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Abstract: The large-Nc or topologically planar limit of gauge theories can be considered

as a classical limit because all gauge bosons are distinguishable particles and therefore can-

not exhibit interference. Quantum effects due to the flow of color therefore arise starting

at subleading in 1/Nc. We introduce kinematic observables explicitly sensitive to effects at

subleading color formed from the ratio of interfering to squared color-ordered amplitudes.

Such observables are in general not infrared and collinear safe, so we introduce angular ob-

servables defined from appropriate multi-point energy correlators motivated by the form of

color-ordered amplitudes. We demonstrate that color interference effects are manifest as si-

nusoidal oscillation in the simplest system, a collinear jet with three particles, and show the

limitations of predicting this observable in all-purpose, leading-color parton shower Monte

Carlos.
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1 Introduction

Signatures of quantum mechanics can be subtle and challenging to measure in the busy

environment of a particle collision experiment. Interference of orthogonal states, for example,

necessarily occurs whenever the constraints imposed by measurements are consistent with

multiple histories, as observed in the double slit experiment. An interference pattern is

observed on the screen as long as the measurements performed are consistent with identical

photons traveling through either slit. Isolation of definite interfering states at a collider is

obscured by the huge numbers of particles produced, substantial backgrounds, and the way

in which measurements are performed, typically only sensitive to particle momenta.

Nevertheless, some efforts have succeeded in defining observables that are directly sensi-

tive to interference of intermediate states. One recent example from Ref. [1] is sensitive to the

interference of the two helicity states of an on-shell gluon. The distribution of this observable

exhibits a cos(2φ) pattern, a consequence of the fact that the difference between the two spin

states is 2. The procedure used in Ref. [1] can be generalized to construct other observables

sensitive to quantum interference. Two features are specifically exploited and we will study

in more detail in this paper.

First, states in a quantum system are labeled by their conserved quantum numbers,

like a massless particle’s helicity, and so the interfering intermediate states must carry some

distinct quantum numbers. This observation is highly restricting because the states of the

Standard Model are its short-distance particle content and they have very few quantum

numbers. Just considering the QCD sector, the only relevant, non-trivial quantum numbers
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shared by all quarks and gluons are spin and color. As the interference of spin states has been

studied, we will focus on the interference of intermediate color states. Second, backgrounds

and contamination can be significantly reduced by exploiting the collinear divergences of

perturbative QCD. In the collinear limit, contamination effects are suppressed by the area

of the small angular region, while “signal”, physical quarks and gluons, are unsuppressed,

regardless of the size of the angular region. Therefore, we will work to construct observables

sensitive to the interference of color states in high-energy QCD jets.

We will do this by considering the SU(3) gauge symmetry of QCD under which quarks

and gluons are charged to lie on a spectrum of general SU(Nc) gauge theories. The large

and small Nc limits have interesting features that we can exploit. It is well known that in

the large-Nc limit, an SU(Nc) gauge theory reduces to a planar theory in which interactions

are exclusively described by diagrams that can be drawn on a plane or the Poincaré sphere

[2]. Large-Nc means that all gluons necessarily carry distinct color quantum numbers, and

are therefore distinguishable particles. Thus, the large-Nc limit can also be thought of as

a classical limit in which no quantum interference occurs [3]. At the other end of the Nc

spectrum, as Nc → 1, the gauge theory reduces to quantum electrodynamics (QED). Photons

in QED are all identical, indistinguishable particles because all photons carry no color, and

therefore have a unique color quantum number. Thus, as well-familiar from the double slit

experiment, identical photons exhibit quantum interference. The fact that QCD is an SU(3)

gauge theory of color means that gluons are partly distinguishable and partly identical and

this feature makes observing quantum interference due to color effects especially interesting.

With this background, we would like to construct an observable that is only non-zero

if there is quantum interference due to multiple intermediate color states contributing to a

measurement. Again, restricting to quantities measured at a collider, we consider kinematic

observables that are exclusively dependent on particle momenta. Because color interference

only exists at finite-Nc, this observable will further only be non-trivial beyond leading order

in the large-Nc approximation. Thus, it can be a powerful tool for demonstrating that a

parton shower correctly includes subleading color effects, and beyond leading color or even

full color showers are a very active area of contemporary research [4–17].

Our procedure for constructing this observable is the following. We think of the identi-

fication of subleading color or its interference as a binary discrimination problem [18]. Our

goal will be to discriminate subleading color, the signal, from leading color, the background,

physics. As a binary discrimination problem, we immediately know the optimal observable

for discrimination by the Neyman-Pearson lemma [19]: the likelihood ratio. The likelihood

ratio is just the ratio of the relevant signal to background probability distributions. As we

restrict measurements to particle momenta, probability distributions live on relativistic phase

space and are therefore absolute squared scattering amplitudes. The observable we consider

is therefore the ratio of the squared amplitude for the production of gluons in a finite-Nc

gauge theory to the squared amplitude in the leading large-Nc limit. This ratio can therefore

be appropriately defined from the basis of color-ordered amplitudes [20–24].

Further, to reduce background by exploiting the collinear divergences of theories like
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QCD, we will focus on color interference in narrow jets. In the limit that the interfering

gluons become collinear, the ratio of squared amplitudes defining the observable simplifies

to a ratio of collinear splitting functions. Despite this simplification, ratios of perturbative

amplitudes are not in general infrared and collinear (IRC) safe and therefore this observable

cannot in general be calculated in perturbation theory. However, by considering simplified

collinear amplitudes with particular particle helicity configurations, we demonstrate that

the subleading color observable is exclusively dependent on relative angles between pairs of

particles, essentially taking the form of the jet color ring introduced in Ref. [25]. A functional

form that is exclusively dependent on relative particle angles can be uplifted to an IRC safe

observable by embedding it into multi-point energy correlators [26], generalizations of the

energy-energy correlator [27], an early observable for studying jet production in electron-

positron collisions.

The color interference pattern is encoded in the relative angles between gluons about the

mother particle that emitted them. In a realistic experiment, of course only color-neutral

hadrons are observable, and so there is significant ambiguity as to which particle can be

identified as the initiator. We solve this problem practically by focusing on heavy-flavor jets,

in which a bottom quark, for example, was produced in the short-distance collision and then

emitted gluons at longer distances. The momentum direction of long-lived bottom hadrons is

well-reproduced from displaced vertices in a tracking system [28, 29] and provides a concrete

and unambiguous axis about which to measure correlations.

The outline of this paper is as follows. In Sec. 2, we review the color-ordered amplitude

formalism and construct the likelihood ratio between finite- and large-Nc squared amplitudes.

Most calculational details are restricted to the first non-trivial case corresponding to the

process e+e− → qggq̄. In Sec. 3, we present the embedding of this amplitude ratio into IRC

safe energy correlators, defined as a function of the relative angles between the measurement

probes in the correlator. We also present calculations for the interference pattern at subleading

color here, using the 1 → 3 collinear splitting functions. Comparison with parton shower

Monte Carlo is presented in Sec. 4. This comparison is very limited here as we only present

results from a leading-color parton shower, in hopes that this work inspires groups working

on accuracy at subleading color to test on their parton showers. We conclude in Sec. 5, and

look forward to measurements of subleading color effects on collider data.

2 An Observable for Color Interference

A scattering amplitude A in a non-Abelian gauge theory like QCD can always be expanded in

terms of color-ordered basis amplitudes An multiplied by an appropriate color matrix product

Tn [20–24]:

A =
∑

n color orders

TnAn . (2.1)

Here, n represents topologically-distinct particle orderings in the amplitude, according to

the color representation that they carry. Color-ordered amplitudes assume that gluons are
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non-identical, distinguishable particles that each carry a different color. In squaring this

form of the amplitude to construct the momentum distribution on phase space, there will be

contributions of two general forms that have a different physical interpretation. The squared

amplitude can be expressed as:

|A|2 =
∑
n

|Tn|2|An|2 + 2
∑
n 6=n′

Re [T†nTn′A∗nAn′ ] , (2.2)

where the first sum on the right exhibits no interference between different color orderings, and

the second sum is the interference due to distinct color orderings. This interpretation strictly

only holds at lowest perturbative order at which color interference is manifest, which is what

we consider in this paper. Color conservation, that the sum of all color matrices in a gauge-

invariant amplitude vanishes, can move products of amplitudes around and correspondingly

affect their interpretation. This is especially important to disentangle in a parton shower in

which one wants to model color interference effects between numerous soft and/or collinear

particles. We will address this again briefly when we present results in a Monte Carlo parton

shower, but extending this construction beyond leading order is clearly interesting for future

study.

We would like to construct an observable on particle momentum phase space that pro-

vides optimal discrimination between these two contributions with the goal of conclusively

observing color interference effects. This is therefore a binary discrimination problem and by

the Neyman-Pearson lemma [19], the optimal discriminant is the likelihood ratio L, just the

ratio of the two contributions:

L ≡
2
∑

n6=n′ Re [T†nTn′A∗nAn′ ]∑
n |Tn|2|An|2

. (2.3)

For an amplitude of a general scattering process, not much more simplification can be

achieved. However, for the minimal number of colored particles that exhibit interference,

the likelihood ratio can be re-written in a simple, illustrative form.

2.1 Color Interference in e+e− → qggq̄ Events

The minimal number of colored particles necessary to exhibit non-trivial color interference

in a scattering amplitude is four. In this section, we consider the process e+e− → qggq̄ as

exemplar of this minimal configuration. First, we note that the processes e+e− → qq̄ and

e+e− → qgq̄ exhibit no color interference for a simple reason. The initial electron-positron

state is colorless, and so all that is relevant for the color-ordered subamplitudes is the ordering

of the final state quarks and gluon (if present). Color-ordered amplitudes are unique up to

cyclic permutations and reflections of the order of particles that leave nearest neighbors in

the amplitude unchanged. For at most 3 particles, all possible permutations are generated

by cyclic permutations and reflections; therefore, there is only one unique color ordering and

correspondingly no interference.
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On e+e− → qggq̄, there are two distinct color orderings that correspond to interchang-

ing the order of the two gluons. For this process, the likelihood ratio of the interference

contribution to the non-interfering terms is

L =
tr(T1T2T1T2) [A(q, g1, g2, q̄)

∗A(q, g2, g1, q̄) +A(q, g2, g1, q̄)
∗A(q, g1, g2, q̄)]

tr(T2T1T1T2) [|A(q, g1, g2, q̄)|2 + |A(q, g2, g1, q̄)|2]
. (2.4)

In the amplitudes, we have suppressed the initial state e+e−, and added subscripts to the

gluons to distinguish them. Ti is an adjoint color matrix associated with gluon i, and we take

the trace because the quarks live in the fundamental representation of SU(3) color. For a

general SU(Nc) gauge group, the product of a gluon’s color matrix with itself is

T ji T
l
k = δliδ

j
k −

1

Nc
δji δ

l
k , (2.5)

where the indices i, j, k, l represent the rows and columns of the color matrix. With this

result, the color matrix traces are

tr(T1T2T1T2) = −Nc +
1

Nc
, (2.6)

tr(T2T1T1T2) = Nc

(
Nc −

1

Nc

)2

. (2.7)

Thus, this likelihood ratio observable L is explicitly a finite Nc observable. If Nc → ∞, the

S-matrix element has no subleading color contributions, and the corresponding distribution

will only have support near L = 0.

Any monotonic function of the likelihood ratio is still an optimal discriminant, so we are

free to modify the likelihood as we see convenient. As written, the numerator factor of Eq. 2.4

is not a squared amplitude itself and so its physical interpretation is a bit unclear. However,

we can freely add to the numerator the squared color-ordered amplitudes in the denominator.

Further, the traces over color matrices are just numbers, so we can eliminate them, and still

have an optimal discriminant. So, we consider the observable

O ≡ |A(q, g1, g2, q̄)|2 + |A(q, g2, g1, q̄)|2 + 2 Re (A(q, g1, g2, q̄)
∗A(q, g2, g1, q̄))

|A(q, g1, g2, q̄)|2 + |A(q, g2, g1, q̄)|2
, (2.8)

that is still maximally sensitive to subleading color effects as it is related to the likelihood L
by a monotonic function, namely:

O = 1 +
tr(T2T1T1T2)

tr(T1T2T1T2)
L . (2.9)

In this form, the numerator and denominator have a clear interpretation. The numerator is

the squared sum of the symmetrized color-ordered amplitudes, and so therefore is just the

squared Abelian amplitude:

|A(q, g1, g2, q̄) +A(q, g2, g1, q̄)|2 ≡ |A(q, γ, γ, q̄)|2 . (2.10)
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Thus, in the numerator, we can treat the massless vector bosons as photons. The denominator

is the Nc →∞ limit of the squared QCD amplitude:

|A(q, g1, g2, q̄)|2 + |A(q, g2, g1, q̄)|2 ≡ |ANc→∞(q, g, g, q̄)|2 . (2.11)

Our observable of interest in terms of these amplitudes is then

O =
|A(q, γ, γ, q̄)|2

|ANc→∞(q, g, g, q̄)|2
. (2.12)

Using the old results for e+e− → 4 jets amplitudes of Refs. [30–35], this can be expressed in

terms of the momenta of the final state particles. Our goal will be to identify the large-Nc

and Abelian contributions to the QCD amplitude to measure and observe color interference.

With this decomposition, it is useful to rewrite the QCD amplitude in terms of the large-

Nc amplitude and the QED amplitude. The squared amplitude with full color included can

be expressed as

|A(q, g, g, q̄)|2 = [tr(T2T1T1T2)− tr(T1T2T1T2)] |ANc→∞(q, g, g, q̄)|2 + tr(T1T2T1T2) |A(q, γ, γ, q̄)|2

=

(
Nc −

1

Nc

)(
N2
c |ANc→∞(q, g, g, q̄)|2 − |A(q, γ, γ, q̄)|2

)
. (2.13)

This form renders the Abelian amplitude manifestly subleading in Nc. Further, in this form,

the QCD amplitude has been expressed in terms of a contribution where gluons are completely

distinguishable, the large-Nc limit where all gluons have a distinct color, and the Abelian

limit, where all gluons are identical particles. In QCD at intermediate Nc, gluons are neither

perfectly distinguishable nor indistinguishable. This form of the amplitude also invites an

interpretation as a sum of a mixed state and a pure state of gluons. We will return to this

interpretation in Sec. 2.4.

2.2 Color Interference in the Collinear Limit

While the color interference observable constructed from the complete amplitudes can be

studied on their own right, they would only be applicable to events from e+e− collisions. At

a hadron collider, like the LHC, there is never such a pure parton flavor contribution due

to non-trivial parton distribution functions. Additionally, because the initial state in the

hard scattering at a hadron collider carries color, even 2→ 2 processes have non-trivial color

interference effects, and any higher final state multiplicity will significantly complicate the

structure of the observable. So, to maintain sensitivity to color interference while keeping

the observable simple, we will focus on color interference within identified jets. In particular,

we formally assume that the radius of the jets R � 1 and will work to leading order in the

collinear limit. In the limit where the gluons become collinear to the quark in the e+e− → qggq̄

process, for example, the squared amplitude factorizes as [36, 37]

|A(q, g, g, q̄)|2 → |A(q, q̄)|2
(

8παs
sqgg

)2

Pggq←q . (2.14)
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Here, |A(q, q̄)|2 is the squared amplitude for e+e− → qq̄ events, sqgg is the invariant mass of

the final state quark and two gluons, and Pggq←q is the universal collinear splitting function.

In this limit, all non-trivial color is carried by the splitting function, and so we can exclusively

analyze it to establish color interference observables applicable to jets produced in any collider

environment.

The splitting function is often expressed as a linear combination of Abelian and non-

Abelian contributions, as defined by the color Casimir that multiplies each term:

Pggq←q = C2
FP

ab
ggq←q + CFCAP

nab
ggq←q . (2.15)

Here, CF and CA are the fundamental and adjoint quadratic Casimirs for the SU(Nc) color

group, where

CF =
N2
c − 1

2Nc
, CA = Nc . (2.16)

In QCD, with Nc = 3, CF = 4/3, CA = 3. The two color channel splitting functions

are referred to as the Abelian (“ab”) and non-Abelian (“nab”) contributions. The Abelian

splitting function is identical to that in QED, and so would be associated with the squared

photon emission amplitude from earlier. The non-Abelian splitting function does not have a

physical interpretation on its own, but can be combined with the Abelian splitting function to

construct the large-Nc splitting function. With the goal of separating the photon contribution

from the large-Nc contribution, we can express the splitting function as

Pggq←q = C2
FP

ab
ggq←q + CFCAP

nab
ggq←q (2.17)

=
CFCA

2

(
P ab
ggq←q + 2P nab

ggq←q

)
+
CF
2

(2CF − CA)P ab
ggq←q .

The first splitting function, P ab
ggq←q + 2P nab

ggq←q, is the large-Nc limit, because at large-Nc,

CA = 2CF . Note also that the relative size of the large-Nc and Abelian splitting functions is

the ratio of color factors
2CF − CA

CA
= − 1

N2
c

, (2.18)

which is exactly the same ratio as established in the form of the squared amplitude from

Eq. 2.13.

Then, in the collinear limit, the color interference observable we consider is the ratio of

these splitting functions:

O =
P ab
ggq←q

P ab
ggq←q + 2P nab

ggq←q
. (2.19)

Explicit expressions for the splitting functions as functions of the energy fractions of the

particles in the splitting and their pairwise angles can be found in Refs. [36, 37]. In general,

these observables are complicated and unwieldy, and are not easily interpretable from their

analytic form. So, we will not present them here. However, the expressions do simplify

significantly when the helicities of the gluons are identical, and we will present explicit results

for this limited case in the next section.
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2.3 Explicit Form of Color Interference Observable with Identical Gluon Helic-

ities

When the two gluons have the same helicity, the amplitudes are of the so-called maximally

helicity violating (MHV) form, and take a very simple expression. Consider the tree-level

color-ordered amplitude for the process l+ l̄− → q+g+
1 g

+
2 q̄
−:

A(q+, g+
1 , g

+
2 , q̄

−) ∝ 〈q̄l̄〉2

〈12〉〈1q〉〈2q̄〉〈ll̄〉
, (2.20)

where l (l̄) is an initial (anti-)lepton and particle helicities are denoted by the superscripts.

We ignore overall coupling factors, focusing on the kinematic dependence exclusively. The

angle brackets denote the helicity spinor product, and up to a phase, correspond to the

square-root of the invariant mass of the two particles in the product. Standard references on

spinor helicity notation are Refs. [24, 38]. The amplitude when the gluons both have negative

helicity is related by complex conjugation and interchanging of the quark and anti-quark, and

so will produce the same absolute square, so we do not need to consider it explicitly. The

square of this amplitude with gluons of positive helicity is

|A(q+, g+
1 , g

+
2 , q̄

−)|2 ∝
s2
q̄l̄

sll̄s12s1qs2q̄
, (2.21)

where sij is the invariant mass of particles i and j. Summing this with the permuted squared

amplitude 1↔ 2 we produce the large-Nc limit:

∣∣ANc→∞(q+, g+, g+, q̄−)
∣∣2 =

s2
q̄l̄

(s1qs2q̄ + s2qs1q̄)

sll̄s12s1qs2q̄s2qs1q̄
. (2.22)

The Abelian amplitude is found by summing together the color-ordered amplitude with

the amplitude in which gluons 1 and 2 are permuted:

A(q+, γ+, γ+, q̄−) = A(q+, g+
1 , g

+
2 , q̄

−) +A(q+, g+
2 , g

+
1 , q̄

−) (2.23)

∝ − 〈q̄l̄〉2〈qq̄〉
〈1q〉〈2q̄〉〈2q〉〈1q̄〉〈ll̄〉

.

Its square is therefore

|A(q+, γ+, γ+, q̄−)|2 ∝
s2
q̄l̄
sqq̄

sll̄s1qs2q̄s2qs1q̄
. (2.24)

The ratio of these two squared amplitudes with fixed helicity dramatically simplifies to

|A(q+, γ+, γ+, q̄−)|2

|ANc→∞(q+, g+, g+, q̄−)|2
=

s12sqq̄
s1qs2q̄ + s2qs1q̄

. (2.25)
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Figure 1: Illustration of the configuration of two gluons (dots) about a quark (cross) in the

collinear limit on the celestial sphere. Relative angles between pairs of particles and about

the direction of the quark are shown.

Further, note that every term in the ratio is homogeneous in the energies of the final state

particles, so this observable can be expressed exclusively in terms of particle pairwise angles

θij :

|A(q+, γ+, γ+, q̄−)|2

|ANc→∞(q+, g+, g+, q̄−)|2
=

(1− cos θ12)(1− cos θqq̄)

(1− cos θ1q)(1− cos θ2q̄) + (1− cos θ2q)(1− cos θ1q̄)
. (2.26)

In this form, it is trivial to take the collinear limit. With the gluons collinear to the

quark, we have θ12, θ1q, θ2q → 0, but no assumed hierarchy between them. Additionally, the

anti-quark is antipodal to all other particles, so θiq̄ → π. Then the Abelian to large-Nc ratio

reduces to

lim
q,g,g collinear

|A(q+, γ+, γ+, q̄−)|2

|ANc→∞(q+, g+, g+, q̄−)|2
→ θ2

12

θ2
1q + θ2

2q

. (2.27)

This is effectively identical in form to the jet color ring introduced in Ref. [25] as an observable

for discrimination of color-singlet resonance decays to quarks from massive gluon splitting to

quarks. Related observables were established through application of machine learning in

Ref. [39].

As this ratio observable is a measure of interference between distinct color states of the

gluons, it should manifest as a sinusoidal oscillation. This can be directly observed by re-

expressing the ratio of pairwise angles in Eq. (2.27) through the law of cosines. We have

θ2
12 = θ2

1q + θ2
2q − 2θ1qθ2q cosφ , (2.28)

where φ is the azimuthal angle between the two gluons with respect to the quark. This

configuration of particles on the celestial sphere is illustrated in Fig. 1. Then,

lim
q,g,g collinear

|A(q+, γ+, γ+, q̄−)|2

|ANc→∞(q+, g+, g+, q̄−)|2
→ 1− 2θ1qθ2q

θ2
1q + θ2

2q

cosφ , (2.29)
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clearly illustrating the interference through azimuthal modulation. For fixed angles θ1q, θ2q

from the quark, if the gluons are close in azimuth, then the value of the observable is less

than 1 and correspondingly the large-Nc amplitude is larger than the Abelian amplitude. At

large-Nc, the gluons would have a collinear singularity with each other. By contrast, if the

gluons are on opposite sides of the quark from one another, the Abelian matrix element is

larger. Photons are emitted off of the quark independently, and so their distribution would

be flat in azimuth.

The form of the ratio of Abelian and large-Nc matrix elements is very special for this

helicity configuration; namely all energy dependence of the particles drops out. Including

other helicity configurations would spoil this feature, and complicate the interpretation of the

observable. Further, a naive application of the color observable as this energy-independent

ratio of angles is not IRC safe, and cannot be calculated in fixed-order perturbation theory.

This is problematic, because it was through fixed-order perturbation theory that we were able

to define this ratio in the first place. We will address and solve these issues in Sec. 3, and

provide a simple IRC safe definition of the color interference observable that can be applied

generally.

2.4 Interpretation of Color Interference and (In)distinguishibility of the Gluon

We have identified color interference through comparison of the large-Nc squared amplitude

|ANc→∞(q, g, g, q̄)|2 and the Abelian amplitude |A(q, γ, γ, q̄)|2. These two amplitudes are ends

of a spectrum, and QCD lies in between them. At truly large-Nc, every gluon carries a dif-

ferent color than every other gluon. As such, gluons at large-Nc are distinguishable particles.

Distinct configurations of distinguishable particles sum incoherently or at the squared ampli-

tude level, as we observed above. Thus, a large-Nc squared amplitude describes a completely

random mixed state of distinguishable gluons, lacking any interference.

By contrast, all photons are identical particles in any process, and so distinct configura-

tions must be summed together coherently, at the amplitude level. A collection of photons is

therefore a pure state that exhibits non-trivial interference due to indistinguishability. With,

Nc = 3, gluons in QCD are neither completely distinguishable nor identical, and so are some

intermediate mixed state whose purity is quantified by the relative size of the color factors,

CA − 2CF
CA

=
1

N2
c

, (2.30)

which is about 10% in QCD.

This can be made more concrete by constructing the density matrices for these pure and

mixed states. We will ignore helicity assignments here for compactness, but anyway helicity

is observable and so helicity states sum incoherently. The pure state |ψ〉 of two identical

photons is

|ψ〉 =
|γ1γ2〉+ |γ2γ1〉√

2
. (2.31)
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Then, its density matrix in the space spanned by the two photon states is

ργγ = |ψ〉〈ψ| = 1

2
|γ1γ2〉〈γ1γ2|+

1

2
|γ1γ2〉〈γ2γ1|+

1

2
|γ2γ1〉〈γ1γ2|+

1

2
|γ2γ1〉〈γ2γ1| . (2.32)

As required by conservation of probability, tr ργγ = 1 and as a pure state its density matrix

is idempotent: ρ2
γγ = ργγ . On the other hand, the large-Nc two-gluon state is completely

random, and so its density matrix is

ρgg =
1

2
|g1g2〉〈g1g2|+

1

2
|g2g1〉〈g2g1| , (2.33)

for which tr ρgg = 1, but ρ2
gg 6= ρgg.

In QCD, the two-gluon density matrix would take the form:

ρQCD =
1

2
|g1g2〉〈g1g2|+

1

2
|g2g1〉〈g2g1|+

2CF − CA
4CF

(|g1g2〉〈g2g1|+ |g2g1〉〈g1g2|) , (2.34)

which is a linear combination of the photon and large-Nc density matrices according to

Eq. (2.13) that ensures conservation of probability, tr ρQCD = 1. To measure the amount

of mixture of this state, we can compute the purity from the eigenvalues of the density ma-

trix. The eigenvalues λ1, λ2 of the QCD two-gluon density matrix are

λ1 =
CA
4CF

, λ2 = 1− CA
4CF

. (2.35)

The purity is the trace of the square of the density matrix, tr ρ2
QCD, or

tr ρ2
QCD = λ2

1 + λ2
2 = 1− CA

8C2
F

(4CF − CA) = 1− N2
c

2

N2
c − 2

(N2
c − 1)2

=
1

2
+

1

2N4
c

+ · · · . (2.36)

On the farthest right equation, we have expanded the purity about the Nc →∞ limit. Recall

that for a completely random ensemble of two states, the purity is 1/2, thus two gluons in

QCD has a density matrix that is very slightly less than completely random. Other measures

of purity or entropy can easily be calculated from this QCD density matrix, but the same

conclusion would be reached, so we do not study it further here.

Further, two gluons (or any pair of states) can only exhibit quantum interference if their

combined state has no non-trivial quantum numbers. Relevant for QCD, this means that

two gluons only interfere if their product color state is a singlet. Indeed, the singlet can be

formed from multiplying two adjoint gluons as 8 ⊗ 8 ⊃ 1, in SU(3). This interference can

also be observed from a color-flow birdtrack diagram [2, 40, 41]. In the collinear limit, we

can consider a squared amplitude for two gluon emission off of a quark line and the squared

amplitude that would be present in an integral over phase space for calculation of a cross

section. A Feynman diagram that represents uncorrelated collinear gluon emission would be,

for example, as shown on the left in Fig. 2. The corresponding birdtrack diagram is shown

on the right in Fig. 2. Note that there are two closed loops in the birdtrack diagram, which

each contribute a factor of Nc to the value of the squared amplitude. Further, as closed
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Figure 2: Graphical representation of uncorrelated two-gluon emission in the collinear limit

from a quark. Left: An example Feynman diagram for the squared amplitude, with the

dashed vertical line representing the cut that exposes the final state particles. Right: The

corresponding birdtrack diagram that tracks the flow of color amongst the particles.

Figure 3: Graphical representation of correlated two-gluon emission in the collinear limit

from a quark. Left: An example Feynman diagram for the squared amplitude, with the

dashed vertical line representing the cut that exposes the final state particles. Right: The

corresponding birdtrack diagram that tracks the flow of color amongst the particles.

loops, there is no restriction on their color; the color that flows along each disconnected line

is distinct from all others. As such, the colors of the two emitted gluons are not the same

and so the gluons are distinguishable, and therefore exhibit no quantum interference through

the color quantum number. This is expected because this is a planar birdtrack diagram, and

so contributes in the large-Nc limit.

By contrast, we can consider a different squared amplitude, for example that illustrated

on the left of Fig. 3, in which the two gluons are emitted in a correlated manner off of the

quark. This diagram is non-planar as the gluons that cross the cut have to pass over one

another. Its corresponding birdtrack diagram is illustrated on the right of Fig. 3. Unlike the

planar birdtrack diagram in Fig. 2, there is only a single color line in this diagram, that just

happens to trace out a complicated shape representing the quark and two gluons. Because

there is a single color line, this means that the colors of the gluons are necessarily equal, and

so they are indistinguishable particles that can and do exhibit quantum interference. Finally,

because there are no closed color loops, this diagram is a factor of 1/N2
c suppressed with

respect to the planar diagram. Because quantum interference only exists if the gluons have

the same color, this can only be guaranteed if there is only one color line in the diagram, and
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this is therefore necessarily a subleading color effect.

3 Embedding Color Interference in an IRC Safe Observable

The color interference observable we have constructed as a ratio of Abelian to large-Nc ma-

trix elements is sensitive to color interference through the relative angles between two gluons

emitted off of a quark. An observable that is exclusively dependent on angles between parti-

cles may naively not seem like it is IRC safe, because the lack of energy weighting could mean

that arbitrarily soft particles can contribute significantly. This would indeed be the case if

we demand that every jet returns a single, unique value associated with the color interference

observable. However, if instead we consider energy-weighted cross sections, where contribu-

tions to angular distributions are weighted by the energies of the particles being associated,

IRC safety can be restored. In this case, each jet will return a distribution of angles, which

will be populated according to the dominant energy flow.

To accomplish this, we will describe the orientation of the emitted gluons off of the quark

with the three-point energy correlator [26], a generalization of the energy-energy correlator

[27] introduced long ago to probe emission or antenna patterns of QCD radiation. We will

now work exclusively to leading order in the collinear limit of a jet. Anticipating future

experimental applications and a robust way to identify the intiating quark, we will identify

the pattern of radiation about a bottom quark. We then define the energy-weighted cross

section from the three-point energy correlator relevant for this problem as:

d3σ

dz1 dz2 dz12
≡
∑
i,j

∫
dσ

EbEiEj
Q3

δ

(
z1 −

θ2
bi

4

)
δ

(
z2 −

θ2
bj

4

)
δ

(
z12 −

θ2
ij

4

)
. (3.1)

In this expression, the bottom quark is denoted by b, and the cross section is differential in

three energy-weighted angles: the angles between the bottom quark and either particle i or j

in the jet, and the angle between particles i and j. The sums run over all particles i and j in the

jet which has total energy Q. This has been expanded in the collinear limit and is expressed

in natural phase space coordinates for jets produced in e+e− collisions. For jets produced

at a hadron collider, energies and angles would be replaced by momentum transverse to the

collision beam and pseudorapidity-azimuth distances, respectively. Note that this expression

is a bit different than the more inclusive form of the energy correlators [26, 27] for which

there are no identified particles and all energies weightings are summed over all particles. For

observation of color interference however, it is vital that the quark be identified so that angles

about the quark that are sensitive to color interference are unambiguous.

As observed in Sec. 2.3, the azimuthal angle between the gluons about the quark is

sensitive to the effects of color interference. So, we will exchange the pairwise angle z12 with

the azimuthal angle φ, using the law of cosines, where

cosφ =
θ2
b̂i

+ θ2
b̂j
− θ2

ij

2θb̂iθb̂j
=
z1 + z2 − z12

2
√
z1z2

. (3.2)
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So, the differential cross section we will consider can be related to the three-point energy

correlator simply:

d3σ

dz1 dz2 dφ
=
dz12

dφ

d3σ

dz1 dz2 dz12
= 2
√
z1z2 sinφ

d3σ

dz1 dz2 dz12
. (3.3)

Then, we will take this triple-differential cross section in the angles of the two other particles

with respect to the quark and their azimuthal angle as a proxy for the relevant phase space

coordinates that define the ratio of cross sections observable, Eq. (2.19).

Then, our procedure for identification of the color interference effects from this three-

point correlator is as follows. We calculate the triple-differential cross section on our jets

from experimental data or from the full-color splitting function, Eq. (2.15), and we will

denote this cross section with a superscript (fc). Color interference is due to effects beyond

leading color, and so we want to compare this full color measurement or prediction to the

leading color prediction as calculated with the leading-color splitting function contribution of

Eq. (2.17). We will denote this triple-differential cross section with superscript (lc). Then,

color interference will be imprinted through sinusoidal oscillation in the azimuthal angle φ

through the cross section difference and ratio observable O(φ|z1, z2)

O(φ|z1, z2) ≡
d3σ(fc)

dz1 dz2 dφ
− d3σ(lc)

dz1 dz2 dφ

d3σ(lc)

dz1 dz2 dφ

. (3.4)

That is, we define O as a function of the azimuthal angle, conditioned on fixed angles of

the particles with respect to the quark. As the difference between the full- and leading-color

cross sections, the numerator exclusively consists of subleading-color effects, reproducing the

observable formed from the ratio of Abelian to large-Nc splitting functions in Eq. (2.19), but

expressed in IRC safe, reduced phase space coordinates.

With this formulation of the interference observable, it is useful to plot the prediction

from the splitting functions directly. First, for the case where we reduce the splitting functions

to just include the MHV helicity contributions, recall that the ratio of the matrix elements

in the collinear limit takes the form

lim
q,g,g collinear

|A(q+, γ+, γ+, q̄−)|2

|ANc→∞(q+, g+, g+, q̄−)|2
→ 1− 2θ1qθ2q

θ2
1q + θ2

2q

cosφ = 1−
2
√
z1z2

z1 + z2
cosφ . (3.5)

On the right, we have just expressed the result in terms of the phase space coordinates of the

three-point energy correlator. When embedded in the observable defined in Eq. (3.4), there

is an additional multiplicative factor accounting for the suppression at subleading color:

d3σ(fc,MHV)

dz1 dz2 dφ
− d3σ(lc,MHV)

dz1 dz2 dφ

d3σ(lc,MHV)

dz1 dz2 dφ

= − 1

N2
c

(
1−

2
√
z1z2

z1 + z2
cosφ

)
. (3.6)

This simple MHV result will be useful for comparing to the distribution of azimuthal angle

φ from the complete splitting functions.

– 14 –



The three-point energy correlator can be calculated on the q → qgg splitting function

from the expression

d3σ

dz1 dz2 dz12
=

∫
dΦ3

EbE1E2

(Eb + E1 + E2)3
Pq←qgg δ

(
z1 −

θ2
bi

4

)
δ

(
z2 −

θ2
bj

4

)
δ

(
z12 −

θ2
ij

4

)
.

(3.7)

Here, dΦ3 is differential three-body collinear phase space whose expression can be found in

Refs. [42–44] and E1 and E2 are the energies of the two gluons. While a closed-form, analytic

expression for the three-point energy correlator in the triple collinear limit was calculated

in Ref. [26] and recently computed for arbitrary angles in N = 4 super-Yang-Mills theory

[45], the analytic expressions are extremely unwieldy. For making plots we simply perform

numerical integrals of the splitting functions over phase space using the implementation of

Vegas [46] from the Cuba libraries [47].

We plot the color interference azimuthal distribution from the complete and MHV split-

ting functions in Fig. 4. In these plots, we have fixed the ratio of the angles of the gluons to

the quark z1/z2 to values distinguished by color. The dominant description of the azimuthal

distribution is clearly accounted for by the simple MHV result of Eq. (3.6). Even with the

complete splitting function, the distribution exhibits a single node about its mean, indepen-

dent of the relative angles of the gluons to the quark. This suggests that dependence of the

azimuthal distribution on the ratio z ≡ z1/z2 factorizes into a simple form:

O(φ|z) = − 1

N2
c

(
1 + f(z)

∞∑
n=1

cn cos(nφ)

)
, (3.8)

for some function f(z) and constant coefficients cn in the Fourier series. This assumed form

can then be used to extract the Fourier coefficients in data and conclusively demonstrate

interference due to subleading color effects.

Throughout this analysis, we have ignored the contribution from g → qq̄ splitting. For

jets that include a bottom quark, the collinear splitting function b → bqq̄, for q = u, d, s, c,

should be included because the flavor of the particles emitted off of the bottom quark cannot

be determined. However, the numerical effect of including this splitting function on the

azimuthal distribution is very small, and is only a modification of about 5% to the leading-

color splitting functions.

4 Predictions in Monte Carlo

With this understanding and predictions from the fixed-order collinear splitting functions, we

now turn to comparison with parton shower Monte Carlos. We generated e+e− → bb̄ events

in Pythia 8.306 [48] at a center-of-mass collision energy of 2 TeV. Default settings were used,

except turning off hadronization. Events were analyzed in FastJet 3.4.0 [49] and we calculated

the three-point energy correlator inclusively about all bottom or anti-bottom quarks in every
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Figure 4: Plot of the relative sinusoidal color interference between the full- and leading-

color contributions to the complete q → qgg collinear splitting functions (top) and the MHV

collinear splitting function result of Eq. 3.6 (bottom). The colors correspond to different

ratios of the distances of the two gluons to the quark.

event. Contributions to the three-point energy correlator were binned by the maximum angle

θmax of a particle from the bottom quark and we consider θmax = 0.08, 0.04, 0.02 to ensure

that the collinear approximation was valid. Triples of particles contributed to the three-point

energy correlator if their θmax lay within 5% of one of the values of the bin. Additionally,

we binned in the ratio of angles z1/z2 as studied above, and again, values of the three-point

energy correlator contributed if they were within 5% of the specific value of z1/z2 of the bin.

Then, in each bin, we calculated the distribution of the azimuthal angle about the bottom

quark in the simulated data. Finally, to study potential subleading color effects, the fixed-

order, leading-color distribution of the azimuthal angle was subtracted from the simulated
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Figure 5: Azimuthal angle distribution in the simulated e+e− → bb̄ events, scanning over

the maximal angle of emissions from the bottom quark, θmax. Left: ratio of emission angles

z1/z2 = 0.5. Right: ratio of emission angles z1/z2 = 0.9.

data distribution, and then the leading-color distribution was divided out.

One further point to emphasize for interpretation of these results is that Pythia is a

leading-color parton shower in the sense that it does not in general predict subleading color

effects correctly even at leading-logarithmic accuracy [13]. However, this does not mean that

no subleading color effects are included as angular ordering, a consequence of color coherence,

is effectively implemented by the dipole nature of the shower and recoil scheme. To address

the importance of these included physics and quantify the lack of a complete description of

subleading color at even leading-logarithmic accuracy would require either a calculation or

simulation that was formally accurate to this order, which we leave to future work.

The results of this procedure are shown in Fig. 5. On the left, we show plots for ratio of

emission angles z1/z2 = 0.5 and on right, z1/z2 = 0.9. Also plotted is the fixed-order distri-

bution from taking the difference and ratio of the full-color and leading-color distributions,

as studied in the previous section. For comparison of the results, we fixed all distributions to

vanish near φ = π/2. In general, the agreement between the fixed-order expectation and the

parton shower simulation isn’t great, but we do notice that at large φ and for large angle ratio

z1/z2, it does appear that there is some modulation of the azimuthal angle, consistent with

the effects from subleading color. There are a number of competing effects that are likely

responsible for the divergence between the results, especially as φ→ 0.

First, the bottom quark is of course massive, mb ' 4.2 GeV, and this mass suppresses

collinear emissions below an angle of

θb dead '
2mb

Eb
& 0.01 , (4.1)

the so-called dead-cone effect [50–52], where the energy of the bottom quark Eb is less than

about half of the center-of-mass energy, 1 TeV. The dead-cone would then seem to be a
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dominant contribution to the azimuthal distribution for θmax = 0.02, especially for relatively

small angular ratio z1/z2 . 0.5. Next, the perturbative parton shower itself terminates at a

relative transverse momentum scale on the order of 1 GeV, just above the QCD scale, ΛQCD.

Then, the minimum angle between particles from the parton shower is

θmin '
2ΛQCD

Eb
& 0.002 . (4.2)

This could be a dominant contribution at small azimuthal angle φ, when z1/z2 is large because

collinear gluon splittings would be forbidden by the termination of the parton shower. A final

effect, especially at large z1/z2, arises from all-orders, DGLAP suppression of the energies of

the relatively collinear gluons emitted from the bottom quark. At small azimuth and large

z1/z2, there is an additional hierarchy between the maximal splitting angle off of the bottom

quark θl and the small relative angle of the two emissions θs that needs to be resummed. At

leading-logarithmic accuracy, the size of this suppression is approximately [53]

(
αs(θsEb)

αs(θlEb)

) γ(0)(3)
β0

& 0.8 . (4.3)

The estimate of this 20% suppression assumes that θs/θl = 0.9 and θl = 0.04, and uses the

one-loop coefficient of the QCD β-function β0 and γ(0)(3) is a j = 3 moment of the timelike

splitting functions.

These effects suggest that the most robust phase space region for comparing parton shower

simulation to the fixed-order subleading color predictions is for relatively large maximum angle

θmax, relatively large ratio z1/z2, and at large azimuthal angle φ. Indeed, from Fig. 5, this is

the region where there is the best agreement between simulation and analytic prediction, but

a more detailed study is needed to concretely establish the robustness of this subleading color

effect, especially with realistic hadronic events. Further, to produce these plots, we generate

40 million e+e− → bb̄ events and still the statistical fluctuations in the resulting distributions

are large (as illustrated by the kinks in the distributions of Fig. 5). This is intrinsically a

small effect and is extracted by a subtle subtraction and normalization of factors that are

otherwise very similar. However, even with these considerations, the fact that any qualitative

agreement is observed whatsoever is encouraging, and motivates further study.

5 Conclusions

We have introduced a novel observable that is explicitly sensitive to physics beyond the leading

color approximation, due to quantum interference of intermediate states with different color

quantum numbers. Our construction of this observable relied on identifying the goal as a

binary discrimination problem for which the Neyman-Pearson lemma ensures that the optimal

observable is the likelihood ratio. Ratios of distributions on particle phase space are not in

general IRC safe, so we embed this observable into an all-orders IRC safe observable using

properties of the multi-point energy correlation functions. For the simplest process exhibiting
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non-trivial color interference, a collinear jet with three particles, the dominant interference

effect is proportional to a cosφ modulation, but whose amplitude is suppressed by 1/N2
c .

Leading-color parton shower Monte Carlos seem to qualitatively agree with the leading color

predictions for the distribution of angles of gluons about the initiating quark in the jet.

For this final point, much more analysis is necessary. To firmly establish that leading-

color parton shower Monte Carlos cannot describe these effects, we need concrete predictions

from parton showers beyond leading color. Many programs exist [4–17], but in general are

not available for public use. We urge these collaborations to measure these subleading color

observables on the simulated data produced by their parton showers and compare with the

full-color results in the collinear limit as defined by the 1→ 3 collinear splitting function.

For establishing that a full-color parton shower is accurate at logarithmic accuracy re-

quires further work beyond that presented in this paper. Our predictions have been limited

to fixed perturbative order, though in the collinear limit. A parton shower is designed to

resum logarithms that arise at all orders in perturbation theory and effects from beyond fixed

order may distort the prediction of the sinusoidal interference plotted in Fig. 4. For example,

resummation of the collinear logarithms for the interference of intermediate spin states of the

gluon in Ref. [1] slightly reduces the amplitude of the interference effect. This has further

been established to be described by a next-to-leading logarithmic accurate parton shower [54].

However, it is also important to note that the kinematic regime in which spin interference is

manifest is distinct from that where color interference is manifest. First, both are studied in

the collinear limit, where all particles in the energy correlator are at small angles to one an-

other. However, spin correlations are further only present when the intermediate gluon goes

on-shell, which requires a strong ordering of the collinearity of the daughter particles from

the gluon. Thus, there are multiple, hierarchical collinear scales that must be resummed. By

contrast, color interference is present when there is no strong ordering of the angles between

interfering particles and so its factorization and resummation will be significantly different.

We look forward to the development of a framework for analytical resummation in this regime.

Finally, this color interference can in principle be measured in data collected in the

experiments at the Large Hadron Collider to establish the existence of quantum interference

due to orthogonal intermediate color states. While measurements within the collaborations

could firmly establish quantitative comparisons with predictions, less rigorous analyses could

be performed on the CMS experiment’s data [55, 56] within the CERN OpenData project [57].

Recently, data collected in 2015 was released to the public in which long-live B hadrons have

been identified a displaced vertices in the data, e.g., Ref. [58]. The bottom hadron can act

as a proxy for the perturbative bottom quark initiating the jet, and therefore defines an axis

about which to measure color correlations. This would be an exciting prospect for another

avenue of establishing the importance of quantum mechanics to describe collier physics data.
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[11] S. Höche and D. Reichelt, Numerical resummation at subleading color in the strongly ordered

soft gluon limit, Phys. Rev. D 104 (2021), no. 3 034006, [arXiv:2001.11492].

[12] J. Holguin, J. R. Forshaw, and S. Plätzer, Comments on a new ‘full colour’ parton shower,

arXiv:2003.06399.

[13] K. Hamilton, R. Medves, G. P. Salam, L. Scyboz, and G. Soyez, Colour and logarithmic

accuracy in final-state parton showers, arXiv:2011.10054.

[14] S. Plätzer and I. Ruffa, Towards Colour Flow Evolution at Two Loops, JHEP 06 (2021) 007,

[arXiv:2012.15215].

[15] S. Frixione and B. R. Webber, The role of colour flows in matrix element computations and

Monte Carlo simulations, JHEP 11 (2021) 045, [arXiv:2106.13471].

[16] L. Gellersen, S. Prestel, and M. Spannowsky, Coloring mixed QCD/QED evolution,

arXiv:2109.09706.

[17] J. R. Forshaw, J. Holguin, and S. Plätzer, Rings and strings: a basis for understanding

subleading colour and QCD coherence beyond the two-jet limit, arXiv:2112.13124.

– 20 –

http://arxiv.org/abs/2011.02492
http://arxiv.org/abs/1202.4496
http://arxiv.org/abs/1201.0260
http://arxiv.org/abs/1501.00778
http://arxiv.org/abs/1808.00332
http://arxiv.org/abs/1905.08686
http://arxiv.org/abs/1902.02105
http://arxiv.org/abs/2007.09648
http://arxiv.org/abs/2001.11492
http://arxiv.org/abs/2003.06399
http://arxiv.org/abs/2011.10054
http://arxiv.org/abs/2012.15215
http://arxiv.org/abs/2106.13471
http://arxiv.org/abs/2109.09706
http://arxiv.org/abs/2112.13124


[18] A. J. Larkoski, A General Analysis for Observing Quantum Interference at Colliders,

arXiv:2201.03159.

[19] J. Neyman and E. S. Pearson, On the Problem of the Most Efficient Tests of Statistical

Hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933), no. 694-706 289–337.

[20] F. A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van Der Waerden

Spinor Calculus, Nucl. Phys. B 294 (1987) 700–732.

[21] M. L. Mangano, S. J. Parke, and Z. Xu, Duality and Multi - Gluon Scattering, Nucl. Phys. B

298 (1988) 653–672.

[22] M. L. Mangano, The Color Structure of Gluon Emission, Nucl. Phys. B 309 (1988) 461–475.

[23] Z. Bern and D. A. Kosower, Color decomposition of one loop amplitudes in gauge theories,

Nucl. Phys. B 362 (1991) 389–448.

[24] L. J. Dixon, Calculating scattering amplitudes efficiently, in Theoretical Advanced Study

Institute in Elementary Particle Physics (TASI 95): QCD and Beyond, pp. 539–584, 1, 1996.

hep-ph/9601359.

[25] A. Buckley, G. Callea, A. J. Larkoski, and S. Marzani, An Optimal Observable for Color Singlet

Identification, SciPost Phys. 9 (2020) 026, [arXiv:2006.10480].

[26] H. Chen, M.-X. Luo, I. Moult, T.-Z. Yang, X. Zhang, and H. X. Zhu, Three point energy

correlators in the collinear limit: symmetries, dualities and analytic results, JHEP 08 (2020),

no. 08 028, [arXiv:1912.11050].

[27] C. L. Basham, L. S. Brown, S. D. Ellis, and S. T. Love, Energy Correlations in electron -

Positron Annihilation: Testing QCD, Phys. Rev. Lett. 41 (1978) 1585.

[28] CMS Collaboration, A. M. Sirunyan et al., Identification of heavy-flavour jets with the CMS

detector in pp collisions at 13 TeV, JINST 13 (2018), no. 05 P05011, [arXiv:1712.07158].

[29] ATLAS Collaboration, G. Aad et al., ATLAS b-jet identification performance and efficiency

measurement with tt̄ events in pp collisions at
√
s = 13 TeV, Eur. Phys. J. C 79 (2019), no. 11

970, [arXiv:1907.05120].

[30] A. Ali, J. G. Korner, Z. Kunszt, J. Willrodt, G. Kramer, G. Schierholz, and E. Pietarinen, Four

Jet Production in e+e− Annihilation, Phys. Lett. B 82 (1979) 285–288.

[31] A. Ali, J. G. Korner, Z. Kunszt, E. Pietarinen, G. Kramer, G. Schierholz, and J. Willrodt, QCD

Predictions for Four Jet Final States in e+ e- Annihilation, Nucl. Phys. B 167 (1980) 454–478.

[32] R. K. Ellis, D. A. Ross, and A. E. Terrano, Calculation of Event Shape Parameters in e+ e-

Annihilation, Phys. Rev. Lett. 45 (1980) 1226–1229.

[33] R. K. Ellis, D. A. Ross, and A. E. Terrano, The Perturbative Calculation of Jet Structure in e+

e- Annihilation, Nucl. Phys. B 178 (1981) 421–456.

[34] K. Fabricius, I. Schmitt, G. Schierholz, and G. Kramer, Order alpha**2-S Correction to Jet

Cross-Sections in e+ e- Annihilation, Phys. Lett. B 97 (1980) 431–436.

[35] K. Fabricius, I. Schmitt, G. Kramer, and G. Schierholz, Higher Order Perturbative QCD

Calculation of Jet Cross-Sections in e+ e- Annihilation, Z. Phys. C 11 (1981) 315.

– 21 –

http://arxiv.org/abs/2201.03159
http://arxiv.org/abs/hep-ph/9601359
http://arxiv.org/abs/2006.10480
http://arxiv.org/abs/1912.11050
http://arxiv.org/abs/1712.07158
http://arxiv.org/abs/1907.05120


[36] J. M. Campbell and E. W. N. Glover, Double unresolved approximations to multiparton

scattering amplitudes, Nucl. Phys. B 527 (1998) 264–288, [hep-ph/9710255].

[37] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the

next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287–325, [hep-ph/9908523].

[38] M. L. Mangano and S. J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200

(1991) 301–367, [hep-th/0509223].

[39] T. Faucett, J. Thaler, and D. Whiteson, Mapping Machine-Learned Physics into a

Human-Readable Space, Phys. Rev. D 103 (2021), no. 3 036020, [arXiv:2010.11998].

[40] G. ’t Hooft, A Two-Dimensional Model for Mesons, Nucl. Phys. B 75 (1974) 461–470.

[41] P. Cvitanovic, Group theory, Nordita notes (1984).

[42] A. Gehrmann-De Ridder and E. W. N. Glover, A Complete O (alpha alpha-s) calculation of the

photon + 1 jet rate in e+ e- annihilation, Nucl. Phys. B 517 (1998) 269–323, [hep-ph/9707224].

[43] M. Ritzmann and W. J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014),

no. 5 054029, [arXiv:1407.3272].

[44] H.-y. Liu, X. Liu, and S.-O. Moch, Anti-kT jet function at next-to-next-to-leading order, Phys.

Rev. D 104 (2021), no. 1 014016, [arXiv:2103.08680].

[45] K. Yan and X. Zhang, Three-point energy correlator in N = 4 super Yang-Mills Theory,

arXiv:2203.04349.

[46] G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys.

27 (1978) 192.

[47] T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys.

Commun. 168 (2005) 78–95, [hep-ph/0404043].
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