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Abstract

We study Multiple Andreev Reflections in long diffusive superconductor(S)-normal metal(N)-
superconductor junctions with low-transparency interfaces. Assuming strong thermal-
ization in the weak link we calculate the current-voltage dependence I(V ). At interme-
diate temperatures, ϵTh ≪ T ≪ ∆, the current is dominated by noncoherent multiple
Andreev reflections and is obtained analytically. The results are generalized to a ferro-
magnetic junction. We find that the exchange field produces a non-trivial splitting of
the subharmonic gap structure. This effect relies on thermalization and vanishes in SFS
junctions with no energy relaxation in the weak link.
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1 Introduction

Andreev reflection (AR) is the process of an electron reflecting off a superconductor as a hole
while the superconducting condensate gains an extra Cooper pair [1]. This basic mechanism
underlies many phenomena observed in superconducting heterostructures. In particular, it
helps understand the proximity effect – superconducting behaviour observed in normal metals
in contact with superconductors. The Josephson effect is a prime example: electrons within
the normal region of an SNS junction experience Andreev reflection at the NS interfaces, while
going back and forth between the two NS interfaces. In a stationary setup such a scattering
state forms an Andreev bound state which shuttles Cooper pairs between the leads, carrying
a supercurrent across the junction. That is the stationary Josephson effect.

Multiple Andreev Reflections (MAR) is the mechanism behind the subharmonic gap struc-
ture (SGS) of current-voltage characteristic (CVC) I(V ) of a biased SNS junction [2, 3]. At
voltages below the superconducting gap 2∆ electrons that enter the normal region from the
valence band of the left superconductor (at voltage V ) do not have enough energy to enter the
conductance band of the right superconductor. However, once the electron has experienced
two Andreev reflections, coming full circle, it will have transported a Cooper pair between
the leads. The pair energy difference 2eV is accumulated by the electron. After a number of
iterations enough energy will build up to enter the conductance band of one of the leads as
schematically shown on Fig. 1. The neccessary number of Andreev reflections changes by one
every time eV passes through ∆/n, leading to SGS in I(V ).

Figure 1: Semiconductor picture of MAR-assisted transport. Blue lines represent
electrons, red lines represent holes, black dotted lines represent acts of AR. An elec-
tron from the valence band of SL enters the normal region where it builds up energy
via AR, ultimately escaping into the conductance band of SR.

While the idea of MAR is relatively simple, calculation of the current in real systems proves
complicated. The sequence of Andreev reflections at alternating NS interfaces outlined above
only works in a ballistic link with transparent NS interfaces. This was precisely the model
initially proposed in Ref. [4]. Normal scattering mixes up this simple picture and produces
complicated interference between different trajectories. This is furthermore complicated by
the time dependence of the Andreev reflection amplitude rA∝ exp iϕ(t) where ϕ(t) is the
superconducting phase. On the other hand, for a diffusive weak link with strong disorder (the
so-called dirty limit, τimp∆≪ 1), one can take advantage of Usadel equations [5] to describe
the disorder-averaged behavior of the system. The proximity effect penetrates N up to the
coherence length ξ =

p

ħhD/ϵ with diffusion constant D. Therefore in long junctions with
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L ≫
p

ħhD/∆ MAR is incoherent. The SGS in this limit has been calculated in Ref. [6]. In
short junctions MAR is coherent and has been observed [7] and studied semi-numerically [8].

All the above cases imply the absence of inelastic scattering. This is essential to the equiv-
alent circuit method developed in Ref. [6] which relies on the conservation of energy of a
quasiparticle in between Andreev reflection events. The presence of inelastic events adds an-
other layer of complexity to the problem. Ref. [9] analytically studied SINIS junctions with
strong thermalization focusing on high temperature kB T ≫ ϵTh and low voltages eV ≲ ϵTh,
where ϵTh ≡ ħhD/L2 is the Thouless energy.

In recent years MAR in Josephson junctions with exotic weak links have been studied such
as topological materials [10–12] or graphene [13]. In Ref. [14] SGS has been observed in an
S(N/F)S junction where the weak link is a bilayer of normal metal (N) and ferromagnetic (F).
Such a bilayer effectively acts as a ferromagnetic link with a diluted exchange field [15]. The
measured dI/dV (V ) curve exhibits a double peak near a certain subgap voltage. The peaks
would merge if the ferromagnetic was demagnetized and split again once the ferromagnetic
was in a polarized, single-domain state. This SGS is thus sensitive to exchange field in the weak
link. So far, there has been no adequate explanation of this measurement which motivates our
present work.

Figure 2: Schematic of junctions. We assume that all of the voltage bias ±V/2 is
concentrated at the SN-interfaces. Total length of normal(ferromagnetic) region is
L ≪
p

ħhD/∆, where ∆ is the order parameter of the superconducting leads and D
is diffusion constant of the N(F) region. Resistance of the boundaries RSN is much
greater than resistance of N(F)-region RN (r ≡ RSN/RN≫ 1).

In this work we focus on MAR in long diffusive SINIS and SIFIS junctions, as presented on
Fig. 2. We assume strong thermalization in the weak link via interaction with the substrate
which seems a reasonable approximation of experiment Ref. [14]. The energy relaxation only
needs to be strong relative to the transport processes through the tunneling barriers (I). In
this case the distribution function is close to thermal justifying the use of τ-approximation
to describe inelastic processes. Treating the tunneling conductance as a small parameter we
construct a perturbation theory, where higher orders naturally correspond to higher numbers
of Andreev reflections. We also consider the effects of an exchange field in the limit of weak
energy relaxation [6] and compare results with experiment.

This paper is organized as follows. Section 2 establishes the system and its properties and
introduces the Keldysh Green’s function framework we use. In Sec. 3 we compute Green’s
function in the weak link and calculate total current through the junction. In Sec. 4 we gen-
eralize our theory to ferromagnetic junctions. In Sec. 5 we discuss the results and in Sec. 5
we conclude the paper. Details on computation of the effective temperature and the electric
potential are presented in Appendices A, B, respectively. Appendices C, D contain explicit
expressions related to the distribution function and the current, respectively.
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2 Model

The system consists of a normal metal link with length L much greater than
p

D/∆ (here and
below we adopt units ħh = e = kB = 1) between two voltage-biased superconducting leads.
We assume a symmetric junction, i.e. the SIN-interfaces have the same resistance RSN = r RN
where RN is the resistance of the normal region. In order to resolve an SGS temperature TS
has to be much smaller than∆. We also require TS ≫ ϵTh. This will allow us to neglect electric
potential effects within the weak link. In addition this suppresses coherent MAR, leaving only
noncoherent MAR contributions in the current.

To describe the system microscopically, we follow Ref. [9], using Usadel equation on disorder-
averaged semiclassical Green’s function Ǧ(t1, t2, r) which is a matrix in Keldysh space with
components Ǧ11 = ĜR, Ǧ22 = ĜA, Ǧ12 = ĜK , Ǧ21 = 0. Here Ĝ i are themselves matrices in
particle-hole space. In mixed representation (t = t1+t2

2 ; τ = t1 − t2), the Usadel equation
takes the following form in the normal region (x is measured in units of L).

−ϵTh∂x

�

Ǧ◦∂x Ǧ
�

− iϵ
�

σ̌3, Ǧ
�

+
1
2
∂T

�

σ̌3, Ǧ
	

+ iϕ−Ǧ = ǏSt (1)

The ◦ means time convolution, which after Fourier transform over τ to ϵ takes the form
A◦B(ϵ, t) = exp

� i
2

�

∂ B
t ∂

A
ϵ − ∂

A
t ∂

B
ϵ

	�

A(ϵ, t)B(ϵ, t). Here σ̌i denote σ̌i = 1K ⊗ τ̂i with Pauli
matrices τ̂i acting in particle-hole space. The electric potential ϕ−(t1, t2) = ϕ(t1) − ϕ(t2)
obeys the electroneutrality condition ϕ(t) = π

4 Tr
�

GK(t, t)
�

[16].
Usadel equation (1) is supplemented with tunnel boundary conditions [17].

Ǧ ◦ ∂x Ǧ
�

�

x=1/2 =
1
2r

�

Ǧ◦, Ǧright

��

�

x=1/2 , (2a)

− Ǧ ◦ ∂x Ǧ
�

�

x=−1/2 =
1
2r

�

Ǧ◦, Ǧleft

��

�

x=−1/2 . (2b)

We parametrize the Keldysh component ĜK via matrix distribution function ĥ:

ĜR(A) =

�

gR(A)(ϵ) f R(A)(ϵ)
f R(A)(ϵ) −gR(A)(ϵ)

�

, (3a)

ĜK = ĜR ◦ ĥ− ĥ ◦ ĜA (3b)

In the bulk of the superconducting leads the Green’s functions ǦS is given by

ĥS(ϵ) = 1̂ tanh
�

ϵ

2TS

�

, (4a)

gR(A)
S (ϵ) =

ϵ

∆
(±ηS − iξS) , (4b)

f R(A)
S (ϵ) = ξS ± iηS , (4c)

ηS(ϵ) =
∆ signϵ
p
ϵ2 −∆2

θ (|ϵ| −∆), (4d)

ξS(ϵ) =
∆

p
∆2 − ϵ2

θ (∆− |ϵ|). (4e)

In addition the Green’s function satisfies the normalization condition ĜR(A)◦ĜR(A) = 1 and the
general symmetry relation between advanced and retarded functions: ĜA = −τ̂3ĜR†τ̂3.

We can neglect the inverse proximity effect due to the assumed low transparency of the
interfaces. Therefore the pairing potential ∆(x) and Green’s function Ǧ(x) in the supercon-
ducting leads retain their bulk values near the NS-interfaces and Ǧright,left in our boundary
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conditions can be replaced with bulk Green’s function of the corresponding superconducting
leads.

To account for the voltage drops at the NS interfaces in our system we perform a gauge
transform (given by ŠV (t) = exp [iσ̌3V t]) on the equilibrium Green’s function of Eqs. (4) so
that Ǧright,left = Š†

±V/2(t1) ◦ ǦS ◦ Š±V/2(t2).
The electrical current is given by the general relation [16]

I(t) =
πσN

4
Tr
�

τ̂3 ĵK(t, t)
�

, (5a)

ĵK = L−1
�

Ǧ ◦ ∂x Ǧ
�K

. (5b)

The conductivity σN takes into account both electron spin projections. Coefficient L−1 in
Eq. (5b) appears due to our use of a dimensionless variable x .

In this paper we solve Usadel equation (1) via perturbation theory in small parameter
r−1. The first step is to determine zeroth-order approximation of the distribution function.
We assume electron-phonon interaction with the substrate to be strong enough to thermalize
the normal region to some effective temperature Te which is determined via heat balance
equation [18–20] (for more details see Appendix A). Therefore zeroth-order approximation of
matrix distribution function is diagonal with elements h(0) = tanh ϵ

2Te
. For low temperatures

(TS ≪ ∆) and V < 2∆ one can show that the difference between electron temperature Te
and lead temperature TS is exponentially small (see Eq. (25)). Relaxation is controlled by
inelastic scattering time τin. To be close to thermalization the dimensionless relaxation rate
γ ≡ (τinϵTh)

−1 should be sufficiently large γ ≫ r−2). Physically, this inequality means that
particles spend enough time in the weak link to thermalize, which justifies our choice of zeroth-
order approximation.

3 CVC in thermalized SINIS junction

In the normal region we following Ref. [9]’s notations, parameterizing the Green’s function:

ĜR(A) =

�

±
�

1− gR(A)
1

�

f R(A)
1

f R(A)
2 ∓(1− gR(A)

2 )

�

(6)

Normalization condition then takes form

gR
1,2 =

1
2

�

f R
1,2 ◦ f R

2,1 + gR
1,2 ◦ gR

1,2

�

(7)

One can see, that corrections to the regular Green’s functions gR(A)
1,2 are of a higher order in tun-

nel parameter r−1 than anomalous Green’s function f R(A)
1,2 . Therefore, we solve Usadel equation

on anomalous components, and corrections to the regular part are subsequently derived from
the normalization condition.

Adopting τ-approximation for collision integral ǏSt and taking into account suppression of
electric potentialϕ− (see Appendix B for more details), we can write down the Usadel equation
and boundary conditions for f R

1,2 expanded up to the leading order in r−1

ϵTh∂
2
x f R

1,2 +
�

2iϵ −τ−1
in

�

f R
1,2 = 0, (8a)

∂x f R
1,2

�

�

�

x=1/2
=

1
r

f R
S e±iV t ,

∂x f R
1,2

�

�

�

x=−1/2
=

1
r

f R
S e∓iV t .

(8b)
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For the validity of linearization, which implies
�

�

� f R
1,2(x ,ϵ, t)
�

�

� ≪ 1, we must restrict appli-

cability of this theory to certain energies: |∆− |ϵ|| ≪ ϵTh/r
2. In what follows, Advanced

components of functions are found from the general symmetry relation between ĜR and ĜA.
To calculate the current, we write down values of f R(A)

1,2 (x ,ϵ, t) in the vicinity of the right
boundary

f R
1,2(x = 1/2) = uR(ϵ)e±iV t + vR(ϵ)e∓iV t , (9a)

f A
1,2(x = 1/2) = uA(ϵ)e±iV t + vA(ϵ)e∓iV t , (9b)

with auxiliary functions u(ϵ), v(ϵ):

uR(A)(ϵ) = − f R(A)
S (ϵ)u(±ϵ), (10a)

vR(A)(ϵ) = − f R(A)
S (ϵ)v(±ϵ), (10b)

u(ϵ) =
coscϵ

rcϵ sincϵ
, (10c)

v(ϵ) =
1

rcϵ sincϵ
, (10d)

c2
ϵ =

2iϵ
ϵTh
−

1
τinϵTh

. (10e)

These results allow us to obtain corrections of the second order in r−1 to the regular Green’s
function from the normalization condition Eq. (7). In the vicinity of the right superconductor
they take form

gR(A)
1 (x = 1/2,ϵ) =

1
2

¦

uR(A)2
+ + vR(A)2

− +
�

e2i tV + e−2i tV
�

uR(A)
− vR(A)

+

©

, (11a)

gR(A)
2 (x = 1/2,ϵ) =

1
2

¦

uR(A)2
− + vR(A)2

+ +
�

e2i tV + e−2i tV
�

uR(A)
+ vR(A)

−

©

. (11b)

Here we use following shorthand notation: Φ± = Φ(ϵ ± V/2), Φ±± = Φ(ϵ ± V ), etc.
In the second order in r−1 the Usadel equation (8a) remains linear (corrections to the

linearized Usadel equation are third-order in r−1), and to obtain second-order approximation
to the anomalous Green’s function f̃ R(A)

1,2 , we expand boundary conditions (2) up to the second
order in r−1. Near the right boundary this expansion gives

∂x f̃ R
1,2

�

�

�

x= 1
2

= −
1
2r

�

f R
1,2 ◦ gS,∓ + gS,± ◦ f R

1,2

�

�

�

�

�

x= 1
2

. (12)

Here upper(lower) sign corresponds to f̃ R
1,(2). To formulate the left boundary condition, one

should change the sign of the square bracket and change V to −V .
Near the right boundary the solution takes the following form:

f̃ R
1,(2)

�

x =
1
2

�

= αRe∓iV t + βRe±iV t , (13a)

f̃ A
1,(2)

�

x =
1
2

�

= −αAe∓iV t − βAe±iV t , (13b)

αR(A) = uR(A)gR(A)
S v(±ϵ) +

u(±ϵ)vR(A)
�

gR(A)
S,++ + gR(A)

S,−−

�

2
, (13c)

βR(A) = uR(A)gR(A)
S u(±ϵ) +

v(±ϵ)vR(A)
�

gR(A)
S,++ + gR(A)

S,−−

�

2
. (13d)
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Minus sign in the r.h.s. of the relation (13b) appears due to the definition of the regular bulk
Green’s function (4b).

First non-vanishing corrections to the distribution function are of the second order in r−1.
We parametrize ĥ= 1̂h0+ τ̂3h3, and taking traces Tr [τ̂3 · ] , Tr [ · ], of the Usadel equation and
boundary conditions. This helps separate equations on h0, h3 and yields:

ϵTh∂
2
x h0,3 −
�

∂T +τ
−1
in

�

h0,3 = 0, (14a)

4∂xh(2)0,3

�

�

�

x=1/2
=

1
2r
[J1 ∓ J2] ,

4∂xh(2)0,3

�

�

�

x=1/2
=

1
2r
[J2 ∓ J1] ,

(14b)

J1,2 = f R
1,2 ◦
�

e∓iV t
�

f R
S δh1− − f A

S δh2+
��

+
�

e±iV t
�

f A
S δh1− − f R

S δh2+
��

◦ f A
2,1. (14c)

Here we once again neglected the term related to electric potential ϕ−. Due to the symme-
try of the boundary conditions, solutions of Eq. (14a) take form of a Fourier series with 3 com-
ponents presented below (explicit expressions for the coefficients are found in Appendix C):

h(2)0 =
1
∑

n=−1

A(2)n (ϵ) cos(cnV x)e2inV t , (15a)

h(2)3 =
1
∑

n=−1

B(2)n (ϵ) sin(cnV x)e2inV t , (15b)

c2
nV =

2inV
ϵTh
−

1
τinϵTh

. (15c)

Other harmonics in h0,3(t) are of higher order in r−1.
Current, determined by Usadel equation, has a constant value across the system and can

be calculated at any point. It is convenient to evaluate the expression (5b) near the right
superconductor, where we can make use of boundary conditions. This trick allows us to obtain
the current in the order r−(n+1) with Green’s function only calculated up to the order r−n.
Calculated this way, the leading term in the current takes form

I (0) =
1

4RΣ

∫

dϵ
¦

δh2

�

gA
S,− − gR

S,−

�

−δh1

�

gA
S,+ − gR

S,+

�©

. (16)

Here RΣ = 2RSN + RN ≈ 2RSN is the resistance of junction, and δh1,2 = hS,± − h(0).
In the limit of low temperatures TS ≪ ∆ this integral can be evaluated, leading to the

familiar square-root voltage-current relation

I (0) =
1

RΣ
θ (V − 2∆)
Æ

V 2 − (2∆)2. (17)

Here θ (x) is Heaviside theta function. To observe an SGS in I(V ) we need to go to higher
order in 1/r.

Applying the same procedure to the first order corrections to Green’s function, we obtain
relation for the first-order correction of the current I(t).

I (1)(t) =
1

8RΣ

¦

J (1)0 +
�

J (1)hs
+ J (1)+ e2iV t + J (1)− e−2iV t

�©

. (18)
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(a) (b) (c)

Figure 3: Numerical computation of second-order contributions to the current I (2).
(a) J (2)h , (b) J (2)Σ ≡ 8RΣ I (2), (c) d

dV J (2)Σ , here ∆= 30, ϵTh = 1/8, γ= 0.1, r = 40

Here J (1)i represent various integrals which are explicitly listed in Appendix D (except for

J (1)0 which is given below). All terms in the square brackets depend on time, which suggests
they refer to coherent MAR and should be negligible (time dependence can only emerge from
a dependence on superconducting phase difference, which in turn implies coherence). This
is indeed the case: all of them contain v(ϵ) which is exponentially small at energies ϵ≫ ϵTh,
while J (1)0 contains u(ϵ) which does not contain exponential smallness. Thus, the only remain-
ing term is

J (1)0 ≡
∫

dϵ tanh
ϵ

2Te

��

f A
S,− + f R

S,−

�

�

uA
− + uR

−

�

−
�

f A
S,+ + f R

S,+

�

�

uA
+ + uR

+

�

�

(19)

contributes to relatively small subgap current (see Fig. 4) and enhancement of the current for
V > 2∆.

(a) (b)

Figure 4: First order contribution to the (a) current J (1)0 and (b) differential conduc-

tance d
dV J (1)0 for different temperatures, here ∆= 30, ϵTh = 1/8, γ= 0.1, r = 40.

For the third order approximation our scheme of calculations remains the same, and we
obtain the expression for the stationary contribution to the current.

I (2) =
1

8RΣ

�

−1
4c0r

�

cot
c0

2
+ tan
c0

2

�

J (2)h + J (2)f + J (2)g

�

(20)

Notations J (2)h , J (2)g , J (2)f represent rather cumbersome integrals which are presented explicitly
in Appendix D). The three terms correspond to contributions produced from including second-
order corrections to h(2)0,3, gR(A)

1,2 , f̃ R(A)
1,2 respectively.
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Numerical computations, presented on Fig. 3, reveal that J (2)h is the term responsible for
sharp features in the voltage dependence. At voltages close to 2∆/3 this term exhibits square-
root behavior (see Fig. 5 , which is smeared for higher temperatures. Direct calculation pro-
duces the analytical result

J (2)h

�

V ∼
2∆
3

�

= 9
p

3∆

√

√

V −
2
3
∆

�

u
�

∆

3

�

+ u
�

−
∆

3

��

θ

�

V −
2
3
∆

�

. (21)

Figure 5: Comparison of low-temperature asymptotics (21) with numerical evalua-
tion of J (2)h , here ∆= 30, ϵTh = 1/8, γ= 0.1, r = 40 and Te = TS = 0.

We associate the square-root feature at V ≈ 2
3∆ with the onset of MAR transport involving

two Andreev reflections.
Notice that J (2)h in Eq.(20) comes with a factor that leads to exponential suppression at

large γ. Expanding the first term of Eq. (20) in orders of γ we get.

I (2)h ≈
e−
p
γ

8
p
γRΣr

J (2)h (22)

This limit corresponds to the super-thermalized limit where a particle thermalizes before
it travels the length of the junction.

We would like to note here, that this way of evaluating integrals, corresponding to a total
current, should be corrected for contributions of the third order of r−1, because multiplica-
tion of BCS peculiarities produce nonlogarithmical divergence of integrand, therefore Green’s
function with energies ϵ ≈∆ should be evaluated more precisely.

4 CVC in thermalized SIFIS junction

We now turn to the SIFIS junction. We assume a homogenous exchange field hex in the ferro-
magnetic link. Spin projection along hex is then conserved in the system so that the two spin
subbands can be considered independently.

The exchange field is incorporated into Usadel equation (1) by formally replacing [21]
ϵ with ϵ ± hex where the sign corresponds to spin and hex = |hex| is measured in energy
units. Since the exchange field is only present in the weak link (but not in the S leads),
the substitution ϵ 7→ ϵ ± hex must only be made in functions pertaining to the weak link:
cϵ 7→ cϵ±hex

and ϵ 7→ ϵ± hex within the distribution function h(0). With these adjustments, all
procedures of Sec. 3 are valid for the SIFIS junction. Note that in this case σN in the general
relation Eq. (5b) should be understood as the conductivity of the spin subband currently in

9
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consideration. The total current through the junction is then obtained by adding the currents
carried by each spin projection, I = I↑ + I↓.

(a) (b)

(c) (d)

Figure 6: Numerical computations of different contribution to the current (a)
J (1)0 , (b) J (2)Σ and to the differential conductance (c) d

dV J (1)0 , (d) d
dV J (2)Σ , here

∆= 30, ϵTh = 1/8, γ= 0.1, r = 40

A numerical comparison of different contributions to the SIFIS current is presented on
Fig. 6. The primary effect of the non-zero exchange field is the splitting of features in J (2)h at
V ∼∆, 2

3∆. This is confirmed by low-temperature asymptotic expansions:

J (2)h

�

V ≈
2
3
∆

�

=
9
p

3∆
2

�√

√

V −
2
3
(∆+ hex) {u(∆/3+ hex) + u(−∆/3− hex)}+

√

√

V −
2
3
(∆− hex) {u(∆/3− hex) + u(−∆/3+ hex)}

�

, (23a)

J (2)h (V ≈∆) =
4∆
r

�

Re

�√

√ iϵTh

∆
log

�

ϵThc2
∆+hex−V

4i∆

��

+

Re

�√

√ iϵTh

∆
log

�

ϵThc2
∆−hex−V

4i∆

���

. (23b)
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(a) (b)

Figure 7: Comparison of contributions to a second-order current I (2) per spin
subband, acquired with Eq. (29a) (red dotted lines), and asymptotic expan-
sions of J (2)h (green surface) for voltages (a) V ≈ 2

3∆, (b) V ≈ ∆. Here
∆= 30, ϵTh = 1/8, γ= 0.1, r = 40, Te = TS = 0

From relations (23) we see that the splitting is linear in hex but the coefficients vary be-
tween peaks. This is somewhat expected, because the exchange field shifts energy bands as a
whole. We present comparison of the results of low-temperature numerical computations via
Eq. (29a) and asymptotic expansions (23) on Fig. 7.

5 Discussion

Our results for the SINIS junction agree with the established MAR rules: the SGS exhibits
singularities at voltages that are fractions of 2∆, i,e, 2∆/n. This fits the diagram pictured on
Fig. 1: we consider a particle from the valence band of SL and track its energy accumulation
due to back-and-forth AR in N. Peculiarities in I(V ) occur whenever such a MAR ladder trans-
ports a carrier from the edge of the valence band to the edge of the conductance band. This
corresponds to matching the gap 2∆with energies carried by a single electron and a number of
Cooper pairs, i.e. V +2nV when travelling from one superconductor to the other or 2nV if the
quasiparticle returns to the same lead and only Cooper pairs are transported. This produces
odd and even series of MAR features in the SGS.

However, once we add exchange field to the picture and apply the same interpretation
to the SIFIS case this energy-counting scheme starts contradicting out results. Suppose we
transport a number of Cooper pairs across the junction. The energy released is still precisely
2V per Cooper pair, even with an exchange field to the weak link. The electron energy is also
just V and travelling through a ferromagnetic region does not change it. Therefore we must
conclude that the SGS grid must remain unchanged, i.e. we still have 2∆/n.

Our results Eqs.(23) indicate, however, that splitting of the SGS should happen. The short
answer to this apparent paradox is that the familiar energy counting method does not work in
a system with strong thermalization. In the absence of thermalization it was fair to treat the
weak link as a quantum scatterer that conserves energy (or adds nV to it). We attached two
superconducting leads with known distribution functions to this scatterer and considered the
current within the Blonder-Tinkham-Klapwijk (BTK) language [4] of Fig. 1.

In the strong thermalization regime considered in the present paper, the weak link should
be treated as a reservoir in its own right: in the zeroth order approximation it supplies particles
according to a thermal distribution function – just like a lead does. Therefore, we should not

11
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Figure 8: Semiconductor picture of MAR-assisted transport for the thermalized case.
Blue lines represent electrons, red lines represent holes, black dotted lines represent
acts of AR. N should be treated as a thermalized source of carriers. Particles that
escape into S with the help of MAR are quickly replenished by thermalization.

track the adventures of a quasiparticle that enters the weak link from one lead with the quest
to escape into the other lead. Instead, we start with a particle that lives on the Fermi surface
in N as illustrated on Fig. 8. The voltage drop between N and S is V/2. Thus, an electron from
the Fermi surface has to accumulate ∆−V/2 using the AR mechanism which provides energy
in quanta of V , as usual. Thus, we get the SGS structure ∆= V (m+ 1/2) with m ∈ Z.

The introduction of an exchange field within this paradigm does split the SGS. Indeed,
the distribution functions for different spins get shifted by ±hex. Hence, the starting energy
of our charge carriers is now also shifted and hence we arrive at an SGS with features at
V = 2(∆± hex)/(2m+ 1). This perfectly agrees with our analytical results Eq. (23).

The SGS structure in the thermalized case can also be understood from analyzing the dis-
tribution function. In the zeroth order, i.e. in the limit of disconnected leads, r →∞, electron
occupation numbers in N obey a perfect Fermi distribution h(0). If we attach leads via tunnel-
ing junctions, dissipative current will be able to flow from N to S, provided there are electrons
with ϵ > ∆ − V/2. Such electrons can be activated thermally, but this is an exponentially
weak contribution. Alternatively, higher energy can be achieved via AR. Occasional AR hap-
pening at the interfaces cause a correction to the distribution function: there are now some
particles within the (0, V ) window of energies. The amount of such particles is small in 1/r
since it requires tunneling to occur, however unlike thermal activation there is no exponential
smallness. Some of these particles manage to undergo another AR before energy relaxation
gets them. Thus there is another window of energies, (V, 2V ) where occupation numbers are
even smaller and given by the next order in perturbation theory in 1/r. This MAR activation
mechanism provides us with electrons with energies high enough to enter a superconductor,
contributing to current. We can recognize this physics in our calculations. In Eq. (20) the term
responsible for the SGS feature at V = 2∆/3 was J (2)h which emerged from corrections to the
distribution function h caused by the tunneling boundary condition.

Note that the above picture only produces odd SGS series, albeit ones that are sensitive to
an exchange field. Yet our calculation reveals features in I(V ) at ∆, which is part of the even
series. At the same time it only appears in I (2), i.e. in the same order of perturbation theory
as the 2∆/3 feature. A possible explanation is that the even series are present, but suppressed
by thermalization: an even series can only be established if we start from the valence band
edge of one of the superconductors instead of the Fermi surface of the N region. However,

12
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this invokes the old energy counting scheme of the BTK approach that we just dismissed. This
scheme was insensitive to exchange field while our result Eq. (23) indicates that the feature
at V = ∆ does split in an exchange field. Thus it remains unclear to us how to interpret the
even series in the SGS.

The CVC observed in the ferromagnetic Josephson junction in Ref. [14] has been demon-
strated to be exchange-field sensitive. If we assume the measured SGS to be MAR-related then
the system has to be in the thermalized regime following our results. At the same time our
calculations, along with theory existing for other cases (ballistic transparent, diffusive with
no relaxation etc) suggest that features representing lower MAR numbers n are more pro-
nounced than higher numbers. For example the features at ∆ and 2∆/3 are stronger than
those at ∆/2, 2∆/5 etc. However, analyzing the CVC on Fig. 4 of Ref. [14] we see a peak
at V ≈ ∆ = 180µeV and another, split peak at V ≈ 60µeV which corresponds to ∆/3. If
this feature is to be explained by MAR then some sort of signal should also be seen at several
higher threshold voltages, 2∆/3,∆/2,2∆/5 which are not seen in this experiment. The only
other suggested explanation of the measured SGS is that it corresponds to a minigap in the
junction. Indeed, 60µeV agrees with the minigap formula Eg ≈ 3.12ϵTh for an SNS junction of
the same dimensions [22,23]. However, a minigap requires a strong, unsuppressed proximity
effect. In particular, the minigap is quickly suppressed by low transparency interfaces, as well
as by magnetic effects. The critical current in experiment Ref. [14] is strongly suppressed (as
compared to a non-magnetic junction of the same geometry) indicating a weakened proximity
effect. In this regime there should be absolutely no minigap in the system. Therefore, the
nature of the SGS and its exchange-sensitive peak observed in Ref. [14] remains a mystery.

6 Conclusion

To conclude we have calculated I(V ) in long diffusive SINIS and SIFIS junctions with strong
thermalization at intermediate temperatures, ϵTh ≪ T ≪ ∆. We found a subharmonic gap
structure which exhibits splitting in the presence of an exchange field hex, with the splitting
proportional to the voltage: MAR-related features are seen at Vn± = (∆ ± hex)/n. We have
shown that strong thermalization is essential to the field-induced splitting and that no splitting
would happen in junctions with weak energy relaxation. Another striking difference is the
apparent suppression of even MAR series in the SGS by thermalization.
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A Effective electron temperature in weak link

Here we present the derivation of the asymptotic value of the effective electron temperature Te.
Adopting the formula for heat flow between phonons of the substrate and electrons in metal
Pe−ph from Ref. [20], and heat flow of electrons through SN-interface P(V ) from Ref. [19] one
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we write heat balance equations in the following form:

2P(V ) = Pe−ph, (24a)

Pe−ph = ΣV
�

T5
S − T5

e

�

, (24b)

P(V ) =
∆

2RN

�
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�§
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∆

2 log 2Te
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2 log 2Te
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2 log 2TS

��

− V sinh
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�

∆

2 log2Te

��

. (24c)

Here Σ is a material-dependent coefficient, related to τin as in Ref. [20], V is the volume of
the normal region. We expect Te ≈ TS , therefore Eq. (24) can be approximately solved under
conditions, presented in Sec. 2. For Te≪∆ and V < 2∆ we obtain following relation:

Te = TS −
1

5ΣVT4
S

∆

2e2R

√

√πTS log 2
∆

�

∆−
V
2

�

e−
∆

2 log 2TS
(1− V

2∆). (25)

B Electric potential

To calculate the approximation of the electric potential in the leading order, which is the order
r−2, we take trace of Keldysh component of Green’s function and perform inverse Fourier
transform and obtain following relation:

ϕ(t) =
1
2

∫

dϵ
§

h(2)3 +
1
4

�

gR
2 − gR

1

�

◦ h(0)0 +
1
4

h(0)0 ◦
�

gA
2 − gA

1

�

ª

. (26)

It is easy to see from the definition of ϕ−, that time-independent terms cancel out. The
remaining ones are exponentially suppressed away from the NS boundaries when Te/ϵTh≫ 1.
Near the superconductor, these terms contain an additional smallness of order c−1

Te/ϵTh
, which

comes from the definition of v(ϵ), which appears in every order of ϕ. We conclude that in the
limit ϵTh≪ T the electric potential can be neglected.

C Coefficients

Here we present explicit expression for the coefficients in Eq. (15), which are obtained from
straightforward solution of system of equations (14). Here∆(n, m) is Kronecker delta symbol.

A(2)n (ϵ) = −
1

8cnV r sin [cnV/2]
[

∆(n, 1)
¦

−
�

f A
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, (27a)
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B(2)n (ϵ) =
1
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From the form of coefficients A(2)n , B(2)n we determine that for applicability of perturbation the-

ory relation h(0)≫ h(2)0,3 has to be satisfied. This translates to γr2≫ 1.

D Contributions to the total current

Below we present time-dependent contributions to the total current in the first order of r−1,
which are mentioned in Eq. (18). Here the term Jhs

corresponds to a contribution, dependent
on distribution function of the superconducting leads hS,1, hS,2:

J (1)hs
=

∫

dϵ tanh
�

ϵ
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f A
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×
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(28a)
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Next we present explicit expression of each contribution to the second order correction to
the current I (2) (see Eq. (20)).

J (2)h =
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