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We provide the theoretical basis of calorimetry for a class of active particles subject

to thermal noise and (flashing) potentials. Simulating AC-calorimetry, we numer-

ically evaluate the heat capacity of run-and-tumble particles in double-well and in

periodic potentials, and of overdamped diffusions with a flashing potential. Low-

temperature Schottky-like peaks show the role of activity and indicate shape tran-

sitions, while regimes of negative heat capacity appear at higher propulsion speeds.

From there, significant increase in heat capacities of active materials may be inferred

at low temperatures, as well as diagnostic tools for the activity of biological systems

operating in a smaller temperature range.

I. INTRODUCTION

The influence of heat on chemical reactions was already breaking ground in the 18-th

century [1]. Yet, physics understanding remained incomplete for the specific heat of gases.

That played a crucial role in the emergence of quantum mechanics and its applications to

condensed matter physics. Since then, heat capacity is often depicted as a material constant,

changing only by modifying volume or by varying temperature or other intensive parameters.

It is however natural that activity may play a role as well, as equipartition is easily violated

by driving or active forces [2]. For example, a tissue may change its heat capacity when

it is acted upon by molecular motors, or a transmission device when undergoing random

potential changes while maintaining relatively large heat or electric currents. Similarly

and not thoroughly explored so far, heat capacity will differ between live matter and its

unorganized mixture of molecules [3, 4].
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Quantitative explorations of heat due to biological functioning or as function of metabolic

rates and changes therein are studied under the heading of bioenergetics [5]. References

on measuring heat production in bacterial reservoirs include [6–8]. In general however, not

much got systematized on the theory side of condensed matter and nonequilibrium statistical

mechanics. The same holds true for active (meta)materials where thermal properties and

functionalities may depend on nonequilibrium driving [9, 10] and it is again important to

quantify the relation between heat and temperature.

The present paper takes this question of defining and computing heat capacities to the

paradigmatic case of active systems [11–14]. Active matter is of growing interest for new

materials and functionalities, and it appears important to scan a large temperature range for

their thermal properties. In the same way, while Life processes happen on a much smaller

window of temperatures, we wish to understand how heat capacities of bio-materials depend

on activity parameters. Particle models obviously only shadow the complex mechanisms of

Life or of active materials that cannot be sustained in thermodynamic equilibrium but, com-

bining exact results and simulation, they are capable of highlighting important phenomena.

In the following prototypical examples feature flashing potentials and run-and-tumble

particles both in periodic and under confining potentials. In all cases, except for an exact

calculation in the Appendix A, we obtain the heat capacity by simulation, applying for the

first time the scheme of AC-calorimetry [15–17] to active systems. We investigate the role

of propulsion speed and of tumbling or flashing rates on particles that are either confined

or which move on a periodic landscape. The main results are visualized in plots of the heat

capacity. In the end, we also consider the heat-related (quasi-)entropy for these systems.

While the models are for simplicity restricted to one dimension, we do not believe that is a

serious restriction as we are not probing thermal properties near phase transitions. In fact,

we are including a study of active particles in a double-well potential which imitates, in the

usual mean-field sense, higher-dimensional active particle models.

For simplicity we consider here translational motion only, ignoring e.g. activity-induced

vibration or rotation. The dynamical variable is a scalar, like the position on the real

line without considering inertial degrees of freedom, and the irreversible work done on the

particle is by the active forces or by flashing the potential.

The present paper wants to start the computation and study of heat capacities for ac-
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tive matter. Thermal properties of active particles have of course been widely discussed,

including [6, 8, 18–24]. Yet, heat capacities, the traditional window on “active” degrees of

freedom, have not been calculated, let alone explored there. We suspect that the lack of

experimental work on heat properties of active systems is mainly due to the absence so far

of a theoretical framework and model calculations, a gap the present paper wants to fill.

II. OUT-OF-EQUILIBRIUM CALORIMETRY

We refer to [15, 25, 26] for the initial theory and basic examples of nonequilibrium heat

capacities C(T ) as function of bath temperature T . The idea is to estimate the quasistatic

heat excess δQex after a small temperature change δT , while holding constant a given set of

system and environment parameters:

C(T ) =
δQex

δT
(1)

See also [27] for the general setup, including a motivation for the type of excess heat used

in the present paper. In equilibrium, the excess is just the heat produced in a reversible

transformation, δQex = δQ = C(T ) dT .

To measure or to compute (1) we apply AC-calorimetry where we vary the bath temperature

at a given frequency ω 6= 0, e.g. Tt = T+δT sinωt. After the system relaxes (in a time which

we assume is short compared with the ratio of excess heat to steady power dissipation), we

measure the time-dependent heat flux q(t) to find

q(t) = q(T ) + δT [σ1(ω) sin(ωt) + σ2(ω) cos(ωt)] (2)

defining σ1,2(ω) as the in- and out-phase components of the temperature-sensitivity of the

dissipation. We assume that the temperature-heat admittance decays fast enough in time.

The main difference with equilibrium calorimetry is that now the DC-part q(T ) no longer

vanishes. Around a steady nonequilibrium condition, the latter provides the dominant (for

ω → 0) contribution to the heat flux, whereas the heat capacity (1) becomes the next

correction. Indeed, the low-frequency asymptotics of the heat current (2) is, in linear order

and neglecting O(ω2, (δT )2),

q(t) = qT + δT [B(T ) sin(ωt)− C(T )ω cos(ωt)] (3)
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with C(T ) as in (1) and where B(T )δT = qT+δT − qT . That method, explained in [15, 28]

but in essence going back to the work of Sullivan & Seidel in [16] and to [17] for equi-

librium processes, is applied in each of the nonequilibrium model systems we consider below.

We emphasize that the nonequilibrium contribution cannot be reduced to a simple “ther-

modynamic” form; even in the quasistatic regime, the excess heat over temperature does

not need and typically will not be an exact differential [29, 30], except close-to-equilibrium

[31–33]. In addition, for active matter to which we turn next, there is the additional diffi-

culty that the position-process is not autonomous (i.e., not Markovian) while the theory in

[15, 25, 26] was initially developed for Markov processes.

III. ACTIVE GAS

Consider the one-dimensional overdamped diffusive dynamics with equation of motion

γẋt = v σt − U ′(ηt, xt) +
√

2γ T ξt (4)

for the position xt of effectively independent run-and-tumble particles (RTPs) with propul-

sion speed v in a flashing potential U(ηt, x) under standard white noise ξt. The flashing is

governed by a process or protocol ηt. The prime in U ′ denotes a derivative with respect to

x. If moving on the circle we must have that U is periodic in x. The ambient temperature

is T . We are assuming here that γ and v are not depending on the temperature, which is

a serious simplification. Another modeling feature is that we consider, besides the thermal

noise, only dichotomous noise σt, not depending on temperature or location of the particle:

the σt ∈ {+1,−1} is flipping at fixed rate α > 0. To set the time-scale we put friction γ = 1.

The mean energy of the particle at time t is

E(t) =
〈
U(ηt, xt)

〉
(5)

where the (process-)average at time t samples the noises in (4). Locomotion changes the

position to x + dx, by which the energy changes as U(η, x) → U(η, x + dx). That energy

change can be decomposed into heat and work done on the particle, as says the First Law of

thermodynamics. The instantaneous expected heat flux has therefore two sources: the direct
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change dU of the energy minus the work done on the particle. For dU we apply Itô’s Lemma

at fixed η, dU = (vσ−U ′(η, x))U ′(η, x) +TU ′′(η, x). On the other hand, the expected work

done on the particle for locomotion is w(x;σ, η) = σv(−U ′(η, x) + σv). Therefore, the heat

flux from the thermal bath to the particle is the difference,

q(x;σ, η) = dU − w(x;σ, η) (6)

= 2vσU ′(η, x)− (U ′(η, x))2 + TU ′′(η, x)− v2

To compute the heat capacity through the steady heat flux (3), we thus need to evaluate

q(t) =
〈
2vσtU

′(ηt, xt)− U ′2(ηt, xt) + TtU
′′(ηt, xt)− v2

〉
t

for sufficiently large t > 0, where also the process average 〈·〉t uses the slowly varying

temperature Tt = T + δT sinωt to replace T in the strength of the thermal noise in (4).

A. Flashing potential

To start with an exactly solvable case we take propulsion speed v = 0 and U(η, x) =

k(1 + εη)x2/2, 0 ≤ ε ≤ 1, where η = ±1 is flipping randomly at rate α. We refer to

Appendix A for the calculation. The stationary energy at fixed temperature T is E(s) = T/2.

It depends only on temperature, giving the (false) impression that the system partitions

energy in the same way as in equilibrium. Yet the heat capacity becomes nontrivial, though

still temperature independent, and it reveals a fundamentally different thermal response

than for a passive particle:

C(T ) =
1

2

[
1 +

ε2(1 + 2z)

(1 + z(1− ε2))2
]

(7)

where the (dimensionless) persistence factor z = k/(αγ) appears. We thus distinguish the

following regimes:

(1) ε = 0: q(s) = 0 and C = 1
2

(equilibrium)

(2) ε = 1: q(s) = kT
γ

and C = 1 + z (“release-and-retract”)

(3) z → 0: q(s) → kT
γ
ε2 and C → 1

2
(1 + ε2) (vanishing persistence)

(4) ε < 1, z →∞: q(s) → 0 and C → 1
2

(infinite persistence α ↓ 0).
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FIG. 1: (a) Heat capacity of a particle moving in a flashing harmonic potential, as in (A1), plotted

as a function of persistence factor z = k/(αγ) for ε = 0.5. For z → 0, C → 5/8. (b) Heat capacity

of a particle moving in a flashing symmetric double-well potential (8), plotted as a function of

temperature for flashing rate α = 0.5.

The equilibrium case is clearly separated from the active case, despite the “equipartition”

E(s) = T/2. In Fig. 1(a) we plot the heat capacity as a function of z for ε = 1/2. We see

how we can obtain the persistence factor from the heat capacity. To contrast, Fig. 1(b) gives

the heat capacity for a particle in a flashing symmetric double well,

U(η, x) =
k

2

(
1 +

η

2

)(x4
4
− x2

2

)
, η = ±1 (8)

In contrast with the flashing harmonic potential, that double-well case cannot be solved

exactly. Here the AC-numerical work is able to show how the (nonequilibrium) heat capacity

nontrivially depends on (low) temperature.

B. Run-and-tumble in a periodic potential

Run-and-tumble particles (RTPs) have a nonzero propulsion speed v in Eq. (4). There

is no flashing of the potential U . All the results here are obtained via AC-calorimetry,

following the scheme of Eqs. (1)-(3); see also [15].
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FIG. 2: Heat capacity of RTPs for different tumbling rates, moving in a sinusoidal potential

with amplitude E0 = 1.0 and propulsion speed v = 1.0 . The grey line corresponds to the v = 0

(equilibrium) case. The inset shows the variation of the heat capacity with v for fixed E0 = 0.5,

tumbling rate α = 0.5 and at temperature T = 0.1 .

Consider a RTP with position xt on the circle of length L, and moving in a sinusoidal

potential. The dynamics is given by (4) where U(η, x) = E0 sin(2πx/L) is not flashing. We

fix L = 20 in the simulations.

Fig. 2 shows that heat capacity for different tumbling rates. Interestingly, C(T ) has a

sharp peak at around T ' E0/5, which represents a pronounced Schottky-like anomaly [34].

It indicates the presence of an energy scale E0 in the potential, and the two-valuedness

of the propulsion direction adds a discrete character. The peak decreases and shifts

towards higher temperature for increased tumbling rate α . The peak value grows with

the persistence to yield a significant magnification of the low-temperature heat capacity

(T < 0.3E0) with respect to equilibrium (= grey line in Fig. 2). Of equal interest, from

Fig. 2 inset, the heat capacity gets negative when the propulsion speed v is large enough to

reach kinetic energies above the barrier height E0.
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Fig. 3(a) shows the in- and out-of-phase components of the frequency-dependent heat

current, defined in Eq. (2) for RTPs in a sinusoidal potential and for temperature T = 0.3E0.

The ω ↓ 0 of σ2(ω)/ω gives the heat capacity, as follows from AC-calorimetry.
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FIG. 3: RTPs in a sinusoidal potential. (a) cf. (2)-(3): the in-phase (σ1(ω), as maroon circles)

and out-of-phase (σ2(ω), as blue diamonds) amplitudes of the heat current at T = 0.15, α = 0.5 .

(b) cf. formula (9): change in excess heat per change in tumbling rate α at T = 0.1, v = 1.0 and

E0 = 0.5 .

When changing the tumbling rate α at constant ambient temperature, there is a change

in excess heat as well. We can understand it as a nonequilibrium latent heat C(α), the

change of the excess heat per tumbling rate. As in (3), we obtain it by applying a sinusoidal

modulation α(t) = α + sin(ωt) δα for which the heat current becomes

q(t) = qα − [B(α) sin(ωt)− C(α)ω cos(ωt)] δα +O(ω2) (9)

Fig. 3(b) depicts C(α) for T = E0/5, showing a sharp increase for smaller tumbling rates α,

again for RTPs in the sinusoidal potential.

C. Run-and-tumble in a double-well potential

Run-and-tumble particles in one-dimension and subject to an external confining potential

have been studied for their static and dynamical properties; see e.g. [35, 36] and [37] for the
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FIG. 4: (a) Heat capacity for RTPs in a double-well potential with barrier height ∆ = 2.5 for

different propulsion speeds v at tumbling rate α = 0.5. (b) Corresponding steady state occupation

density P (x) for different propulsion speeds. Here E0 = 10.0, and T = 0.1.

non-Boltzmann stationary distribution at zero temperature. Heat capacities have never been

computed however. Here we consider RTPs confined by the symmetric double-well potential

U(η, x) = U(x) = E0 (x4/4 − x2/2) in (4) (not flashing). The barrier height between the

two wells is ∆ = E0/4. As in equilibrium, that potential may arise as effective interaction

in a mean-field description and may thus depend on the density profile as well, relevant for,

e.g., higher-dimensional motility-induced phase transitions [38].

Fig. 4(a) gives the heat capacity for different propulsion speeds v. Again we see the

appearance of negative heat capacities when v gets large compared to the barrier height

∆. Interestingly, we can also detect the zero-temperature shape transition, [35, 36, 39],

from the behavior of the heat capacity at low temperature: Fig. 4(b) shows the stationary

distribution and how it changes at T = 0.1 for the same parameters as in Fig. 4(a).

When v is still small, the occupation is bimodal at low temperatures (corresponding

to the two wells, as in equilibrium). As we increase v (going active), there appears

a bimodality in each well, leading to four local maxima in the occupation distribu-

tion. That gets combined with a sharper and higher low-temperature peak in the heat

capacity. And again negative heat capacities appear at large v as was the case in Fig. 2 inset.
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Fig. 5 gives the heat capacity of RTPs in a double-well potential for a broad range of

tumbling rates α. A broader peak shows at a temperature T ' E0/2 for α ≤ 0.5. Compare

with Fig. 6 for the small α−regime for large propulsion speed v.
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FIG. 5: Heat capacity of RTPs confined by a double-well potential plotted for different tumbling

rates at v = 1.0 and barrier height ∆ = 0.25.

Finally, Fig. 6 shows a comparison between equilibrium and highly persistent RTPs. The

upper curve is the heat capacity of an asymmetric (by v) double–well potential (aDW),

U(x) = E0

(x4
4
− x2

2

)
+ vx (10)

and the lower curve has v = 0 (DW); see also [40]. For the two upper curves, the propulsion

speed v is large so that U(x,±) has a single minimum at a certain ±x∗(v). For low temper-

atures and small tumbling rate α, the dynamics is quickly relaxing to the neighborhood of

the potential minimum ±x∗ and we find that the heat capacity of the RTPs resembles the

DW-curve representing Gaussian fluctuations in an effective quadratic potential, C ∼ 1/2.

When temperature increases, the heat capacity qualitatively picks up the behavior of the

aDW-curve as the passive fluctuations start to be governed by the subquadratic segment in

(10). At high-T, we get fluctuations in an effective quartic potential, C ∼ 1/4.
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FIG. 6: Heat capacities for particles in an asymmetric double well (upper curve), for RTPs in

a double-well potential at v = 1.0, barrier height ∆ = 0.25 and α = 0.1, and for particles in a

symmetric double well (lower curve). See around (10).

D. Entropy

Entropy originates in the Clausius heat theorem, gets a statistical meaning as measure

of phase volume, and gives rise to statistical forces. Such a protean entropy does not exist

for genuine nonequilibria, [29, 30]. Yet, a heat-related entropy can be constructed, also

for active systems, by defining the change ��∆S in nonequilibrium entropy, without defining

entropy as a state function:

��∆S(T ) =

∫ T

T0

dT ′
C(T ′)

T ′
(11)

for some reference (initial) temperature T0. We plot that change in Fig. 7 for RTPs in two

different landscapes and for two tumbling rates. We only used the data for C(T ) (in Fig. 2

and Fig. 5) for temperatures T > T0 = 0.04 and 0.025 respectively. As far as we know, those

are the first plots of the nonequilibrium quasi-entropy (11) for active systems.
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FIG. 7: Quasi-entropy (11) as a function of temperature for RTPs moving in a sinusoidal potential

(upper curves), and confined by a double-well potential (lower curves). We emphasize that (11)

refers to a change in temperature only.

IV. CONCLUSION

(Thermal) active systems are in physical contact with (at least) two reservoirs: one which

is often chemical or radiative and source of low entropy, and one which can be identified

with a thermal bath or environment in which energy gets dissipated. Perturbing the tem-

perature, the heat capacity measures the excess heat in addition to the steady ever-existing

dissipation. This paper has indicated how it may depend on activity parameters. For the

first time for active systems, we have observed numerically Schottky-like anomalies and a

regime of negative heat-capacity where an increased environment temperature enhances the

excess dissipation. We are confident that low-temperature active materials show thermal

characteristics as in the discussed model systems, to become a new and fascinating sub-

ject of investigation in materials science. Also for bio-systems, in a more restricted range

of temperatures, the results indicate how heat capacity can serve as a diagnostic tool for

activity.

Bio-physical experiments include [6, 7] but using AC-calorimetry as numerically pioneered

here for active systems, would be very welcome to carry that program, to verify those
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predictions and hence to continue the old adage that Even fire is ruled by numbers [41] in

the physics of active and living materials as well.
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Appendix A: Flashing potential

We derive the results of Section III A, to consider an overdamped diffusive particle in

a one-dimensional flashing potential, following Eq.(4) with propulsion speed v = 0. An

exactly solvable case is obtained for a quadratic potential,

γẋt = −∂xU(ηt, xt) +
√

2γT ξt , U(η, x) =
k

2
(1 + εη)x2 (A1)

where ηt is a standard dichotomous process (η = ±1) with persistence rate α. The parameter

ε ∈ [0, 1] prescribes the ratio by which the potential is turned off. For understanding the

First Law, Eqs. (5)-(6) in the main text, we take the x−component of the backward generator

L, acting on function f as

L(x)f = γ−1(−U ′∂x + T∂2x)f = γ−1[−k(1 + εη)x ∂x + T∂2x)]f (A2)

The full backward generator is Lf(x, η) = L(x)f(x, η) + α[f(x,−η)− f(x, η)]. Therefore,

d

dt
〈x2〉 = −2k〈x2〉 − 2kε〈ηx2〉+ 2T

d

dt
〈ηx2〉 = −2kε〈x2〉 − 2(k + αγ)〈ηx2〉

and under stationarity,

〈x2〉(s) =
1 + z

1 + z(1− ε2)
T

k
(A3)

〈ηx2〉(s) = − zε

1 + z(1− ε2)
T

k
(A4)

where z = k/(αγ), a dimensionless persistence factor. Note that for flashing rate α ↓ 0, the

variance (A3) is the sum of the variances corresponding to η = ±1, while the correlation

(A4) remains different from zero for ε 6= 0. On the other hand, the stationary energy is

E(s) =
k

2

(
〈x2〉(s) + 〈ηx2〉(s)

)
=
T

2
(A5)

and depends only on temperature.

The (mean instantaneous) heat flux equals

q(x, η) = −L(x)U = γ−1
[
k2(1 + ε2)x2 + 2εk2ηx2 − kT (1 + εη)

]
(A6)

Its stationary value

q(s) = 〈q〉 =
kT

γ

ε2

1 + z(1− ε2) (A7)
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is the steady heat flux. The quasipotential [25, 26] is

V (x, η) =

∫ ∞
0

dt
[
〈q(Xt, ηt |X0 = x, ηt = η〉 − q(s)

]
We can find it as the solution to the equation (LV )(x, η) = q(s) − q(x, η) (unique on the

appropriate functional space, ‖Y ‖2 = 〈Y 2〉 <∞). Substituting the Ansatz

V = Ṽ − 〈Ṽ 〉 , Ṽ (x, η) = c x2 + d ηx2 + g η (A8)

we find the corresponding coefficients

c =
k

2

1 + ε2 + z(1− ε2)
1 + z(1− ε2) , d =

k

2

zε(1− ε2)
1 + z(1− ε2) , g = −T

2

zε

1 + z(1− ε2) (A9)

Furthermore,

〈Ṽ 〉 =
T

2

[
1 +

ε2(1 + 2z)

(1 + z(1− ε2))2
]

(A10)

so that U(η, x)− V (x, η) remains different from zero for α ↓ 0:

lim
α↓0

V (x, η) = U(x, η)− T

2
(1 +

ε η

1− ε2 )

Finally, the steady heat capacity is independent of temperature and equals

C = −
〈∂V
∂T

〉(s)
=
∂〈Ṽ 〉
∂T

−
〈∂Ṽ
∂T

〉(s)
=

1

2

[
1 +

ε2(1 + 2z)

(1 + z(1− ε2))2
] (A11)

(Note that the last term on the first line is zero, since ∂Ṽ /∂T ∝ η and 〈η〉 = 0.)
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