
A Tail of Eternal Inflation

Timothy Cohen1, Daniel Green2, and Akhil Premkumar2

1Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA

2Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

Abstract

Non-trivial inflaton self-interactions can yield calculable signatures of primordial non-

Gaussianity that are measurable in cosmic surveys. We calculate the non-Gaussian cor-

rections to Stochastic Inflation within the framework of Soft de Sitter Effective Theory,

from which we derive the associated probability distribution for the scalar fluctuations.

As a consequence of this new result, we show that the phase transition to slow-roll eternal

inflation is often incalculable in these models. Instead, this transition is sensitive to the

non-Gaussian tail of the distribution of scalar fluctuations, which probes physics inside the

horizon, potentially beyond the cutoff scale of the Effective Field Theory of Inflation. We

delineate the parameter space consistent with current observations and weak coupling at

horizon crossing in which the large fluctuations relevant for eternal inflation can only be

determined by appealing to a UV completion. We also argue that this breakdown of the

perturbative description is required for the de Sitter entropy to reflect the number of de

Sitter microstates.



1 Introduction

Developing a complete picture of physics in de Sitter space remains one of the great un-

solved problems in theoretical physics [1–3]. The issues appear in many guises. On the

practical side, we do not have a rigorous (non-perturbative) definition of cosmological ob-

servables [1,4]. More conceptually, confusions abound when attempting to characterize the

eternal inflating phase [5–7]. Meanwhile, these significant challenges do not seem to impede

our ability to make quantitative predictions for the universe we inhabit. Weak coupling

allows us to calculate and understand the structure of observable correlation functions

as a controlled approximation. Yet, our goal in this paper is to demonstrate by way of

a concrete calculation that there are fundamental questions about our own patch of the

universe whose answers are not calculable in perturbation theory, e.g. the possibility that

our universe is eternally inflating.

Cosmological observations suggest that the large scale structures in our universe were

seeded during inflation, a period of quasi-de Sitter expansion [8–10]. The observable impli-

cations of inflation can be captured by an Effective Field Theory (EFT) framework [11,12].

Much progress has been made in understanding how to calculate the statistical predictions

of inflation perturbatively [13, 14]. A notable recent advance is the cosmological boot-

strap, which aims to reconstruct inflationary observables directly from locality and causal-

ity [15–21]. Much of the interest in the structure of cosmological correlators centers on

the possible signatures of primordial non-Gaussianity, since this provides an observational

window into the particle content and interactions that played a role during inflation [22].

The fact that the observational and conceptual aspects of cosmology are decoupled is

a simple consequence of dimensional analysis, which additionally underlies the validity of

the EFT of Inflation approach. There is a significant separation between the two energy

scales H and fπ that characterize inflation [23] (see also [12, 24–35]), as illustrated in

Fig. 1. The EFT of Inflation can be framed in terms of the spontaneous breaking of time

translation symmetry, where the associated Goldstone boson π describes the scalar density

fluctuations. The universal scale describing the dynamics of the fluctuations is f 2
π ≃ |ϕ̇|,

where ϕ̇ ̸= 0 is the order parameter for the breaking of time translation invariance, and

ϕ is a fundamental scalar in most concrete UV models. Typical de Sitter fluctuations

are produced with a characteristic energy set by the Hubble parameter during inflation

H, which results in there being a de Sitter temperature 2πTdS = H. In more detail, an

emergent scalar degree of freedom ζ experiences adiabatic fluctuations, whose amplitude

is 2π2As ≡ ∆ζ = H4/(2f 4
π). In our patch of the universe, measurements of the cosmic

microwave background imply As = 2.1 ≃ 10−9 [36], and so we can infer fπ ≃ 59H. This

tells us that fπ ≫ H is a good approximation in our universe. As we explore the physics

of de Sitter space and the relation to eternal inflation in this work, we will also consider

fπ and H to be free parameters, for example the parameter space where fπ ≃ H.

Primordial non-Gaussianity in single-field inflation arises through derivative interac-
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Figure 1: The relevant energy scales for single field inflation and the regimes of validity of the
EFT of Inflation [orange] and Soft de Sitter Effective Theory (SdSET) [blue]. The background
time evolution leads to a scale fπ, below which the time translation symmetry is spontaneously
broken (SSB). Primordial non-Gaussianity arises from interactions that are suppressed by the
EFT cutoff scale Λ, which is related to the amplitude for equilateral non-Gaussianity f eq

NL by
Λ2 ≃ f2

π/f
eq
NL. Requiring the EFT of Inflation is weakly coupled at horizon crossing allows both

Λ > fπ [left] and Λ < fπ [right]. Deviations from a de Sitter background arise at |Ḣ| ≪ H2.

tions that are suppressed by some dimensionful UV scale Λ.1 While the precise relation-

ship to the amplitude of equilateral non-Gaussianity f eq
NL varies among different possible

models, the scaling relation f eq
NL ≃ f 2

π/Λ
2 is universal. Given the current constraints from

Planck, f eq
NL = −26±47 (68% confidence interval) [42], the region of parameter space where

Λ2 ≪ f 2
π remains a viable possibility. On the other hand, canonical models of slow roll in-

flation require that f eq
NL < 1 so that the background evolution ϕ̇ is calculable in the weakly

coupled regime [31,32,43]. Nevertheless, a number of compelling models such as DBI infla-

tion [44], models that utilize non-trivial field space curvature [45, 46], and those involving

interactions with massive fields [47, 48] can easily produce f eq
NL ≫ 1 self-consistently. It is

only essential that Λ > H in order to reliably calculate the observational predictions using

perturbation theory [23]. In this work, we revisit whether Λ > H is sufficient to ensure

perturbative control over all quantities of interest.

For cosmological correlators, all of the thorny issues of observables in de Sitter are

under control as long as one is in the perturbative regime where H2/M2
pl, H

2/f 2
π , and

H2/Λ2 are all small. To an excellent approximation, inflation is described by a fixed

background geometry in which the scalar fluctuations evolve. In the absence of non-

Gaussianity, even the onset of slow-roll eternal inflation is calculable and arises when

1Here we are assuming scale invariant non-Gaussianity. Scale dependent signals [37], such as models
of resonant non-Gaussianity [38], are also possible. As these model also leave signatures in the power
spectrum [39–41], we will not consider them further to ensure a clean separation between the Gaussian
and non-Gaussian effects.
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∆ζ ≥ π2/3 [49]. Building on this, one might expect then that the phase transition to

eternal inflation in models with primordial non-Gaussianity can also be calculated as a

perturbative expansion in H2/Λ2. As we will show via a concrete calculation, this intuition

fails. There are corrections to the expansion that scale as f 2
π/Λ

2, even when f 2
π ≫ H2

(∆ζ ≪ 1) where we might expect eternal inflation does not occur. This implies that when

Λ ≪ fπ, there are important observables associated with the inflationary epoch that are

incalculable in the EFT of Inflation [11,12]. Furthermore, this incalculability is not simply

due to the breakdown of the EFT itself, since all the N -point correlators are calculable in

perturbation theory. Our goal is to demonstrate that this in the context of a new technical

calculation, and to provide some intuition for why it occurs.

At a qualitative level, the onset of slow-roll eternal inflation occurs when the amplitude

of quantum fluctuations exceeds that of classical motion of the field [5,6]. In canonical slow-

roll inflation f 2
π = ϕ̇, so that the classical distance moved in a Hubble time (∆t = H−1) is

(∆ϕ)classical ≃ f 2
π/H. Meanwhile, the Gaussian quantum fluctuation introduce an effective

noise in the motion of the field with an amplitude set by the expansion rate, (∆ϕ)noise ≃
H. Slow-roll eternal inflation occurs when these two types of field excursions are of the

same order, (∆ϕ)classical ≃ (∆ϕ)noise, which happens when H2 ≃ f 2
π or equivalently when

∆ζ ≃ 1. However, implicit to this argument is that the rate for generating fluctuations

that are larger than H is negligible. If instead there was a non-negligible rate for quantum

fluctuations from the tail of the distribution such that (∆ϕ)tail ≃ f 2
π/H with fπ > H,

these larger quantum fluctuations could be the dominant effect that would determine the

onset of eternal inflation. The probability of such a large fluctuation is exponentially small

for Gaussian theories. However, primordial non-Gaussianity could, in principle, increase

the rate of these large fluctuations such that they dominate the onset of eternal inflation.

Noting that the energy scale associated with such non-Gaussian quantum fluctuations is

(ϕ̇)tail ≃ H(∆ϕ)tail ≃ f 2
π , these fluctuations would correspond to physics above the UV

cutoff for models with Λ < fπ.

In this paper, we use Soft de Sitter Effective Theory2 (SdSET) [50, 51] to calculate

corrections to Stochastic Inflation [52] (see also [53–65]), which allows us to demonstrate

that the onset of eternal inflation is incalculable when Λ < fπ. This occurs because large

field variations (corresponding to the tail of the probability distribution) are probes of high

energy physics during inflation. When Λ < fπ, the onset of eternal inflation is sensitive

to the regime where the EFT does not apply. Concretely, the blue shaded region in

Fig. 2 naively corresponds to eternal inflation in our universe and signals this breakdown.

Interestingly, this parameter space overlaps the regions allowed by current observations

and weak coupling at horizon crossing. The source of the issue is that correctly modeling

2While the EFT of Inflation and SdSET have overlapping regions of validity, SdSET makes manifest the
long wavelength behavior of the fluctuations in the universe, particularly with regards to IR divergences
and their resummation via the dynamical renormalization group (RG). This property of SdSET is essential
for deriving the results in this paper.
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Figure 2: The solid blue region shows where primordial non-Gaussianity naively implies eternal
inflation, suggesting a breakdown of Stochastic Inflation and/or the EFT of Inflation. The
region allowed by perturbative unitarity at horizon crossing, derived in [35], corresponds to the
region enclosed by the dashed purple line. The current 1-,2- and 3-σ limits from Planck [42]
are shown as solid red lines. We see there is a significant region where the calculation of the
transition to external inflation is breaking down, that is nonetheless consistent with the theory
being weakly coupled at horizon crossing (as determined by unitarity) and current observations.
The parameters ᾱ and cs are related to the two allowed cubic couplings in the EFT of Inflation,
as defined in Sec. 3. Perturbative unitarity as defined in [35] is particularly conservative and
may explain why regions of parameter space allowed by Planck are excluded. We simply wish to
emphasize that there are regions of parameter space in blue that are perturbative even by that
definition.

the tails of the probability distributions requires a non-perturbative calculation of the

transition probabilities that go beyond the perturbative contributions that are included

in the Stochastic Inflation framework. We interpret the blue region as providing a sharp

bound, akin to a perturbative unitarity bound at the energy scale fπ. Otherwise, as we

show below, the EFT predictions would be inconsistent with interpreting the de Sitter

entropy [66] as resulting from a finite number of degrees of freedom (see e.g. [2,3,67–71]).

This work builds upon the vast literature on the perturbative regime inflationary fluc-

tuations [23–35] and the implications for eternal inflation [72–77]. Prior discussions of

eternal inflation are relevant for the parameter space with fπ ≃ H (∆ζ = O(1)), as this

is the only regime of canonical slow-roll inflation where eternal inflation can occur. In

any parameter regime, it is a necessary condition that the theory is weakly coupled at

horizon crossing, Λ > H, for calculations to be under control. In the context of previous
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discussions of eternal inflation where fπ ≃ H, the breakdown of weak coupling at horizon

crossing is indistinguishable from the breakdown of the Stochastic framework. In contrast,

most of the discussion in our paper applies to our own observable universe where fπ ≃ 59H

(∆ζ ≃ 4.1 × 10−8), and where the theories of inflation of interest are weakly coupled at

horizon crossing. Although much is known about the structure of Stochastic Inflation in

canonical slow roll models [52–65], before this work it was not known how to include the

non-Gaussian corrections into the Stochastic Inflation framework. These are exactly the

new ingredients that are required to ask quantitative questions about the phase transition

to eternal inflation.

Our concrete results will show that there is a breakdown in the calculation that is

signaled by the apparent onset of eternal inflation in the regime fπ ≫ H. This failure of

Stochastic Inflation is only relevant when attempting to predict the tail of the distribution

of scalar fluctuations and is distinct from having control over perturbative calculations

at horizon crossing. While it is known that the tails of the distribution can break down

using typical perturbative methods (see e.g. [78]), Stochastic Inflation is a resummation of

the perturbative results [50, 51] that has been used to calculate the tail of the probability

distribution in a variety of models (see e.g. [79] for review). For example, the tail of

the distribution of a particular class of two-field models was calculated using stochastic

inflation in [80, 81]; yet, it is also known that this class of two field models reduces to the

single field models we will discuss below when the second field is massive. In this precise

sense, the unusual behavior of the tail of the distribution we will demonstrate in this paper

is not a generic issue of perturbative calculations, but is instead a failure of a Stochastic

Inflation in a regime where it had previously been successfully employed [23].

The paper is organized as follows. In Sec. 2, we calculate the first higher derivative

correction to Stochastic Inflation from primordial non-Gaussianity in Single-Field Inflation.

In Sec. 3, we solve these corrected equations and use the results to compute the onset of

eternal inflation. We apply these results to interpretation of the de Sitter entropy in

Sec. 4. In Sec. 5, we interpret the surprising dependence on non-Gaussian fluctuation as a

breakdown of Stochastic Inflation requiring a UV calculation of the underlying transition

amplitudes. We conclude in Sec. 6. Two appendices give background for these results. In

App. A, we review aspects of single field inflation that are essential for understanding the

key results in this paper. In App. B, we provide an alternate derivation of our solution

to the corrected Fokker-Planck equation using the Fourier transform and the method of

steepest descents.

2 Non-Gaussian Corrections to Stochastic Inflation

Light scalar fields in quasi de Sitter space, such as the inflaton, undergo random quantum

fluctuations. In perturbation theory, these fluctuations give rise to large infrared (IR)

effects, which can be resummed using the framework known as Stochastic Inflation [52,
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53, 56]. This gives rise to a Fokker-Planck equation that determines the evolution of the

probability distribution for the local value of the field.

The canonical formation of Stochastic Inflation provides a leading order prediction for

the field’s evolution. Interactions correct the Fokker-Planck equation at higher orders,

which can be represented on general grounds as [51] (see also [82,83])

∂

∂t
P (ϕ, t) =

∞∑
n=2

1

n!

∂n

∂ϕn

[
∞∑

m=0

1

m!
Ω(m)

n ϕmP (ϕ, t)

]
+

1

3H

∂

∂ϕ

[
V ′(ϕ)P (ϕ, t)

]
. (2.1)

The term proportional to V ′(ϕ) is just the classical evolution of the field, and the rest of the

terms account for the quantum fluctuations. The original formulation due to Starobinski

applies to leading order in the coupling,3 in which case the quantum noise is given by

Ω
(m=0)
2 = H3/(8π2) with all other Ω

(m)
n = 0.

Given the intuitive description of Stochastic Inflation, it might seem surprising that

calculating these higher order corrections remained elusive until recently [51, 82, 83]. It

had often been suggested that the Stochastic framework is related to IR divergences in

dS [50, 82–92]. Leveraging this insight to systematically improve the framework naturally

results in the SdSET approach [50]. The SdSET converts the full theory IR divergences

into EFT UV divergences in the usual sense (see e.g. [93]). This allows one to resum

full theory IR divergences using the usual RG playbook within the EFT. Specifically,

Stochastic Inflation is equivalent to the (dynamical) RG for SdSET composite operators.

The contributions from the quantum noise can be extracted from operator mixing under

time evolution, which takes the generic form

∂

∂t

〈
φN
+

〉
=

∞∑
m=0

N+m∑
n=1

Ω̃(m)
n (−1)n

(
N

n

)〈
φN−n+m
+

〉
, (2.2)

where for a massless scalar field ϕ, we identify φ+ as the growing mode mode such that

ϕ → Hφ+. We also defined t = Ht and Ω̃
(m)
n = Hm−n−1Ω

(m)
n to simplify the expression in

terms of φ+. Finally, V ′(ϕ) is replaced by Ω̃
(m)
1 , which also receives corrections at higher

orders.

2.1 Stochastic Inflation for Single Field Inflation

The first higher-derivative correction to this framework was calculated in [51] assuming the

UV model was λϕ4 in fixed dS. We will now extend these results to single-field inflation.

This is a non-trivial generalization both because the metric fluctuates (the background is

no longer fixed dS), and these fluctuations are subject to additional constraints from the

diffeomorphism invariance. The corrections to Stochastic Inflation are most transparent

3See e.g. [51] for a derivation of the power counting for Stochastic Inflation.
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when expressed in terms of the scalar metric fluctuation ζ. This choice is particularly

useful because ζ transforms non-linearly under large diffeomorphisms [94–97]

DNL : δζ = −1− x⃗ · ∂⃗x⃗ζ (2.3a)

Ki
NL : δζ = −2xi − 2xi

(
x⃗ · ∂⃗x⃗ζ

)
+ x2∂iζ . (2.3b)

The Ward identities associated with these symmetries [98, 99] impose constraints on cor-

relation functions that are also known as the single field consistency conditions [94, 95].

The above transformation uniquely fixes the definition of ζ, and it ensures our results will

be free from field redefinition ambiguities and scheme dependence [100]. The important

implication for our purposes here is that these non-linearly realized symmetries fix the form

of possible corrections to the Stochastic Inflation framework. This is already known for the

properties of ζ(x⃗) at separated points, where it leads to the all-orders conservation of ζ (⃗k),

namely ζ̇ (⃗k) → 0 as an operator statement in the limit k/(aH) → 0 [50,55,101,102]. From

Eq. (2.2), we see that applying these symmetries to Stochastic Inflation is the same as

extending the operator statements to products of ζ’s at coincident points, i.e., composite

operators built from ζ.

By power counting in the SdSET, the dynamical RG of any light field is necessarily

ultra-local in space, in that it contains no derivatives. This implies that the most general

possible result must take the form

∂

∂t
ζN(x⃗, t) =

∑
M

ΓN
M(t)ζM(x⃗, t) . (2.4)

Applying DNL from Eq. (2.3a) to the both sides of the equation implies

∂

∂t
NζN−1(x⃗, t) =

∑
M

MΓN
M(t)ζM−1(x⃗, t) . (2.5)

Substituting Eq. (2.4) on the left-hand side yields

N
∑
M

ΓN−1
M (t)ζM(x⃗, t) =

∑
M

MΓN
M(t)ζM−1(x⃗, t) . (2.6)

Matching the powers of ζ, we find

(N + 1)ΓN
M = (M + 1)ΓN+1

M+1 . (2.7)

We demand ΓN
M = 0 if N < 0 or M < 0, since operators with fields in the denominator are

unphysical. If we assume N > 0 and the existence of a first non-zero anomalous dimension
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Γn
0 ≡ γn ̸= 0 for some n, the solution to Eq. (2.7) becomes

ΓN
M = γnδM,N−n

N∏
ℓ=n+1

ℓ

ℓ− n
=

(
N

n

)
γnδM,N−n . (2.8)

Summing over all possible γn, we have

∂

∂t
ζN(x⃗, t) =

∑
n

γn

(
N

n

)
ζN−n(x⃗, t) . (2.9)

Finally, we apply the relation between the operator mixing language and Stochastic Infla-

tion (see e.g. [51]), which leads to the following general form for the time evolution of the

probability distribution of ζ:

∂

∂t
P (ζ, t) =

∑
n≥2

(−1)n
γn
n!

∂n

∂ζn
P (ζ, t) . (2.10)

This result makes intuitive sense: in order to preserve the nonlinear symmetry, the gen-

eralization of the Fokker-Planck equation can only depend on derivatives of ζ (no explicit

factors of ζ appear).

We see from the above result, that we can calculate all corrections to Stochastic Inflation

from the mixing coefficients ζn → 1, where 1 is the identity operator. For n = 2, this is

the usual Gaussian (quantum) noise contribution to Stochastic Inflation such that∫
d3k

(2π)3
〈
ζ (⃗k)ζ (⃗k ′)

〉
= 2γ2 log aH/K → γ2 =

∆ζ

4π2
, (2.11)

where K is an IR regulator and ∆ζ is the amplitude of the power spectrum,4〈
ζ (⃗k)ζ (⃗k ′)

〉
= ∆ζ k

−3+(ns−1)(2π)3δ(⃗k + k⃗ ′) . (2.12)

Previous studies of stochastic effects in single-field inflation were limited to this contribu-

tion and the classical drift from the potential.

We are interested in computing the leading non-Gaussian contribution, which starts

at n = 3. As we are simply calculating the mixing of operators under dynamical RG,

the coefficient of the n = 3 term is determined by the logarithmic divergence in the two

point function of ζ3 and 1, i.e., the one-point function of ζ3. This can be calculated, as

illustrated in Fig. 3, from the bispectrum (three-point function) via

〈
ζ3(x⃗ = 0)

〉
=

∫
d3k1d

3k2d
3k3

(2π)3
〈
ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)

〉
. (2.13)

4Here we are defining ∆ζ so that ∆ζ = 2π2As [103].
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Figure 3: Illustration of the correlation function
〈
ζ3(x⃗ = 0)

〉
represented as an integral over the

bispectrum B(k1, k2, k3) computed at tree-level. The momentum integration is analogous to a
two-loop integral.

In single-field inflation, there are two contributions to this three-point function arising

from the ζ̇ ∂iζ ∂
iζ and ζ̇3 interactions, which are given by [104]

Bζ̇(∂iζ)
2(k1, k2, k3) = −1

4

(
1− 1

c2s

)
∆2

ζ

× (24K3
6 − 8K2

2K3
3K1 − 8K2

4K1
2 + 22K3

3K1
3 − 6K2

2K1
4 + 2K1

6)

K3
9K1

3
, (2.14)

and

Bζ̇3(k1, k2, k3) =

[
6
(
c2s − 1

)
+ 8

c3
c2s

]
∆2

ζ

1

K3
3K1

3
, (2.15)

where we have defined〈
ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)

〉
= B(k1, k2, k3) (2π)

3δ
(⃗
k1 + k⃗2 + k⃗3

)
, (2.16a)

B = Bζ̇(∂iζ)
2 +Bζ̇3 , (2.16b)

K1 ≡ k1 + k2 + k3 , K2 ≡ (k1k2 + k2k3 + k3k1)
1/2 , K3 ≡ (k1k2k3)

1/3 . (2.16c)

Defining xi = ki/k1 and changing variables, we find

〈
ζ3(x⃗ = 0)

〉
=

∫
d3k1
(2π)3

1

k3
1

3!

(2π)2

∫ 1

1/2

dx2 x2

∫ x2

1−x2

dx3 x3B(1, x2, x3)

=
log aH/K

2π2
×

∆2
ζ

16π2

((
1− 1

c2s

)(
9 + 3c2s

)
+

c3
c2s

)
, (2.17)

where we have simply introduced a hard UV cutoff k1 = aH and an IR cutoff as k1 = K

to regulate the log-divergence. This simple regulator breaks the symmetries of dS, and

so we provide App. A.2, which shows how to derive the same result using the symmetry

preserving dynamical dimensional regularization approach.
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The coefficient γ3 is determined from the factor multiplying the log:

γ3 =
∆2

ζ

32π4

((
1− 1

c2s

)(
9 + 3c2s

)
+

c3
c2s

)
, (2.18)

so that

∂

∂t
PNG(ζ, t) =

(
∆ζ

8π2

∂2

∂ζ2
−

∆2
ζ

192π4

((
1− 1

c2s

)(
9 + 3c2s

)
+

c3
c2s

)
∂3

∂ζ3

)
PNG(ζ, t) . (2.19)

This result is consistent with the interpretation that it is a small non-Gaussian correction:

a typical fluctuation in the Gaussian limit is ζ ≃ ∆
1/2
ζ , so if we assume ∂/∂ζ ∼ ∆

−1/2
ζ ,

the first term is O(1) and the second term is O
(
∆

1/2
ζ /c2s

)
. We can rewrite this estimate in

terms of the cutoff scale, using the relation Λ = fπcs:

∆ζ =
1

2

H4

f 4
π

⇒ γ3
∂3

∂ζ3
≃

∆
1/2
ζ

c2s
=

1√
2

H2

Λ2
. (2.20)

This tells us that for typical fluctuations, the higher order corrections are suppressed by

H2/Λ2 as one would expect.

3 Eternal Inflation and Non-Gaussian Tails

Now that we have the leading corrections to the Fokker-Planck equation in the presence of

a non-trivial bispectrum, we want to apply this formalism to see how it impacts the onset

of eternal inflation and the implications for the de Sitter entropy. Even without appealing

to a microscopic description, we can define an order parameter for the end of inflation ϕ.

Within the EFT of Inflation, there is a natural choice [29]

ϕ ≡ f 2
π(t+ π) ≃ f 2

π

H
(t− ζ) , (3.1)

where π is the Goldstone boson of the EFT of Inflation (see Appendix A.1 for review)

defined such that ζ = −Hπ + O(ϵπ2), where ϵ is the slow roll parameter, and f 2
π is the

decay constant for π. By construction ⟨ϕ̇⟩ = f 2
π . Since we will be working in the limit

ϵ → 0, we can treat Eq. (3.1) as an exact relation to define ζ in terms of ϕ:

ζ ≡ t− H

f 2
π

ϕ . (3.2)

Here ϕ will be the field that defines the end of inflation so that ϕ ∈ (−∞, 0) corresponds

to the inflationary regime with inflation ending when ϕ = 0. (Ending inflation at ϕ = 0

simplifies expressions, but of course nothing can depend on this arbitrary choice).
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To set the stage, we will review how one determines the onset of eternal inflation in

the Gaussian case, γ3 = 0. The evolution equation for ζ is

∂

∂t
PG(ζ, t) =

∆ζ

4π2

∂2

∂ζ2
PG(ζ, t) , (3.3)

whose solutions are given by a Gaussian:

PG(ζ, t, ζ0) =
1√

2πσ2t
e−(ζ−ζ0)2/(2σ2t) , (3.4)

for any choice of the constant ζ0, and with σ2 ≡ ∆ζ/(2π
2). We impose the initial condition

PG(ζ, t = 0, ζi) = δ(ζ − ζi) so that ζ = ζi > 0 (ϕ < 0) at t = 0 in order to be consistent

with Eq. (3.2). Since inflation ends when ϕ ≥ 0, we set P (ϕ[ζ] ≥ 0; t) = 0 by hand.

However, we must also impose the boundary condition that PG(ζ, t, ζi) is continuous at

ϕ[ζ] = 0. Note that every choice of ζ0 in the solution Eq. (3.4) gives a δ-function δ(ζ − ζ0)

at t = 0. In order to impose our boundary condition at ϕ = 0, we must add additional

solutions in the region ϕ[ζ] < 0 with different values of ζ0 < 0 so that they naively produce

a δ-function for ϕ > 0 at t = 0. However, since we are imposing PG(ϕ > 0, t) = 0 by hand,

adding these additional terms remains consistent with our initial conditions. A natural

guess is that the solution takes the form

PG(ϕ[ζ] < 0, t, ζi) =
1√

2πσ2t

[
e−(ζ−ζi)

2/(2σ2t) − e−4ζi/(2σ
2)e−(ζ+ζi)

2/(2σ2t)
]
, (3.5)

where ϕ = 0 corresponds to ζ = t. This way of imposing the boundary conditions is

typically called the method of images.

Now that we have the probability distribution, we can apply it to compute the onset

of eternal inflation. Following [49], the probability that reheating occurs at time t is

determined by

pR,G(t) = − d

dt

∫ 0

−∞
dϕPG(ϕ; t) ∝ e−t/(2σ2) , (3.6)

where we used the Fokker-Planck equation Eq. (3.3) and integrated by parts. From here

we can calculate the average volume of the reheating surface,

⟨V ⟩G = L3

∫ ∞

0

dte3tpR,G(t) ≃ L3

∫ ∞

0

dtet(3−1/(2σ2)) . (3.7)

where L3 is the size of the initial patch at t = 0. The onset of eternal inflation occurs

when this quantity diverges:

σ2 =
∆ζ

2π2
>

1

6
. (3.8)

In canonical slow-roll inflation, the perturbative description remains weakly coupled up
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to the phase transition and therefore this determination of the critical value of ∆ζ is

meaningful [49].

Now let us repeat this analysis for theories with primordial non-Gaussianity, γ3 ̸= 0.

The evolution is described by (see Eq. (2.10))

∂

∂t
PNG(ζ, t) =

σ2

2

∂2

∂ζ2
PNG(ζ, t)−

γ3
3!

∂3

∂ζ3
PNG(ζ, t) . (3.9)

Building off the solution in Eq. (3.4), we can make the ansatz for the solution to this

modified Fokker-Planck equation:

PNG(ζ, t, ζ0) = exp

(
κ(t)

3!

∂3

∂ζ3

)
PG(ζ, t, ζ0) . (3.10)

Substituting this ansatz into Eq. (3.9) gives

d

dt
κ(t) = −γ3 → κ(t) = −γ3t+ κ0 . (3.11)

We again impose the initial condition at t = 0, ζ = ζi < 0, and P (ϕ ≥ 0) = 0, so the

solution takes the form

PNG(ζ, t, ζi) = exp

(
−γ3t

3!

∂3

∂ζ3

)
PG(ζ, t, ζi) + images , (3.12)

where the images are solutions with ζ0 > 0. While this can be solved in principle, a closed

form solution to these equations is both unnecessary and beyond our scope. Specifically,

the phase transition is determined by the behavior at ϕ = 0 or ζ → t in the limit t → ∞.

In this limit, we have

∂n

∂ζn
PG(ζ, t, ζ0)

∣∣∣
ζ=t

=

(
(−1)n

σ2n
+O

(
t−1
))

PG(ζ, t, ζ0) (3.13)

so that the Gaussian behaves as an eigenfunction of the derivative operator in the t → ∞
limit. In this regime, the probability distribution for ζ becomes

exp

(
−γ3t

3!

∂3

∂ζ3

)
PG(ζ; t, ζ0) → exp

[
γ3
3!
t

(
(ζ − ζ0)

σ2t

)3

− (ζ − ζ0)
2

2σ2t

]
. (3.14)

This solution is also derived in App. B using the method of steepest descents.

This probability distribution for ζ tells us that the large t behavior for the probability

of reheating is

pR,NG(t) ∝ exp

[
−t

(
1

2σ2
− γ3

3!

1

σ6

)]
. (3.15)

13



Repeating the same argument from above to derive the onset of eternal inflation, we see

that ⟨V ⟩NG diverges when
1

2σ2
− γ3

3!

1

σ6
< 3 . (3.16)

Note that this result depends on the sign of γ3, which is not fixed. Using the explicit form

of γ3 given in Eq. (2.18) and σ2 = ∆ζ/(2π
2), eternal inflation occurs when

1

2
− 1

48

((
1− 1

c2s

)(
9 + 3c2s

)
+

c3
c2s

)
<

3∆ζ

2π2
. (3.17)

At this point, we notice something surprising. One might have expected that the

Gaussian term would dominate when H2/Λ2 ≪ 1. However, if we recall that Λ = fπcs, we

can rewrite this expression as

1

2
− 1

48

f 2
π

Λ2

((
c2s − 1

) (
9 + 3c2s

)
+ c3

)
<

3∆ζ

2π2
. (3.18)

When computing the onset of eternal inflation, we see the corrections scale as f 2
π/Λ

2 ≫
H2/Λ2. Taken at face value, this implies that for cs = 1 (cs ≪ 1), eternal inflation

occurred in our universe for c3 < 24 (c3 < −9). In Fig. 2, we compare this region to

current observational constraints from Planck denoted by the red contours in Fig. 2 on the

parameter space (taking ∆ζ ≃ 0), in terms of cs and

ᾱ1 ≡ −4

3

c3
c2s

− 1

2

(1− c2s)
2

c2s
. (3.19)

The figure also shows conservative bounds on these parameters from perturbative unitarity

at horizon crossing, derived in [35] (see Appendix A.3 for a review of perturbative unitarity

constraints on the EFT of Inflation).

Since the correction we calculated scales as f 2
π/Λ

2 it is natural to guess we have become

sensitive to the cutoff scale for the EFT of Inflation. This suggests that we would become

sensitive to even higher derivative corrections. We can estimate the size of these terms

by dimensional analysis, using their relation to the connected correlators of ζ. Using our

normalization of higher dimension operators in terms of Λ, we have

γn ≃ σn

(
H

Λ

)2n−4

. (3.20)

Extending the ansatz in Eq. (3.10) to include higher derivatives, we find

P (ζ; t, ζ0) = exp

(∑
n>2

(−1)n
γnt

n!

∂n

∂ζn

)
PG(ζ; t, ζi) + images , (3.21)
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so that

pR(t) ∝ exp

[
−t

(
1

2σ2
+
∑
n>2

γn
n!

1

σ2n

)]
. (3.22)

Again, we see that in the t → ∞ limit, all the γn corrections contribute to coefficient of

the exponential decay but do not change powers of t in the exponent. As a result, the

reheating volume diverges when

1

2
+
∑
n>2

(−1)n
γn
n!

1

σ2n−2
< 3σ2 . (3.23)

Now we notice that the nth term is the sum is

γn
n!

1

σ2n−2
≃ 1

n!

1

σn−2

(
H

Λ

)2n−4
1

∆
(n−1)/2
ζ

≃
(
fπ
Λ

)2n−4

. (3.24)

Therefore, the series is under control for typical couplings when Λ > fπ.

On the other hand, when Λ < fπ, it is possible, in principle, to tune the coefficients

of the higher order terms so that γ3 is the dominant contribution. Yet, the fact that our

results naturally organize into an expansion in fπ/Λ suggests that something more drastic

is occurring in the parameter space where Λ < fπ that cannot be resolved by fine tuning.

We will revisit this interpretation in Sec. 5.

4 The de Sitter Entropy and Microstate Counting

The interpretation of these corrections in the context of eternal inflation becomes even

more more drastic when we apply them [2, 67, 68] to our interpretation of the de Sitter

entropy [66],

SdS =
π

H2GN

=
8π2M2

pl

H2
, (4.1)

where GN is Newton’s constant. During inflation, the de Sitter entropy is slowly changing

as H(t) decreases, such that

dSdS

dt
=

dSdS

Hdt
= −

16π2M2
plḢ

H4
=

4π2

cs∆ζ

. (4.2)

In analogy with the entropy of a black hole, it is natural to interpret this entropy as

reflecting a finite number of degrees of freedom describing the microphysics of (quasi) de

Sitter space. One crude test of this hypothesis is to compare the de Sitter entropy to

the entropy of the fluctuations that are observable after inflation ends, following [2]. The

number of Fourier modes that are being “created” (i.e., crossing the horizon) per e-fold is
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simply the expansion rate
d logNmodes

dt
= 3 . (4.3)

If the de Sitter entropy is to be interpreted as resulting from the size of the Hilbert

space describing the modes that live in de Sitter, SdS ∝ logNstates, then we should be

prevented from observing more than a de Sitter entropy’s worth of Fourier modes, so that

Nmodes < Nstates, which implies∫
dt

d logNmodes

dt
<

∫
dt

dSdS

dt
. (4.4)

Our general expectation is that Nmodes ≪ Nstates since the semi-classical fluctuations should

capture only a small fraction of the gravitational microstates.

In the models of interest here, the integrands are nearly constant so that Eq. (4.4) holds

at the level of the integrand:

d logNmodes

dt
= 3 <

dSdS

dt
=

4π2

cs∆ζ

. (4.5)

Naively, one can imagine violating this interpretation by taking

∆ζ

?
>

4π2

3cs
. (4.6)

However, to derive a contradiction, it should be unambiguous that all Nmodes are inde-

pendent and observable. This would be verifiable if inflation ended everywhere in the

universe, allowing us a vantage point from which to reconstruct all of inflation. However,

if inflation never ends, i.e., we are eternally inflating, then these modes are not accessible

to an observer. In canonical slow-roll inflation (cs = 1 and c3 = 0), the onset of eternal

inflation was determined in Eq. (3.8). Therefore, a finite period of inflation always satisfies

the inequality

∆ζ <
π2

3
<

4π2

3
. (4.7)

As a result, we never encounter a regime where more than eSdS modes are produced while

maintaining control of the background in canonical slow-roll inflation.

In the presence of non-Gaussianity, the onset of eternal inflation is modified, potentially

allowing a contradiction with this interpretation of the de Sitter entropy. In particular,

demanding a finite inflationary volume while violating our de Sitter entropy bound is

possible when
π2

3
− π2

72

((
1− 1

c2s

)(
9 + 3c2s

)
+

c3
c2s

)
> ∆ζ >

4π2

3cs
. (4.8)

When cs ≪ 1, the left hand side of this equality scales as 1/c2s, which easily allows a
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window where ∆ζ > 4π2/(3cs) without transitioning to eternal inflation. If we set c3 = 0,

this equality can be satisfied for any

cs < 0.095 . (4.9)

When c3 ̸= 0 and cs ≪ 1, we can satisfy the inequality for c3 < 9.

Rather than seeing this as a breakdown of the relation between the de Sitter entropy

and the microstate counting, it is natural to interpret this as a breakdown of the EFT of

Inflation. The likely possibility is that cs < 0.095 is in the strongly coupled regime of the

EFT of Inflation, telling us that we cannot trust the calculation of the onset of eternal

inflation. Concretely, we can again rewrite this equality in terms of Λ = csfπ as

π2

3
+

π2

72

f 2
π

Λ2

((
1− c2s

) (
9 + 3c2s

)
− c3

)
> ∆ζ >

4π2

3cs
. (4.10)

We can again only satisfy this inequality when Λ2 < f 2
π , and in the case cs ≪ 1 we require

Λ2 ≪ f 2
π . However, eternal inflation occurs when ∆ζ > 4π2/(3cs):

H4

f 4
π

>
8π2

3cs
. (4.11)

This is only satisfied for fπ < H and therefore the regime of interest is where Λ2 ≪ H2.

This strongly suggests that we cannot see more than a de Sitter entropy’s worth of modes in

the regime that is under control within the EFT of Inflation. We might even interpret cs >

0.095 (when ∆ζ >
4π2

3cs
) as a bound on the regime of validity of the EFT defined by the de

Sitter entropy. We compare this to the bound from naively applying perturbative unitarity

in Appendix A.3 and find good agreement. One may hope that a further exploration of

the de Sitter entropy will bound the range of parameters in the EFT of Inflation directly

from the cosmological background, complementing other approaches more similar to QFT

in flat space [32,105,106].

5 On the Breakdown of Stochastic Inflation

By direct calculation, we have shown that the presence of primordial non-Gaussianity leads

to a series of large corrections that can dramatically modify the onset of eternal inflation

when Λ < fπ. Our goal here is to make the case that this should be interpreted as a

breakdown of Stochastic Inflation akin to the breakdown of the EFT of Inflation in the

strong coupling regime. This should not prevent us from calculating the phase transition

in a UV complete model. We can understand both issues by returning to the origins of

Stochastic Inflation.

The Stochastic framework follows as a consequence of general Markovian evolution.
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For a scalar field ϕ, this evolution is described by

∂

∂t
P (ϕ, t) =

∫
d∆ϕ

[
P (ϕ−∆ϕ, t)W (ϕ|ϕ−∆ϕ)− P (ϕ, t)W (ϕ+∆ϕ|∆ϕ)

]
, (5.1)

whereW (ϕ|ϕ′) is the transition amplitude for the field to jump from ϕ′ to ϕ during the time

dt. If these transition amplitudes are sufficiently “local,” we can Taylor expand Eq. (5.1)

to get
∂

∂t
P (ϕ, t) =

∞∑
n=1

1

n!

∂n

∂ϕn
Ωn(ϕ)P (ϕ, t) , (5.2)

where

Ωn(ϕ) ≡
∫

d∆ϕ
(
−∆ϕ

)n
W̃ (∆ϕ, ϕ) , (5.3)

and W̃ (y, x) ≡ W (x + y|x). For approximately Gaussian transition amplitudes, the mo-

ments of the distribution should be well defined, leading to a reasonable derivative expan-

sion. Indeed, for the case of λϕ4 theory [51] and inflation (Sec. 2 above), we have verified

that these coefficients are calculable by explicitly evaluating them.

Scalar metric fluctuations ζ are constrained by an additional non-linearly realized sym-

metry (Eq. (2.3)), which enforces that W (ζ|ζ ′) = W (ζ − ζ ′) or W̃ (y, x) ≡ W̃ (y). Using

the expected scaling behavior for γn given in Eq. (3.20), we write

γn = gnσ
n

(
H

Λ

)2n−4

, (5.4)

so that gn = O(1) and

∂

∂t
P (ζ, t) =

(
σ2

2

∂2

∂ζ2
+

Λ4

H4

∞∑
n=3

(−1)n
1

n!
gn

(
σ
H2

Λ2

∂

∂ζ

)n
)

P (ζ, t) , (5.5)

This is the scaling behavior we would get from a transition amplitude of the form

W (∆ζ) =
1√

2π2σ2
exp

[
−(∆ζ)2

2σ2

(
1 +

∑
n>2

(−1)ngn

(
2πf 2

π(∆ζ)

Λ2

)n−2
)]

, (5.6)

where ∆ζ ≡ ζ − ζ ′. This series expansion will break down when

∆ζ >
Λ2

2πf 2
π

, (5.7)

or, using ∆ζ = H∆ϕ/f 2
π ,

H∆ϕ >
Λ2

2π
. (5.8)
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Notice that the expression on the left is H∆ϕ ≃ ϕ̇. It is natural to interpret the large

changes in the field over a Hubble time as a probe of the high energy limit of the theory

E ≫ H, which explains why we encounter the EFT cutoff scale Λ.

If the breakdown is indeed due to strong coupling within the EFT, we would expect

that a large correction to the onset of eternal inflation would coincide with violations

of perturbative unitarity at energies E = fπ. Since fπ ≫ H, we can approximate the

subhorizon region as flat space and can calculate the partial wave amplitudes for two-to-

two scattering of ζ. These amplitudes are provided in App. A.3 along with their associated

perturbative unitarity bounds. If we take cs = 1, then s-wave scattering in the center of

mass frame with incoming energies of E = fπ is consistent with perturbativity when

−1.85 ≤ c3 ≤ 0.85 . (5.9)

For comparison, we saw that the non-Gaussian corrections naively imply an infinite reheat-

ing volume when c3 < 24 (again for cs = 1). In this sense, the breakdown of our intuition

regarding eternal inflation is indeed tied to the breakdown of perturbative unitarity at

E = fπ.

Ultimately, the question of whether or not a given model of inflation is eternally inflating

should be calculable. However, clearly the method of calculating the correlation functions

to determine equations of Stochastic Inflation is insufficient. Furthermore, nothing about

the calculation of the individual correlation functions will change if we work in the UV

completion (rather than the EFT). This is particularly clear when Stochastic Inflation is

expressed in terms of ζ, so that all the coefficients are constants and can be calculated

from the perturbative correlation functions.

5.1 Breakdown in DBI

For concreteness, DBI inflation [107] provides a useful analogy from which we can try to

understand the breakdown of our calculation [23]. In DBI, the action is given by

L = Λ4

√
1 +

∂µϕ∂µϕ

Λ4
− V (ϕ) . (5.10)

The potential V (ϕ) generates a rolling field, ϕ = ϕ̇(t+ π). Expanding the square root, we

find

Λ4

√
1− ϕ̇2(1 + 2π̇ − ∂µπ∂µπ)

Λ4
→

∑
n

1

n!
M4

n(2π̇ − ∂µπ∂
µπ)n , (5.11)

where

M4
n = Λ4(−1)n

(
ϕ̇2

Λ4

)n
∂n

∂Xn

√
1−X

∣∣∣
X=ϕ̇2/Λ4

, (5.12)
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and
c2s

1− c2s
= 1− ϕ̇2

Λ4
, (5.13)

so that cs ≪ 1 requires ϕ̇2 ≃ Λ4. Clearly in that limit, any process that involves a transition

ϕ̇ ≃ H∆ϕ > Λ2 will require the full DBI action. In fact, we see the Taylor expansion of

Eq. (5.11) will break down when sooner, when

ϕ̇2

Λ4

(
2
π̇c

f 2
π

− ∂µπc∂
µπc

f 4
π

)
≪ 1− ϕ̇2

Λ4
= c2s

cs≪1−−−→ π̇c

f 2
π

≪ c2s
2
, (5.14)

where πc = f 2
ππ is the canonically normalized field in the EFT of Inflation (see Appendix A

for review). Since πc scales like the energy of the mode E, π̇c ≃ E2 and, therefore, Eq. (5.14)

tells us that our Taylor expansion is only valid for energies E2 ≪ c2sf
2
π/2 = Λ2/2. The

cutoff scale we identified in the EFT is the scale where we can no long Taylor expand the

DBI action.

The DBI example naturally suggests the how to resolve this breakdown: we need to

calculate the full transition amplitudes using the UV completion.5 In the case of DBI, we

expect that modeling large field transitions requires knowing the complete non-perturbative

form of the DBI action. In contrast, for smaller transitions, we can Taylor expand the

DBI action to reproduce the same results as we would find using the EFT of Inflation.

In practice, DBI may not be the simplest model in which to directly calculate the full

transition amplitude, as more weakly coupled UV completions of small cs may offer some

advantages; it is possible UV complete this regime of EFT of Inflation parameter space by

integrating out a weakly coupled massive field [23, 45–47]. In that case, we would expect

that calculating the transition amplitude requires “integrating in” the high energy field.

We leave the exploration of this interesting direction to future work.

6 Conclusions

In this paper, we extended the framework of Stochastic Inflation in single field inflation

to include the impact of (equilateral) primordial non-Gaussianity. We showed that the

single field consistency conditions demand that these corrections can only include higher

derivative terms with constant coefficients. We then calculated a two-loop anomalous

dimension in SdSET and used it to determine the cubic derivative correction to Stochastic

Inflation.

Using these evolution equations, we set out to calculate the onset of eternal inflation

in the presence of non-Gaussian fluctuations. We showed by explicit calculation that this

5The contributions to Stochastic Inflation in DBI were previous discussed in [108,109]. The contributions
for higher derivatives did not appear in those works and thus they did not find the need for a non-
perturbative calculation.
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transition cannot be calculated within the framework of Stochastic Inflation when the

cutoff for the EFT of Inflation Λ < fπ = 59H, even for the weakly coupled parameter

space with Λ > H. For a wide variety of models producing observable non-Gaussianity,

the onset of eternal inflation is incalculable and requires appealing to a UV completion of

the Stochastic framework and the EFT of Inflation.

We interpret the breakdown of Stochastic Inflation as a sign that the tail of the prob-

ability distribution for the scalar fluctuations is a probe of sub-horizon physics during

inflation. This conclusion is relevant to other probes of non-Gaussianity from rare fluc-

tuations [110–114], most notably as applied to the formation of primordial black holes

(PBHs) [115–118]. Like the onset of eternal inflation, the rate of PBH formation in canon-

ical slow-roll inflation is calculable using Stochastic Inflation, both in the single and multi-

field regime (see e.g. [79–81] for discussions of the connection between PBHs and Stochastic

Inflation). Nevertheless, generic non-Gaussianity was known to impact these rates of rare

fluctuations in ways that might not be calculable in perturbation theory [78]. Our results

suggest it is the EFT of Inflation that is breaking down, which implies that one cannot

resolve this effect within the EFT itself, e.g. by resumming EFT Feynman diagrams.

This work makes a sharp connection between a number of important topics in theoret-

ical and observational cosmology: the regime of validity of cosmological EFTs, primordial

non-Gaussianity, probes of the tail of the distribution of scalar fluctuations, eternal infla-

tion, and the de Sitter entropy. A natural next step is to explore the connection between

these results in models that are UV completed beyond the cutoff of the EFT of Inflation.

Given a concrete model, e.g. DBI inflation [107], one could compute the tail of the distri-

bution or the onset of eternal inflation. More generally, de Sitter holography (quantum

gravity) also connects many of these topics and offers a parallel and unique perspective

on the de Sitter entropy [3, 69–71], non-Gaussianity [94, 119] and (potentially) eternal in-

flation [120, 121]. Naturally, one would like to understand the breakdown of Stochastic

Inflation from a holographic perspective. Our results imply the need for a deeper non-

perturbative definition of eternal inflation, which may provide a concrete opportunity to

link these (often) distinct approaches to cosmology.
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Appendices

A Calculations for Single Field Inflation

In this appendix, we review the basics of the EFT of Inflation, and review results for

the power spectrum and bispectrum that are used for the calculations in the main text.

Then in App. A.2, we provide some technical details for how to regulate the key integral

that appears in the calculation above using a dimensional regularization like approach

that explicitly preserves the symmetries of the problem. We then review the perturbative

unitarity constraint derived using flat space amplitudes in App. A.3.

A.1 EFT of Inflation: Power Spectrum and Bispectrum

The EFT of inflation, in the decoupling limit, is described in terms of a Goldstone boson

π that non-linearly realizes time translations that are broken by the evolving background.

Since π shifts by a constant under time translations, the variable U = t+π(t, x⃗) transforms

linearly under time translations. We can then express the action in terms of U :

S =

∫
dtd3x

√−g
∞∑
n=0

1

n!
M4

n(U) (∂µU∂µU + 1)n , (A.1)

such that the nth term is O(M4
nπ

n) (note we are using the (− + ++) signature for the

metric). The coefficients M4
0 and M4

1 are fixed by Einstein’s equations (or equivalently

by eliminating the tadpole). The resulting quadratic and cubic contributions to the La-

grangian are given by

L2 = M2
pl|Ḣ|

(
π̇2 −

(
∇⃗π
)2)

+ 2M4
2 π̇

2 =
M2

pl|Ḣ|
c2s

(
π̇2 − c2s

(
∇⃗π
)2)

, (A.2)

and

L3 =

(
2M4

2 − 4

3
M4

3

)
π̇3 − 2M4

2 π̇
(
∇⃗π
)2

, (A.3)

where M4
2 = M2

pl|Ḣ|(1− c2s)/(2c
2
s).

Using ζ = −Hπ +O(ϵπ2), where ϵ = −Ḣ/H2 is the slow roll parameter, and defining

the pion decay constant as f 4
π ≡ 2M2

pl|Ḣ|cs, one finds the power spectrum at zeroth order

in slow-roll is 〈
ζ (⃗k)ζ (⃗k ′)

〉′
=

H4

2f 4
π

1

k3
(2π)3δ

(⃗
k + k⃗ ′

)
≡ ∆ζ

k3
(2π)3δ

(⃗
k + k⃗ ′

)
, (A.4)
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and the bispectra are [104]

Bζ̇(∂iζ)
2 (k1, k2, k3) = −1

4

(
1− 1

c2s

)
·∆2

ζ

×
(
24K3

6 − 8K2
2K3

3K1 − 8K2
4K1

2 + 22K3
3K1

3 − 6K2
2K1

4 + 2K1
6
)

K3
9K1

3
,

(A.5)

and

Bζ̇3 (k1, k2, k3) = 4

(
1− 1

c2s

)(
c̃3 +

3

2
c2s

)
·∆2

ζ ·
1

K3
3K1

3
. (A.6)

The coefficient c̃3 is defined in [122] such that it is related to our c3 by

c̃3M
4
2 ≡ M4

3 ≡ c3
f 4
π

c5s
→ c̃3 =

2c3
(1− c2s)c

2
s

, (A.7)

so that

Bζ̇3 (k1, k2, k3) =

[
6
(
c2s − 1

)
+ 8

c3
c2s

]
·∆2

ζ ·
1

K3
3K1

3
. (A.8)

We have also defined Ki the set of symmetry functions of the magnitudes of the momenta

k1−3,

K1 ≡ k1 + k2 + k3 , K2 ≡ (k1k2 + k2k3 + k3k1)
1/2 . K3 ≡ (k1k2k3)

1/3 . (A.9)

Since the bispectra are necessarily symmetric under permutations of k⃗i, it is natural to

write the correlators in terms of these symmetric functions. The appearance of poles in

K3 is particularly noteworthy, as these are the cosmological avatars of energy conservation

(also known as the total energy pole).

A.2 Dynamical Dimensional Regularization

When working with scalar fields in fixed dS, we were able to regulate divergent integrals

in a symmetry preserving way by introducing a mass for the scalars, a procedure we

called dynamical dimensional regularization (dyn dim reg) [50]. Our interest here is in

regulating divergent integrals involving the adiabatic mode ζ. However, ζ transforms

non-trivially under the non-linearly realized symmetries defined in Eq. (2.3) above. (This

explains why correlation functions of the adiabatic mode ζ are time-independent outside

the horizon.) As a result, we cannot regulate divergences by introducing a mass for ζ,

without breaking these symmetries. Fortunately, by definition, the background itself breaks

time-translations, which will provide us with a way to regulate divergent integrals while

respecting the symmetries. Having such a symmetry preserving regulator is important for

justifying the consistency of the EFT approach.

To see how dyn dim reg works in this setting, we will recompute the leading quantum-
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noise term in Stochastic Inflation from correlators of ζ when cs = 1. For comparison, we

performed this calculation using a hard cutoff above, see Eq. (2.11). We start with the

quadratic action

S =

∫
dtd3xa3(t)

M2
plḢ(t)

H2(t)
∂µζ ∂

µζ . (A.10)

Here we are making the time dependence of H(t) manifest, since we will use this property

to regulate divergences. For a general inflation model, H(t) is some arbitrary function of

t. If we define some reference time t⋆, we can therefore expand H(t) as a power series near

t = t⋆

S =

∫
dtd3x

M2
plḢ(t⋆)

H2(t⋆)

(
τ

τ⋆

)2+2ϵ+η (
ζ ′2 − ∂iζ∂

iζ
)
, (A.11)

where

ϵ ≡ − Ḣ

H2
, and η =

ϵ̇

Hϵ
, (A.12)

τ ≃ −1/(aH) is the conformal time, and we used

τ
d

dτ
log

(
H4(t)

M2
pl|Ḣ(t)|

)
= τ

d

dτ
log

(
H2(t)

M2
plϵ(t)

)
= −2ϵ− η . (A.13)

The resulting power spectrum is

〈
ζ (⃗k)ζ (⃗k ′)

〉′
=

H4(t⋆)

4M2
pl|Ḣ(t⋆)|

1

k3

(
k⋆
k

)2ϵ+η

(A.14)

where k⋆τ⋆ = −1. We can use this to repeat the one-loop calculation we performed in

Eq. (2.11) using a hard cutoff:

ζn → ζn−2 n(n− 1)

2

∫
d3k

(2π)3
H4(t⋆)

4M2
pl|Ḣ(t⋆)|

1

k3

(
k

k⋆

)−2ϵ−η

= ζn−2 n(n− 1)

4π2

H(t⋆)
4

M2
pl|Ḣ(t⋆)|

(
− 1

2ϵ+ η
+ logKτ⋆

)
, (A.15)

where K is an IR regulator6. To regulate the divergence, we introduce the normalized

operator and the counterterm Z − 1 in the minimal subtraction scheme:

ζn−2
R = Zζn−2 with Z = 1 +

1

2ϵ+ η

n(n− 1)

4π2

H(t⋆)
4

M2
pl|Ḣ(t⋆)|

. (A.16)

6This result is similar to a 1/(ns−1) pole found in the one-loop power spectrum in [123]. The appearance
of these inverse powers of slow-roll parameters in loop calculations is, a priori, not necessarily problematic
as they signal the need for dynamical RG in the sense we describe here.
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From here we can determine the dynamical RG by enforcing that our predictions are

independent of aH(t⋆), which yields

d logZ

d log aH(t⋆)
= −n(n− 1)

4π2

H(t⋆)
4

M2
pl|Ḣ(t⋆)|

. (A.17)

For comparison, we can repeat the calculation using a hard UV cutoff aH with ϵ, η → 0:

ζn → ζn−2 × n(n− 1)

4π2

H4

4M2
pl|Ḣ|

log aH/K . (A.18)

This yields a counterterm

Z = 1− n(n− 1)

4π2

H4

4M2
pl|Ḣ

log aH(t⋆)/K , (A.19)

from which we can recover

d logZ

d log aH(t⋆)
= −n(n− 1)

4π2

H4

M2
pl|Ḣ|

. (A.20)

In this sense, using the hard cutoff at one-loop will reproduce the results of a more careful

treatment with dynamical dim reg and minimal subtraction. Precisely the same approach

can be applied to regulate the two loop integral in the main text as well.

A.3 Perturbative Unitarity from Scattering

To understand the results of this paper, it is helpful to understand the energy scales

where various processes become important. With the introduction of a non-trivial speed

of sound, understanding the physical scales in the problem becomes more challenging,

as the distinction between a momentum and energy scale is important. To simplify the

problem, we can rescale the spatial coordinates to put time and space on the same footing

x̃i = xi/cs , L̃ = c3sL , π = f 2
ππc , M4

n ≡ cn
f 4
π

c2n−1
s

, Λ = fπcs , (A.21)

so that c2 ≡ 1
4
(1− c2s). After rescaling, it is convenient to organize the action in terms

of the artificially Lorentz invariant derivatives ∂̃µ and time derivatives, so that the action

takes the form

L̃ = −1

2

(
∂̃πc

)2
+

1

Λ2

[
α1π̇

3
c − α2π̇c

(
∂̃πc

)2]
+

1

Λ4

[
β1π̇

4
c − β2π̇

2
c

(
∂̃πc

)2
+ β3

(
∂̃πc

)4]
,

(A.22)
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where

α1 ≡ −2c2 (1− c2s)− 4
3
c3 , α2 ≡ 2c2 ,

β1 ≡ 1
2
c2 (1− c2s)

2
+ 2c3 (1− c2s) +

2
3
c4 , β2 ≡ −c2 (1− c2s)− 2c3 , β3 ≡ 1

2
c2 .

(A.23)

Crucially, we notice that the quadratic action is Lorentz invariant in terms of the x̃ vari-

ables. The scattering amplitude for 2 → 2 scattering in the center of mass frame is [32]

M(s, θ) =

(
−9

4
α2
1 − 4α2

2 − 6α1α2 +
3

2
β1 + 2β2 + (3 + cos2 θ)β3

)
s2

Λ4
. (A.24)

Now if we define the partial wave expansion of the amplitude as

M(s, θ) ≡ 16π
∑
ℓ

(2ℓ+ 1)aℓ(s)Pℓ(cos θ) , (A.25)

then |aℓ| ≤ 1/2 in order for the partial waves to be consistent with the optical theorem

in perturbation theory, i.e., the theory satisfies the constraint of perturbative unitarity.

Integrating the amplitude over cos θ we find

a0 (s) =
1

192π

(
−3 (3α1 + 4α2)

2 + 18β1 + 24β2 + 40β3

) s2

Λ4
, (A.26a)

a2 (s) =
β3

120π

s2

Λ4
. (A.26b)

For a0, perturbative unitarity places a bound on a complicated linear combination of cs,

c3 and c4. This degeneracy can be broken by considering scattering in boosted frame. In

contrast, if we demand |a2| < 1/2 when the external energies are both fπ so that s = 4f 2
π ,

then we find that cs > 0.31 if perturbative unitarity holds [32].

These bounds can be strengthen by considering scattering beyond the center of mass

frame. This is analysis was performed in [35], leading to the exclusion in terms of cs and

ᾱ1:

ᾱ1 = −4

3

c3
c2s

− 1

2

(1− c2s)
2

c2s
=

α1

c2s
. (A.27)

This is the bound shown in Fig. 2.

Consistency with the de Sitter Entropy

With some extrapolation, we can also apply these results to the consistency of the de Sitter

entropy discussed in Sec. 4. Concretely, we could observe more than a de Sitter entropy’s
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worth of modes if we could satisfy the inequalities

π2

3
− π2

72

((
1− 1

c2s

)(
9 + 3c2s

)
+

c3
c2s

)
> ∆ζ >

4π2

3cs
. (A.28)

This appears to be possible when cs < 0.095, but we interpreted as a breakdown of EFT of

inflation as the cutoff dropped below the Hubble scale, Λ < H. We check this interpretation

by comparing it to the perturbative unitarity on cs of the d-wave amplitude, |a2(E)| < 1/2,

which implies [32]
E4

f 4
π

< 30π
c4s

1− c2s
. (A.29)

Although taking E = H is not well-defined, since we are far from flat space (where the

unitarity calculations are performed) in that limit, we can still use this bound as a check on

our interpretation of the apparent violation of de Sitter entropy bound. Throwing caution

to the wind, we combine this inequalities using E = H to find

8π2

3cs
<

H4

f 4
π

< 30π
c4s

1− c2s
. (A.30)

The only viable solutions to these inequalities occurs when

cs > 0.68 . (A.31)

We see that cs < 0.095 clearly falls outside this region, so that it lies in the strongly

coupled regime derived using this naive interpretation of the partial wave unitarity bound.

The bound on cs from the de Sitter entropy is a clearly a weaker constraint, but has the

advantage that it applies in the de Sitter background directly.

For c3 ̸= 0, the flat space perturbative unitarity bounds become more complicated, as

the s-wave amplitude depends on cs, c3 and c4 (see Eq. (A.26a)). A proper comparison of

the de Sitter entropy and scattering based bounds would require the next
(
4th
)
order in

the derivative expansion in the Fokker-Planck equation which is beyond the scope of this

work.

B Solving the Fokker-Planck with Steepest Descents

In this appendix, we will present an alternate solution to the Fokker-Planck equation

∂

∂t
P (ζ; t) =

σ2

2

∂2

∂ζ2
P (ζ; t)− γ3

3!

∂3

∂ζ3
P (ζ; t) . (B.1)
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The basic idea is to use the Fourier transform to simplify the derivatives with respect to

ζ. Specifically, if we define

P (ζ; t) =

∫ ∞

−∞
dke−iζkP (k; t) (B.2)

then the Fokker-Planck equation becomes

∂

∂t
P (k; t) =

(
−k2σ

2

2
− ik3γ3

3!

)
P (k; t) . (B.3)

This can be integrated to obtain

P (k; t) = C exp

(
−k2σ2t

2
t− ik3γ3

3!
t

)
. (B.4)

To determine the probability distribution of ζ, we take the inverse Fourier transform

P (ζ; t) = C

∫ ∞

−∞
dk exp

(
−iζk − k2 ∆ζ

4π2
t− ik3γ3

3!
t

)
. (B.5)

For large t, we might suspect we can calculate this integral using the method of steepest

descents. Specifically, we can deform the k contour in the complex plane so that is goes

through a point k⋆ such that

d

dk

(
−iζk − k2σ

2

2
t− ik3γ3

3!
t

) ∣∣∣∣
k=k⋆

= 0 , (B.6)

which occurs when

k⋆ = i
σ2

γ3

(
1±

√
1 +

2γ3ζ

σ4t

)
. (B.7)

Noting γ3 ≪ ∆ζ , we should take the − solution, since it lies closer to the real axis. We

will assume 8π4γ3ζ/t ≪ 1 so that

k⋆ ≃ −i
ζ

σ2t
+ iγ3

ζ2

2σ6t2
. (B.8)

The resulting probability distribution can be determined approximately by using k = k⋆+k̄

P (ζ; t) ≃ C exp

(
− ζ2

2σ2t
+

γ3
3!

ζ3

σ6t2

)∫ ∞

−∞
dk̄e−t∆ζ k̄

2/(2π2)

≃ C̃√
∆ζt

exp

(
− ζ2

2σ2t
+

γ3
3!

ζ3

σ6t2

)
, (B.9)
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where C and C̃ are constants. Here we used the fact the integrand is analytic in the region

enclosed by contours k ∈ (−∞,∞) and k̄ ∈ (−∞,∞) to obtain our final result.

This reproduces Eq. (3.14), which we derived from our exact solution. However, we

also see that the method of steepest descents will become problematic when we take

2γ3ζ/(σ
4t) ≥ 1. This corresponds to the same condition as above for the failure of the

Stochastic framework to reliably calculate the tail of the distribution.
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