ≥ |λ2| ≥ 0. (A.5)

To match the notation in the main text, we identify the SO(3) representation [µ] with the

notation (j). As for SO(4), noticing that SO(4) ∼= SO(3) × SO(3)/Z2, the irreducible rep-

resentation [λ1, λ2] can also be labeled by two SO(3) spin ji. We have the identifications

[µ] = (j) with µ = j,

[λ1, λ2] = (j1, j2), with λ1 = j1 + j2, λ2 = j1 − j2.
(A.6)

In this notation, (A.5) is equivalent to

(j1, j2) =

j1+j2⊕
j=|j1−j2|

(j). (A.7)

Since J i0 is a vector representation, their action on (j) gives combination of (1) ⊗ (j) =

(j + 1)⊕ (j)⊕ (j − 1). The explicit action of J i0 on (j) is denoted as

J i0 |j,m⟩ = aj+1J
i0
j→j+1

∣∣j + 1,m′〉+ ajJ
i0
j→j

∣∣j,m′〉+ aj−1J
i0
j→j−1

∣∣j − 1,m′〉 , (A.8)

in which aj ’s are essentially the reduced matrix elements of J i0 determined by [J i0, J j0] = J ij ,

and here we do not need their explicit expressions. Taking the Inonu-Wigner contraction of the

Carrollian limit J i0 = limc→0
1
cB

i trivializes the third commutations in (A.1) and yields the
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CCA rotation group with generators {J ij , Bi}. The actions of Bi’s on the (j) representations

(A.8) are non-vanishing only if we renormalize the states |j,m⟩ → fj(c) |j,m⟩ properly

1

c
Bifj(c) |j,m⟩ =aj+1fj+1(c)J

i0
j→j+1

∣∣j + 1,m′〉
+ ajfj(c)J

i0
j→j

∣∣j,m′〉+ aj−1fj−1(c)J
i0
j→j−1

∣∣j − 1,m′〉 . (A.9)

There are three apparent options on fj(c) without modifying the action of J ’s: fj(c) = c±j

and fj(c) = 1.24 The different choice of fj(c), and correspondingly the contracted matrix

elements of B’s and the resulting representations, are respectively:

fj(c) = cj ⇒ Bi |j,m⟩ = aj−1B
i
j→j−1

∣∣j − 1,m′〉 , (A.10)

leading to the increasing chain representations (j1 + j2) → · · · → (|j1 − j2|);

fj(c) = 1 ⇒ Bi |j,m⟩ = 0 (A.11)

with the representations decomposing into the singlet representations (j1+j2)⊕· · ·⊕(|j1−j2|);

fj(c) = c−j ⇒ Bi |j,m⟩ = aj+1B
i
j→j+1

∣∣j + 1,m′〉 , (A.12)

giving rise to the decreasing chain representations (|j1−j2|) → · · · → (j1+j2). Thus we get the

singlet representations and the multiplet representations (3.26). This result is compatible with

the fact that taking the limit and doing tensor product decomposition are non-commutative,

since the product of pre-factors fj(c) from the tensor product of two different (j)’s can get

cancelled which leads to additional non-vanishing matrix elements of B’s.

It is difficult but possible to get general net representations from the Inonu-Wigner con-

traction. This involves taking the limit of reducible representations of SO(4). One example

which was discussed in the main text is the first part of Figure 4. It can be obtained by taking

the limit of (0, 0)⊕ (1, 1) representation of SO(4), as shown in Figure 14.

The above discussions can be easily extend to the Galilean limit J i0 = limc→∞ cBi
G giving

rise to similar results. And it is also easy to extend the study to read the representations of

general d-dimensional CCA/GCA rotation group.

24In taking the limit c → 0, only the leading-c dependence of fj(c) matters. The only constraint to get a

finite B matrix is that c
fj+1(c)

fj(c)
and c

fj−1(c)

fj(c)
should be finite for each j. It is possible to get more complicated

representations by taking the limit with carefully chosen fj(c).
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Figure 14: The rank-2 tensor representation of SO(4) and their Inonu-Wigner contraction of the
Carrollian limit.

B Calculation details of CCFT 2-pt correlation functions

In the main text, we omitted many details in calculating the 2-pt correlators of 4d CCFT,

and here we present the details. First of all, we list all the Ward identities for the 2-pt

correlators:

W (Pµ) ≡ (∂µ
1 + ∂µ

2 ) ⟨O1O2⟩ = 0,

W (D) ≡ (xµ1∂
µ
1 + xµ2∂

µ
2 ) ⟨O1O2⟩+∆1 ⟨O1O2⟩+∆2 ⟨O1O2⟩ = 0,

W (J ij) ≡ ((xi1∂
j
1 − xj1∂

i
1) + (xi2∂

j
2 − xj2∂

i
2)) ⟨O1O2⟩+

〈
(J ijO1)O2

〉
+
〈
O1(J

ijO2)
〉
= 0,

W (Bi) ≡ (xi1∂t1 + xi2∂t2) ⟨O1O2⟩+
〈
(BiO1)O2

〉
+
〈
O1(B

iO2)
〉
= 0,

W (K0) ≡ (−xi1x
i
1∂t1 − xi2x

i
2∂t2) ⟨O1O2⟩ − 2xi1

〈
(BiO1)O2

〉
− 2xi2

〈
O1(B

iO2)
〉
= 0,

W (Ki) ≡ ((2xi1x
µ
1∂

µ
1 − xj1x

j
1∂

i
1) + (2xi2x

µ
2∂

µ
2 − xj2x

j
2∂

i
2)) ⟨O1O2⟩

+ 2(∆1x
i
1 ⟨O1O2⟩+ t1

〈
(BiO1)O2

〉
+ xj1

〈
(J ijO1)O2

〉
)

+ 2(∆2x
i
2 ⟨O1O2⟩+ t2

〈
O1(B

iO2)
〉
+ xj2

〈
O1(J

ijO2)
〉
) = 0,

(B.1)

where µ = 0, 1, . . . , d − 1, i, j = 1, . . . , d − 1. It is immediately noticed that if ignoring all ti

and ∂ti terms, the Ward identities of {D,P i,Ki, J ij} are just the Ward identities for CFT3.

It is worth mentioning that plugging the Ward identities of {D,Pµ, J ij , Bi} into W (Kµ)
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results algebraic equations rather than differential equations. To be more specific, we have
0 = W (K0)− xj1x

j
2W (P 0) + (x1 + x2)

iW (Bi),

0 = W (Ki) +
(
xi1x

µ
2W (Pµ) + xi2x

µ
1W (Pµ)− xj1x

j
2W (P 0)

)
−
(
(x1 + x2)

iW (D)− (x1 + x2)
0W (Bi)− (x1 + x2)

jW (J ij)
)
,

(B.2)

⇒

 0 = −xi12
(
Bi

1fq1−1,q2 −Bi
2fq1,q2−1

)
,

0 = xi12 (∆1 −∆2) fq1,q2 + xj12

(
Jij
1 fq1,q2 − Jij

2 fq1,q2

)
+ t12

(
Bi

1fq1−1,q2 −Bi
2fq1,q2−1

)
,

(B.3)

where f denotes the 2-pt correlators and B1,2 and J1,2 are the representation matrix acting on

Oi respectively. Thus the Ward identities of K’s mostly play the role of giving the constraints

or the selection rules after other Ward identities having determined the form of the 2-pt

correlators.

In the rest of this appendix, we show how to apply these Ward identities, following the

strategy introduced in section 4.2. As in 4d case, we discard the distributional solutions. The

discussions could be viewed as a generalization of the discussions of the Ward identities in

CFT3. For completeness, we present all the analysis here including the well-known facts on

CFT3.

B.1 Ward identities of P and D generators

To calculate the 2-pt function of a given representation, we first apply W (Pµ) = 0, which

requires the 2-pt function to be translational invariant, i.e. it depends only on xµ12 = xµ1 −xµ2 .

Moreover, W (D) = 0 requires that the 2-pt function has the form

〈
O(m1,q1)

1 (x1)O(m2,q2)
2 (x2)

〉
=

fm1,m2
q1,q2 (φ, θ, ϕ)

R∆1+∆2
(B.4)

where R ≡
√
(t12)2 + (x⃗12)2 and the angular coordinates {φ, θ, ϕ} are defined as

cotφ ≡ t12/|x⃗12|, tan θ ≡ x112/x
2
12, tanϕ ≡ x312/

√
(x112)

2 + (x212)
2. (B.5)

B.2 Ward identities of J generators — tensor structure Im1,m2

j1,j2

In terms of (R,φ, θ, ϕ), the differential part of W (J ij) are the derivatives of θ and ϕ, and

applying W (J ij) = 0, we can factorize out the dependence of (θ, ϕ) as

fm1,m2
q1,q2 (φ, θ, ϕ) = fq1,q2(φ)I

m1,m2
j1,j2

(θ, ϕ). (B.6)

64



We call Im1,m2
j1,j2

the tensor structure of the 2-pt correlators, which can be fixed up to some

relative coefficients by requiring W (J ij) = 0. The Ward identities are reduced to

− i∂θ(I
m1,m2
j1,j2

) + (Jj1)m1,m′
1
I
m′

1,m2

j1,j2
+ (Jj2)m2,m′

2
I
m1,m′

2
j1,j2

= 0, (B.7)

e−iθ

√
2
(i∂ϕ ± cotϕ∂θ)(I

m1,m2
j1,j2

) + (J±
j1
)m1,m′

1
I
m′

1,m2

j1,j2
+ (J±

j2
)m2,m′

2
I
m1,m′

2
j1,j2

= 0. (B.8)

Equation (B.7) leads to

Im1,m2
j1,j2

= e−i(m1+m2)θ hm1,m2
j1,j2

(ϕ), (B.9)

and then (B.8) further reduces to

J ±(hm1,m2
j1,j2

) + (J±
j1
)m1,m′

1
h
m′

1,m2

j1,j2
+ (J±

j2
)m2,m′

2
h
m1,m′

2
j1,j2

= 0, (B.10)

with

J ± =
i√
2
(∂ϕ ∓ (m1 +m2) cotϕ∂θ). (B.11)

Let us first consider a simple case that j1 = 0, and thus the actions of Jj1 and J±
j1

vanish.

The combinations of (B.10) gives

−
(
J +(J −(hm2

0,j2
)) + J −(J +(hm2

0,j2
))
)
−
(
J+
j2
J−
j2
+ J−

j2
J+
j2

)
m2,m′

2

h
m′

2
0,j2

= 0,

⇒
(
∂2
ϕh

m2
0,j2

+ cotϕ∂ϕh
m2
0,j2

−m2 cot2 ϕ hm2
0,j2

)
+
(
Cj2 − J2

j2

)
m2,m′

2
h
m′

2
0,j2

= 0,

⇒ ∂2
ϕh

m2
0,j2

+ cotϕ∂ϕh
m2
0,j2

+

(
j2(j2 + 1)− m2

sinϕ

)
hm2
0,j2

= 0.

(B.12)

This is exactly the equation for the associated Legendre polynomials and hence hm2
0,j2

∝
Pm
j (cos(ϕ)). In our convention, the solution for Im2

0,j2
is similar to the spherical harmonics

with different coefficients and dependence on θ

Im2
0,j2

= Ỹ m2
j2

, Ỹ m
j (θ, ϕ) = i(j−m)

√
(2j)!(j −m)!

(j +m)!

(−1)j

(2j − 1)!!
Pm
j (cos(ϕ))e−imθ. (B.13)

The pre-factors are chosen such that the first component is Ij20,j2 = e−ij2θ sinj2 ϕ. For example,

we have

Im2
0,1 =

(
e−iθ sinϕ, −i

√
2 cosϕ, eiθ sinϕ

)
, (B.14)

and

Im2
0,2 =

(
e−2iθ sin2 ϕ, −2ie−iθ sinϕ cosϕ,

√
2
3
(1− 3 cos2 ϕ), −2ieiθ sinϕ cosϕ, e2iθ sin2 ϕ

)
. (B.15)

The tensor structure Im2
0,j2

can be viewed as an SO(3) representation (j = j2). Thus in
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fact, Im1,m2
j1,j2

should be viewed as the tensor product representation (j1)⊗(j2) =
⊕

j(j). Using

the Clebsch-Gordan coefficients, we can decompose Im1,m2
j1,j2

into irreducible (j) representations

Imj with every Imj satisfying J ’s Ward identities for Im2=m
0,j2=j . And thus, Imj = Ỹ m

j , and Im1,m2
j1,j2

is composed of Ỹ m
j by using the CG coefficients

Im1,m2
j1,j2

=
∑
j,m

⟨j1,m1; j2,m2|j,m⟩ cjj1,j2 Ỹ m
j , (B.16)

where cjj1,j2 are the relative coefficients to be determined later.25 Notice that the tensor

product (j1)⊗ (j2) = (j2)⊗ (j1), we have the exchange symmetry Im1,m2
j1,j2

= Im2,m1
j2,j1

.

Taking j1 = j2 = 1 as a concrete example, we have

I1,1 = cj=2
1,1


e−2iθ sin2 ϕ −i

√
2e−iθ sinϕ cosϕ −1

6(3 cos 2ϕ+ 1)

−i
√
2e−iθ sinϕ cosϕ −1

3(3 cos 2ϕ+ 1) −i
√
2eiθ sinϕ cosϕ

−1
6(3 cos 2ϕ+ 1) −i

√
2eiθ sinϕ cosϕ e2iθ sin2 ϕ



+ cj=1
1,1


0 − 1√

2
e−iθ sinϕ i cosϕ

1√
2
e−iθ sinϕ 0 − 1√

2
eiθ sinϕ

−i cosϕ 1√
2
eiθ sinϕ 0

+ cj=0
1,1


0 0 1√

3

0 − 1√
3

0

1√
3

0 0

 .

(B.17)

B.3 Ward identities of B and K generators

Generally speaking, the relative coefficients in Im1,m2
j1,j2

, and moreover the relative coeffi-

cients between different levels of the 2-pt correlators can be totally fixed by considering the

Ward identities of B and K generators. Firstly, let us consider the W (Bi). After plugging

in the ansatz f(φ) = g(φ) cos(∆1+∆2) φ, the differential parts of W (Bi) are proportional to

∂cotφ, which constrain the form of 2-pt correlators

〈
O(m1,q1)

1 (x1)O(m2,q2)
2 (x2)

〉
=

gq1,q2(φ)I
m1,m2
j1,j2

(θ, ϕ)

|x⃗12|∆1+∆2
. (B.18)

As

x± ≡ (ix1 ± x2)/
√
2 =

i√
2
e∓iθ sinϕ sinφ, x3 = cosϕ sinφ, (B.19)

25The number of cjj1,j2 ’s is nc = (j1 + j2)− |j1 − j2|+1, but the independent number of cjj1,j2 is nc − 1 since

an overall factor can be absorbed intofq1,q2(φ). We write down all cjj1,j2 for later convenience.
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we have (x+, x3, x−) = i/
√
2 Ỹ a

j=1, a = ±, 3, and get the Ward identities of Ba

Ỹ a
1 I

m1,m2
j1,j2

∂gq1,q2(φ)

∂ cotφ
+ (Ba

1)
j1→j′1
m1,m′

1
I
m′

1,m2

j′1,j2
gq1−1,q2(φ) + (Ba

2)
j2→j′2
m2,m′

2
I
m1,m′

2

j1,j′2
gq1,q2−1(φ) = 0.

(B.20)

This gives the constraints on the relative coefficients in the tensor structure I and the explicit

forms of gq1,q2 .

We first consider the 2-pt correlators in the trivial case. The 2-pt correlator, as discussed

in the main text, is non-vanishing at the highest level, and this non-zero 2-pt correlator reduces

to the one in CFT3 and is independent of t coordinates

f =
C Im1,m2

j1,j2

|x⃗12|∆1+∆2
. (B.21)

It is easy to check that W (Bi) = 0 are satisfied. We have to take into account of the Ward

identities of Ki. For the trivial case, the first line in (B.3) is trivially satisfied, and the second

line leads to

xi12 (∆1 −∆2) Ij1,j2 + xj12

(
Jij
j1
Ij1,j2 − Jij

j1
Ij1,j2

)
= 0, ∀i = 1, 2, 3. (B.22)

A combination of these equations gives

x312 (∆1 −∆2) Ij1,j2 − x−12

(
J+
j1
Ij1,j2 − J+

j1
Ij1,j2

)
− x+12

(
J−
j1
Ij1,j2 − J−

j1
Ij1,j2

)
= 0. (B.23)

Taking θ = 0, i.e. x3 = |x⃗12| cosϕ and x±12 = 0 and using the fact Ij1,j2j1,j2
= cj1+j2

j1,j2

(
e−iθ sinϕ

)(j1+j2),

the above constraint becomes

cj1+j2
j1,j2

(∆1 −∆2) |x⃗12| sin(j1+j2) ϕ cosϕ = 0, (B.24)

leading to the selection rule ∆1 = ∆2. Furthermore solving the residual equation

xj12

(
Jij
j1
Ij1,j2 − Jij

j1
Ij1,j2

)
= 0, ∀i = 1, 2, 3, (B.25)

gives rise to the selection rule j1 = j2, and fix all the relative coefficients in Ij1,j2 as

cjj1=j2
= (−1)j1

(
i√
2

)j
√

(2j + 1)!!

j!

(−j + 2j1 − 1)!! (j + 2j1)!!

(−j + 2j1)!! (j + 2j1 + 1)!!
for 0 ≤ j ≤ 2j1 and j even,

cjj1=j2
= 0 otherwise.

(B.26)

The coefficients are chosen such that cj=2j1
j1=j2

= 1. This is exactly the form of the 2-pt correlators
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in CFT3. Especially, taking (c0j1=j2=1 = −1/
√
3, c1j1=j2=1 = 0, c2j1=j2=1 = 1) in (B.17), Im1,m2

1,1

matches exactly with Iµν = δµν − 2xµxν

x2 in [6] for d = 3. 26

Next, we turn to a little more complicated case and try to prove (4.26). For simplicity,

consider O1 ∈ (j0 + 1) and O2 ∈ (j0) → (j0 + 1). From the above discussions, we learn that

f1,1 = CIj0+1,j0+1|x⃗|−2∆ with ∆ ≡ ∆1 = ∆2, and thus the B’s Ward identities on f1,2 are

Ỹ a
1 I

m1,m2
j0,j0+1

∂g1,2(φ)

∂ cotφ
+ C(Ba

2)
j0+1→j0
m2,m′

2
I
m1,m′

2
j0+1,j0+1 = 0. (B.27)

Since both Ỹ ’s and I’s depend only on (θ, ϕ) and B’s are purely numbers, the equation could

be satisfied only if

g1,2 = C cotφ+ C ′. (B.28)

If C ̸= 0, the above equation becomes

Ỹ a
1 I

m1,m2
j0,j0+1 + (Ba

2)
j0+1→j0
m2,m′

2
I
m1,m′

2
j0+1,j0+1 = 0. (B.29)

Similar to the spherical harmonics, Ỹ ’s enjoy the construction rule

Ỹ a
1 Ỹ m

j = Ỹ m+a
j+1 +

2j√
4j2 − 1

Ỹ m+a
j−1 , (B.30)

and thus by (B.16), the above equations become

∑
j,m

⟨j0,m1; j0 + 1,m2|j,m⟩ cjj0,j0+1

(
Ỹ m+a
j+1 +

2j√
4j2 − 1

Ỹ m+a
j−1

)
+ (Ba

2)
j0+1→j0
m2,m′

2

∑
j,m

⟨j0 + 1,m1; j0 + 1,m2|j,m⟩ cjj0+1,j0+1 Ỹ m
j = 0,

(B.31)

where cjj0+1,j0+1 are determined as (B.26) and cjj0,j0+1 are to be determined. However, there

are 2j0 + 3 equations for each j in the second term in (B.31), and thus it is over-constrained

for cjj0,j0+1 which has 2j0 + 1 components. In fact, there is indeed no solution to (B.31).

Therefore C must be vanishing in (B.28), which requires f1,2 being independent of t. Using

the K’s Ward identities, we find f1,2 = 0, and thus we have proved (4.26).

In short summary, the differential parts of B’s Ward identities give the constraints on the

φ dependence, and together with the B’s unidirectional action on the representations, makes

gq1,q2(φ) be the polynomials in cotφ = t12/|x⃗12| of order at most (q1 + q2 − 2). The tensor

structure part then gives the constraints on the relative coefficients in the tensor structure.

The simplest non-trivial case is that O1 ∈ (1) → (0) and O2 ∈ (0) → (1). As analysed

26This could be easily checked using a basis change: Im1=±1,∗
1,1 = 1√

2
(iIµ=1,∗±Iµ=2,∗) and Im1=0,∗

1,1 = iIµ=3,∗,
and a similar basis change between m2 and ν.
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in the main text, the Ward identities on the level-2 correlators suggest that f1,2 and f2,1 are

reduced to the correlators of CFT3 with ∆1 = ∆2, and f1,1 = 0. The Ward identities of B’s

(B.20) on the level-3 correlator require f2,2 to be linear in t12

f2,2 =
C t12/|x⃗12|I1,0 + C

(1,0)
0 Ĩ1,0

|x⃗12|∆1+∆2
, (B.32)

and further fix the relative coefficients in I1,0 as c
1
1,0 = i

√
2. It follows that the Ward identities

of Ki (B.3) lead to

xj12

(
Jij
1 f2,2 − Jij

2 f2,2

)
+ ti12

(
Bi

1f1,2 −Bi
2f2,1

)
= 0. (B.33)

It is obvious that C
(1,0)
0 should vanish, and the resulting 2-pt correlators are (4.32).

We can further extend these discussions to the chain representation case that

O1 ∈ (j0 + n) → · · · → (j0 + 1) → (j0),

O2 ∈ (j0) → (j0 + 1) → · · · → (j0 + n), j0 ∈ N.
(B.34)

The same argument on the 2-pt correlators level by level by using (B.33) suggests that the

2-pt correlators are the power-law functions of t12/|x⃗12| and thus the Ward identities require

the 2-pt correlators being

fq1,q2 =
C

|x⃗12|∆1+∆2

(
t12
|x⃗12|

)(q1+q2−n)

Ij1,j2 , for q1 + q2 ≥ n (B.35)

with the relative coefficients in Ij1,j2 being

cjj1,j2 =

(
i√
2

)j (−1)j2

|j1 − j2|!

√
(2j + 1)!!

j!

(j + |j1 − j2|)!
(j − |j1 − j2|)!

(−j + j1 + j2 − 1)!! (j + j1 + j2)!!

(−j + j1 + j2)!! (j + j1 + j2 + 1)!!

for |j1 − j2| ≤ j ≤ j1 + j2 and (j − |j1 − j2|) even,

cjj1,j2 = 0 otherwise.

(B.36)

One explicit example was shown in (4.35). Together with the special case (4.39), we have

given rigorous proof for all 2-pt correlators of chain representations.

However it is hard to give a general result for the operators in net representations. In

the case of CFT, by the (finite) Ward identity on the 2-pt correlator, Ij1,j2 is invariant in the

sense that

Im1,m2
j1,j2

= (ρ1)
m′

1
m1

(
I
m′

1,m
′
2

j1,j2

)
(ρ2)

m′
2

m2 , (B.37)

with suitable choice of coordinates, where ρi is the irreducible SO(d) representation matrix
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on Oi, and ρR represents “reflected” representation under inversion iE : xµ → xµ

x2 [6]. Using

the Schur lemma, we have ρ1 = (ρR2 )
−1 and thus the selection rule j1 = j2. In the CCFT

case, gq1,q2I
m1,m2
j1,j2

is invariant similarly

gq1,q2I
m1,m2
j1,j2

= (ρ1)
q1,m′

1

q′1,m1

(
gq′1,q′2I

m′
1,m

′
2

j1,j2

)
(ρ2)

q2,m′
2

q′2,m2
, (B.38)

with suitable choice of coordinates, where ρi is the representation matrix of CCA rotation on

Oi. However, the Schur lemma can not be applied since ρi’s are not irreducible. The forms of

2-pt correlators of net representations have to be determined case by case, without a general

form.

C Three-dimensional CCFT

In the main text, we focus on d = 4 CCFT, and we can extend the discussions to other

dimensions as well. As we can expect, the representations of CCA rotation in d dimension

are generally the multiplet representations that every sub-sector is an SO(d − 1) irreducible

representation, and the boost generators B’s map the sub-sectors to the sub-sectors. In

particular, for the dimension higher than four, the general representations of CCA rotation

are intrinsically higher dimensional net representations. To be more specific, taking d = 5 for

example, there are two spins (j1, j2) labeling the SO(4) representations, thus the B generators

form a (12 ,
1
2) representation of SO(4). Since we have

(j1, j2)⊗
(
1

2
,
1

2

)
=

(
j1 +

1

2
, j2 +

1

2

)
⊕
(
j1 +

1

2
, j2 −

1

2

)
⊕
(
j1 −

1

2
, j2 +

1

2

)
⊕
(
j1 −

1

2
, j2 −

1

2

)
,

(C.1)

the actions of B generators should be organized as a three-dimensional net as shown in Figure

15. Together with the non-diagonalizable structure to be introduced later in this appendix,

the general net representation of d-dimensional CCA rotation could be wildly complicated.

Figure 15: Since the SO(4) representations are labeled by (j1, j2), which form a 2-dimensional
structure, the general net structure of 5d CCA representation should be three dimensional.

In this appendix we will discuss CCFT3. The three-dimensional (3d) CCA is of special

70



interest, as its infinitely extension is isomorphic to BMS4 [32]. Firstly, we try to construct

the finite dimensional representations following the strategy in the main text, where the

representations should be based on SO(2) representations. It should be reminded that since

the irreducible representations of SO(2) are 1-dimensional, the appearance of a j = −1

operator is not guaranteed even if there is a j = 1 operator. For example,

B+O(0,2) = O(1,1), B−O(0,2) = 0,

B+O(1,1) = 0, B−O(1,1) = 0,

O(0,2)

↓ B+

O(1,1)

(C.2)

Here the notation O(j,q) following the main text means that the operator O has spin j under

the rotation J = −iJ12 and is at order q in a multiplet. As shown in Figure 16, one may view

the irreducible finite representations Oj,b+,b− as a set of points on a 2d grid connected by B±

with the relations

Oj,b+,b− =
(
B+
)b+ (

B−)b− Oj,0,0, JOj,b+,b− = (j + b+ − b−)Oj,b+,b− . (C.3)

Figure 16: One example of 3d CCA representation where the black dots representing the operators
of this representation fitting in the 2d grid shown in gray.

However, the story does not end here, and there are much more complicated representa-

tions for the 3-dimensional CCA rotation. For example, consider the representation consisting

of {O(1,3),O(−1,3),O(2,2),O(0,2)
1 ,O(0,2)

2 ,O(−2,2),O(1,1),O(−1,1)} with the relations

B+O(1,3) = O(2,2), B−O(1,3) =
1√
2
(−O(0,2)

1 +
√
3O(0,2)

2 ),

B+O(−1,3) =
1√
2
(O(0,2)

1 +
√
3O(0,2)

2 ), B−O(−1,3) = −O(−2,2),

B+O(2,2) = 0, B−O(2,2) = O(1,1),

B+O(0,2)
1 =

1√
2
O(1,1), B−O(0,2)

1 =
1√
2
O(−1,1),
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B+O(0,2)
2 =

√
3

2
O(1,1), B−O(0,2)

2 = −
√

3

2
O(−1,1), (C.4)

B+O(−2,2) = O(−1,1), B−O(−2,2) = 0,

B+O(1,1) = 0, B−O(1,1) = 0,

B+O(−1,1) = 0, B−O(−1,1) = 0.

In the graphic language, this representation is shown in Figure 17. It is impossible to redefine

O(0,2)
1 and O(0,2)

2 by basis change to fit them into the grid in Figure 16, and this representation

is essentially a 3-dimensional net. We call this a non-diagonalizable structure in the sense that

we can not diagonalize O(0,2)
1 and O(0,2)

2 to simplify the structure of the representation. More

generally, a representations of 3-dimensional CCA rotation could be a higher dimensional net

if there is nesting of such non-diagonalizable structures.

Figure 17: The representation in (C.4). The points represent the operators and the axis labels their
spin. This is exactly the second part in the rank-3 tensor representation shown in Figure 20.

The reason this non-diagonalizable structure appearing is that B generators form a vec-

tor representation under SO(d − 1), and for d = 3, B± are two independent 1-dimensional

representations. Thus the coefficients c± in B±Oq = c±Oq−1 are arbitrary, leading to the

non-diagonalizable structure. This is a general feature for d > 2. It is easy to construct

such a non-diagonalizable structure in the representations of general d > 2 CCA rotation. A

concrete example for d = 4 appears in the rank-4 tensor representation, as shown in Figure

18.

The general structure of the representation of 3-dimensional CCA rotation is loosely

constrained by the structure of the algebra. The relation [J,B±] = ±B± requires that the

action of B± increase or decrease j by 1, which is satisfied by construction. The relation

[B+, B−] = 0 requires a diamond structure or a straight chain structure for three suc-

cessive levels with suitable coefficients for the B actions. This means that there do not exist

the folded-line structure like or in the net representations. For example, if there

exist a Oj+1 that satisfies B−B+Oj
2 ∝ B−Oj+1 ∝ Oj

1, there must exist a Oj−1 satisfying

B+B−Oj
2 ∝ B+Oj−1 ∝ Oj

1, and together forming a diamond shape to respect the commuta-

tor [B+, B−] = 0, as shown in Figure 19.
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Figure 18: The 45-dimensional indecomposable rank-4 tensor representation of 4d CCA rotations.
There are two (1) sectors at order 3 that can not be diagonalized. The rank-4 tensor representation

appears in the decomposition of the tensor product:
((3) → (1))

⊗4
= [35]⊕ 3× [45]⊕ 2× [20]⊕ 3× [15]⊕ [1], where [dim] represents a dim-dimensional

representation.

Figure 19: The commutation relation [B+, B−] = 0 completes the folded-line structure to a
diamond structure.

As in the example given in (C.4), the non-diagonalizable structure are allowed. In this

case, although the structure of the representation is not strictly a diamond, we call it a

generalized diamond in the sense that projecting the second representation in Figure 17 to

the grid in Figure 16, it has the structure of diamonds.

The matrix representation of J and B± could be chosen to be equal to the case in 4d

and have the form given in section 3.3. However, since the SO(2) sub-sector is 1-dimensional,

there is a redefining degree of freedom which may lead to the change of the matrices of B±

generators. Thus the J matrix of a representation is diagonal with the elements being the

spins, and the B± matrices do not admit a fixed form. They could be of the same form as in

section 3.3 or not as long as they are consistent with the algebra structure.

In summary, the representations of 3d CCA can be organized into a higher dimension net

with 1-dimensional representations living on the grid points, and unidirectionally connected

by B generators. The commutation relation of [B+, B−] = 0 should be respect, leading to

the generalized diamond structure or straight line structure.

Similar to the 4d case, the calculation of the correlation functions of chain representations

are easier and would give us guide to the computations for net representations. For the short

chains of rank 2, different from the 4d case, there are only increasing or decreasing chains
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since there is no B3 generator. For the longer chains, the constraints from [B+, B−] = 0

require that only the increasing and decreasing chains (straight chains fitting in Figure 16)

are acceptable, otherwise if it contains the increasing and decreasing structure at the same

time, it would be completed to a net representation for self-consistency as Figure 19.

For physical application, the vector representation can be defined by taking the limit

from the vector representation of SO(3), and further using tensor product one can determine

the higher-rank tensor representations.27 Although the vector representation of SO(2) itself

is reducible and decomposable, with the help of B generators, the vector representation of

3d CCA is indecomposable. The first three lowest-rank tensor representations are shown in

Figure 20. And as discussed above, at rank 3 the second irreducible representation have a 3-

dimensional structure, where the actions of B operators are exactly the same as (C.4), leading

to the 3-dimensional structure.

Figure 20: The first three lowest-rank tensor representations. The axes beneath every irreducible
representations show the spins, and the arrows label the connection by B generators.

Based on the representations of 3d CCA rotation {J,B±}, the highest weight represen-

tations and the local operators can be defined naturally. The primary operators of CCFT3

are labeled by four quantum numbers: {∆, j, r, q} with ∆ and j being the quantum numbers

of D and J = −iJ12 respectively, q being the order in the multiplet, and r being the total

rank of the multiplet. The actions of symmetry generators on a primary operator are

primary O(m,q) : [D,O(m,q)] = ∆O(m,q), [J,O(m,q)] = mO(m,q), [Kµ,O(m,q)] = 0,

descendants : [Pµ,O(m,q)] = ∂µO(m,q), multiplet index [B±,O(m,q)] ∝ O(m±1,q−1),

(C.5)

27The tensor representations could also be get by taking ultra-relativistic limit as we did in d = 4 in Appendix
A. Although similarly, the tensor representations may come from a reducible representation of SO(3).
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and the local operators are defined as

O(x) = UO(0)U−1, U = exp(xµPµ), µ = 0, 1, 2. (C.6)

With the primary operators being well defined, we can further consider the correlators by

the constraints from the Ward identities. It turns out that the 2-point correlators of CCFT3

have very similar structures with the ones in 4d, except the tensor structures are much simpler.

The non-zero 2-pt of chain representations are those with the operators in the representations

having inverse increasing and decreasing structures at the top levels. The 2-pt correlators

consist of the powers of |x⃗12| representing the scaling behavior, the tensor structure Ij1,j2 ,

and the powers of t12/|x⃗12| with the order being related to the levels of the 2-pt correlators28

⟨O1O2⟩ =
C (t12/|x⃗12|)n Ij1,j2

|x⃗12|(∆1+∆2)
, with ∆1 = ∆2, (C.7)

where C is the 2-pt coefficient. The tensor structure can be fixed by J generator

Ij1,j2 = exp(−i(j1 + j2)θ), (C.8)

where θ is the angular coordinate with cot θ = x112/x
2
12. For example, for the operators

O1 ∈ j + 2 → j + 1 → j, O2 ∈ j → j + 1 → j + 2, with ∆1 = ∆2 = ∆, (C.9)

we have the following correlators

Level 5: f j+2,j
3,3 =

−C t212/|x⃗12|2 e−i(2j+3)θ

|x⃗12|2∆
,

Level 4: f j+1,j
2,3 =

C i
√
2 t12/|x⃗12| e−i(2j+1)θ

|x⃗12|2∆
, f j+2,j+1

3,2 =
C i2

√
3 t12/|x⃗12| e−i(2j+3)θ

|x⃗12|2∆
,

Level 3: f j,j
1,3 =

C e−i(2j)θ

|x⃗12|2∆
, f j+1,j+1

2,2 =
C e−i(2j+2)θ

|x⃗12|2∆
, f j+2,j+2

3,1 =
C e−i(2j+4)θ

|x⃗12|2∆
,

Level 2: f j,j+1
1,2 = 0, f j+1,j+2

2,1 = 0,

Level 1: f j,j+2
1,1 = 0.

(C.10)

Here the notation follow the one in the main text, where f j1,j2
q1,q2 is the 2-pt correlator, j (without

bracket) represents an 1-dimensional representation of SO(2) with spin-j and j1 → j2 → . . .

labels the chain representation with the arrows labeling the action of B generators.

In CCFT3, there exists a special case similar to the (0) → (1) → (0) representation in 4d

that admit basis change. It is now a net representation, as shown in Figure. 21. The highest

28Here we discard the distributional solution, as in 4d case.
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Figure 21: The representation behaves similar to (0) → (1) → (0) representation in 4d.

level 2-pt correlator of the operators in this representation contains an extra undetermined

2-pt coefficient C ′ as well.

Level 5: f0,0
3,3 =

−2C + C ′

|x⃗12|2∆
,

Level 4:

f1,0
2,3 =

C i
√
2 t12/|x⃗12| e−iθ

|x⃗12|2∆
, f−1,0

2,3 =
C i

√
2 t12/|x⃗12| eiθ

|x⃗12|2∆
,

f0,1
3,2 =

C i
√
2 t12/|x⃗12| e−iθ

|x⃗12|2∆
, f0,−1

3,2 =
C i

√
2 t12/|x⃗12| eiθ

|x⃗12|2∆
,

Level 3:

f0,0
1,3 =

C

|x⃗12|2∆
, f1,1

2,2 =
C e−2iθ

|x⃗12|2∆
, f1,−1

2,2 = 0,

f−1,1
2,2 = 0, f−1,−1

2,2 =
C e2iθ

|x⃗12|2∆
, f0,0

3,1 =
C

|x⃗12|2∆
,

(C.11)

Level 2: f0,1
1,2 = 0, f0,−1

1,2 = 0, f1,0
2,1 = 0, f−1,0

2,1 = 0,

Level 1: f0,0
1,1 = 0.

C ′ can be canceled by a change of basis similar to the equation (4.40). There are in fact many

other similar cases, in which the structure of 2-pt correlator can take the standard power-law

form as long as one carefully define the operators.

As discussed in section 3.5, the representation of the CCA rotation could be applied to

the 3d GCA rotation, and consequently define the highest weight representation of GCFT3.

Moreover we can also discuss the correlation functions of GCFT3. The discussion is quite

similar, and we would not like to go into the details.

D CCFTs as null defects of Lorentzian CFT

The conformal defects in Euclidean CFT and equivalently the timelike conformal defects

in Lorentzian CFT have been intensively studied in recent years, see e.g. [69–75] and the

analytic studies in [76–79]. In this appendix, we show that the residual symmetry algebra of

the null conformal defects in Lorentzian CFTs is composed of two parts R⋉ iso(d, 1), one of

which can be identified as the higher dimensional CCA, and the other of which is the outer
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automorphism of CCA29. Hence for a Lorentzian CFT coupled with null defect, the local

excitations living on the defect can be described by a CCFT in principle.

We would like to emphasize that this perspective on CCA is different from those in the

previous literature, including the asymptotic symmetries at the null infinity of flat spacetime

- the BMS algebra, and the conformal transformations of the flat Carrollian manifold - the

infinitely extended CCA, see e.g. [30, 32, 37]. There are two distinctions: firstly the residual

symmetry algebra of the null defect is finite-dimensional, while the BMS algebra and the

infinitely extended CCA are infinite-dimensional; secondly there is an additional generator

inherited from the dilatation symmetry of the Lorentzian CFT, and it acts as the outer

automorphism of the CCA.

Mathematically, this outer automorphism is due to the non-semisimple nature of the

CCA, contrary to the fact that the outer automorphism group of the semisimple Lorentzian

conformal algebra is a finite group. From the holography viewpoint, in AdS/CFT the AdS

radius R serves as an infrared regulator, leading to the discrete spectrum. The masses of the

bulk states combined with R are related to the scaling dimensions of CFT states by mass-

dimension relations, see e.g. [80]. While in the proposed BMS holography [55], there is no

intrinsic length scale playing the role of the AdS radius and the bulk geometry itself is dilata-

tion invariant, then this bulk dilatation acts on the null infinity as the outer automorphism

of the BMS algebra. We leave its physical implications for further study.

Starting from a (d+1)-dimensional Lorentzian CFT, there are two types of codimensional

one null hyper-surface in Rd,1: the null-plane and the null-cone, which are equivalent upto

a bulk conformal transformation. We focus on the null-plane case and demonstrate that the

residual symmetries on the null-plane are the CCA plus the outer automorphism. Following

the convention of [6], we denote the vector field of (d+ 1)-dimensional Lorentzian conformal

symmetry as in Table 5, where the superscript “L” of the generators indicates the Lorentzian

signature g = diag{
−1
−1,

0
1,

1
1, . . . ,

d−1
1 } and α, β = −1, 0, 1, . . . , d− 1.

Table 5: Action of Lorentzian conformal symmetry generators as vector fields on the spacetime.

generator vector field finite transformation

d̂L xα∂α λxα

p̂Lα ∂α xα + xα0

k̂Lα 2xαx
β∂β − x2∂α

xA−aAx2

1−2a·x+a2x2

m̂L
αβ xα∂β − xβ∂α Λ · x

We choose the null-plane as P : x−1 − x0 = 0 and use the lightcone coordinates x± =

29For a related discussion in two dimension, see [26].
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1√
2
(x−1 ± x0). Apparently the following generators preserve this null-plane

p̂0 ≡ p̂L+ = ∂+ :=
1√
2
(∂−1 + ∂0),

p̂i ≡ p̂Li = ∂i,

d̂ ≡ (d̂L)|P = x+∂+ + 0∂− + xi∂i,

m̂ij ≡ m̂L
ij = xi∂j − xj∂i,

k̂i ≡ (k̂Li )|P = 2xi(x
+∂+ + 0∂− + xi∂i)− (2x+ × 0 + x⃗2)∂i.

(D.1)

There are other residual symmetries: the combinations of m̂L
−1i and m̂L

0i corresponding to the

Carrollian boosts

(m̂L
−1i)|P =

1√
2
(−x+∂i − 0∂i − xi∂+ − xi∂−)

(m̂L
0i)|P =

1√
2
(x+∂i − 0∂i − xi∂+ + xi∂−)

⇒ b̂i = − 1√
2
(m̂L

−1i + m̂L
0i)|P = xi∂+, (D.2)

and the combination of k̂L−1 and k̂L0 corresponding to the temporal SCT k̂0 in CCA

(k̂L−1)|P =
√
2(−x+ − 0)(x+∂+ + 0∂− + xi∂i)−

1√
2
(2x+ × 0 + x⃗2)(∂+ + ∂−)

(k̂L0 )|P =
√
2(x+ − 0)(x+∂+ + 0∂− + xi∂i)−

1√
2
(2x+ × 0 + x⃗2)(∂+ − ∂−)


⇒ k̂0 =

1√
2
(k̂L−1 + k̂L0 )|P = −x⃗2∂t.

(D.3)

Identifying the coordinates of the flat Carrollian spacetime and the null-plane by tCCFT =

x+CFT and xiCCFT = xiCFT, the above generators form the d-dimensional CCA. Thus we have

matched the Carrollian conformal symmetries with the Lorentzian conformal symmetries pre-

serving the null-plane.

However, there is an extra residual symmetry not in the CCA,

b̂0 := (m̂L
0,−1)|P = x+∂+ − 0∂−, (D.4)

and the adjoint action of the related generator B0 on the CCA can be worked out as

[B0, D] = [B0, J ij ] = [B0, P i] = [B0,Ki] = 0,

[B0, P 0] = P 0, [B0,K0] = K0.
(D.5)

Recall that the CCA is isomorphic to the Poincare algebra, together with B0 they are isomor-

phic to R ⋉ iso(d, 1). On the other hand, the automorphism algebra of the Poincare algebra
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is exactly the same: Aut(iso(d, 1)) = R ⋉ iso(d, 1), hence B0 generates the non-trivial outer

automorphism.
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l’IHP Physique théorique 3 (1965) 1.
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