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Abstract

The standard way to perform calculations for quantum field theories involves the S-
matrix and the assumption that the theory is free at past and future infinity. However,
this assumption may not hold for field theories in non-trivial backgrounds such as curved
spacetimes or finite temperature. In fact, even in the simple case of finite temperature
Minkowski spacetime, there are a lot of misconceptions and confusion in the literature
surrounding how to correctly take interactions into account when setting up the initial
conditions.

The objective of this work is to clear up these misconceptions and provide a clean
and simple derivation of a formalism which includes interactions in the initial conditions
and assesses whether or not it is legitimate to ignore them. The ultimate conclusion is
that we cannot ignore them: quantum field theories at finite temperature are not free in
the infinite past.
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1 Introduction

The S-matrix is the usual object of interest when performing calculations in quantum field
theory [1–4]. It has been extremely successful at reproducing experimental results in parti-
cle accelerators but it presents a challenge: in order to construct the ‘in’ and ‘out’ aymptotic
states we need to assume the theory is asymptotically free at future and past infinity. This is
perfectly justified for zero temperature Minkowski spacetime: if we consider local interactions
and the ‘in’ and ‘out’ states are spatially well separated we do expect the interactions to die
off. However, this might not be the case if we are in the presence of a background field, such
as curved spacetime, or are studying a thermal state. In this case the thermal bath and/or the
background will keep interacting with the particles possibly ruining our physical picture.

In order to get around these issues we need to calculate new observables, ones which allow
us to probe these regimes without assuming the theory is free and checking whether or not our
assumptions work. This is precisely what is accomplished by the Schwinger-Keldysh formalism
(also sometimes called the ‘in-in’ formalism) [5,6]. In this formalism we return to the picture
most common in undergraduate quantum mechanics: setting up an initial state at time t0,
evolving up to time t, and calculating the expectation value of the relevant operator. As long
as we have control over the initial state, and have the technical prowess to perform the time
evolution and evaluate the expectation, there is no need to assume the interactions decay at
any time.

This formalism has become a standard tool, being the topic of several textbooks and re-
views [7–20]. Using this tool, a lot of attention has been devoted towards studying the sit-
uation in the far future. In this case, the main phenomenology is that of secular growth,
that is, loop corrections which grow linearly in time, seemlingly ruining perturbation the-
ory at late times. These kinds of issues are well known in the finite temperature litera-
ture [9–12,18,21–28] and in the case of de Sitter spacetime [29–42]. There have been some
calculations performed in black hole and Rindler scenarios [26, 42–47] but the status is less
clear in these cases. In order to handle these divergences one needs to construct a modified
effective field theory which can take into account the open system character of theories at fi-
nite temperature and in the presence of event horizons [29,30,33,34,37–40]. Studying these
divergences was the original motivation for this paper and will be the subject of an upcoming
publication [48].

However, considerable less attention has been devoted to what happens in the far past. In
fact it seems like there is a lot of misunderstanding and confusion in the literature regarding
how to appropriately set up initial conditions. Many of the common textbooks and reviews
just assume the theory is free at past infinity, essentially ignoring the issue [7,8,10,11,13–16,
18, 19, 21, 22, 26]. Some works are more detailed but end up either changing the dynamics
explicitly to turn off the interactions [17, 41, 49, 50] or are based in [51, 52] (for example,
[9, 12, 23, 24, 53, 54]) whose arguments have a number flaws which will be discussed in the
main body of the paper and in the conclusion.

The objective of this paper is to clear up these misconceptions and provide a clean and
simple derivation of a formalism which includes interactions in the initial conditions and as-
sesses whether or not it is legitimate to ignore them. The ultimate conclusion is that we cannot
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ignore them. There are a number of issues with the standard treatments and explicitly com-
puting the 4-point function one can see that it is never turned off. Quantum field theories at
finite temperature are not free in the infinite past.

The manuscript is structured as follows:
In section 2, we begin with a brief overview of the Schwinger-Keldysh path integral at a

level which should be accessible to readers not familiar with this formalism. We shall pay
close attention to the non-triviality of the temporal boundary conditions and the appearance
of additional field variables, both of which characteristic of this technique.

In section 3, we detail the construction of the Feynman rules for finite temperature ini-
tial conditions. We are vary careful about our assumptions and detailed in our reasoning, in
particular we shall not assume the interactions are turned off at past infinity and shall set
initial conditions at a finite time in the past t0. The natural conclusion of this calculation
is the appearance of a 3× 3 propagator matrix, including mixing between the real-time and
imaginary-time field variables.

In section 4, we continue our analysis by computing the symmetric propagator up to one-
loop in an on-shell subtraction scheme. This is correlation function which is necessary to
determine the energy-momentum tensor and therefore it has clear physical significance. We
pay close attention to the role of the cross terms in our calculation and how the most common
approaches in the literature would fail or succeed in obtaining the correct answer.

The conclusion is that the 3× 3 approach is more mathematically well-defined and much
more straightforward at obtaining the physical answer. However, when resumming the poor IR
behaviour of this correlator we find an agreement with the standard approaches. An interpre-
tation for this is provided, nevertheless, this means this calculation is not entirely conclusive
on its own regarding the fate of interactions in the far past.

In section 5, we settle the question by computing the equal-time 4-point function at tree-
level for a particular choice of external momenta. The result is unambiguous: the 3×3 propa-
gator matrix is essential to reproduce the correct answer. Not only is the outcome completely
independent of time (which on its own implies the interactions are finite at all times) but also
the final answer comes purely from the cross terms.

In section 6, we conclude by contrasting with the different approaches found in the litera-
ture.

There are also three appendices. The first details the subtleties of the temporal boundary
conditions for the time derivative of our fields. The second discusses minus signs and fac-
tors of i for Feynman rules mixing real and imaginary time. The third and final one includes
some extra calculations for the other propagators which confirm the picture suggested by the
symmetric propagator.

Notation and conventions: We use the ‘mostly-plus’ sign convention for the Minkowski met-
ric ηµν = diag(−+++ . . . ). Greek indices µ,ν, . . . go from 0 to d and Latin indices i, j, k, . . .
go from 1 to d, where d is the number of spacial dimensions (usually 3), so that D = d + 1
is the number of spacetime dimensions (usually 4). We also use boldface p for purely spatial
vectors.

2 Review of the Schwinger-Keldysh path integral

In its essence the Schwinger-Keldysh formalism [5–11, 13–22, 41, 49, 53, 55, 56] (also known
as ‘in-in’ formalism) is an initial value formulation of quantum field theory. Instead of con-
sidering an ‘in’ state, |in〉, at past infinity and an ‘out’ state, |out〉, at future infinity to then
compute the transition amplitude, S = 〈out|in〉; we set up an initial state, |ψ(t0)〉, time evolve
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it, U(t f , t0) |ψ(t0)〉, and then compute the expectation value of some operator O(t f ):1




O(t f )
�

ψ
= 〈ψ(t0)|U†(t f , t0)O(t f )U(t f , t0) |ψ(t0)〉 . (2.1)

The only difference between this formalism and the usual one is what we are calculating.
We can apply this formalism for any theory and any initial state if what we are interested in
are expectation values of operators at some time t f . However, it is worth noting that this
formalism is especially useful for time-dependent or out of equilibrium calculations.

In order to perform concrete calculations we need to convert (2.1) to a path integral. To
accomplish this we begin by inserting the identity many times2:

〈ψ(t0)|U†(t f , t0)O(t f )U(t f , t0) |ψ(t0)〉=

=

∫

�∏

dqi

�

〈ψ(t0)|q1〉 〈q1|U†(t f , t0) |q2〉 〈q2|O(t f ) |q3〉 〈q3|U(t f , t0) |q4〉 〈q4|ψ(t0)〉 .

(2.2)

Let us analyse each factor in turn:

• 〈q3|U(t f , t0) |q4〉 is an ordinary path integral with a finite time interval and fixed tempo-
ral boundary conditions. The derivation of this fact can be found in standard textbooks
and reviews [1–4,14,20,57]

• 〈q1|U†(t f , t0) |q2〉 is also an ordinary path integral, however, the presence of the U†

means we are evolving backwards in time from q2 at t f to q1 at t0. This means we will
get an integrand of e−iS instead of the more familiar eiS .

• If our operator of interest is a product of fields (as we shall assume for the remainder
of this manuscript) then 〈q2|O(t f ) |q3〉 ∝ δ(q2 − q3), and therefore q2 = q3 and the
boundary conditions from our two path integrals match at t f .

• Finally, 〈ψ(t0)|q1〉 and 〈q4|ψ(t0)〉 are the initial and final wavefunctions. They cannot
be readily converted to a path integral. We need to be careful and integrate over all
possible boundary conditions at t0 weighted by these wavefunctions before proceeding.
We need to know the functional form of our initial state to perform these calculations.

Putting it all together we get the following path integral:




O(t f )
�

ρ
=

∫

dq0
− dq0

+ρ(q
0
+, q0
−)

∫

Dq+Dq−O(t f )e
iS[q+]−iS[q−] (2.3)

with q+(t0) = q0
+, q−(t0) = q0

−, q+(t f ) = q−(t f ) and where we have generalised to an arbitrary
density matrix ρ as the above reasoning carries through with no subtleties.

In essence we are starting at time t0, evolving up to time t f , inserting the operator of inter-
esting, then evolving backwards towards t0, integrating over all possible boundary conditions
at t0 weighted by the initial wavefunction. This is sometimes called the ‘closed’ time contour,
however, we should note that it isn’t really closed as the fields aren’t matched at t0.

A few remarks are in order. Firstly, that we could insert a U†(t f2 , t f )U(t f2 , t f ) to get either:

1We are using the Schrödinger picture, the argument in the operator is an explicit time dependence, not a
dynamic/Heisenberg time dependence.

2We will sometimes use quantum mechanical notation for simplicity, it should be straightforward to extend to
quantum field theories.
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|ψ(t0)〉

〈ψ(t0)|

U(t f , t0)

U†(t f , t0)

t f

Figure 1: ‘Closed’ time contour

〈ψ(t0)|U†(t f2 , t0)U(t f2 , t f )O(t f )U(t f , t0) |ψ(t0)〉 (2.4)

or
〈ψ(t0)|U†(t f , t0)O(t f )U

†(t f2 , t f )U(t f2 , t0) |ψ(t0)〉 . (2.5)

Therefore, we can actually insert our operator anywhere on the contour. The time where we
turn around and match between the forwards and backwards moving fields is merely a book-
keeping parameter and should drop out of the final answer. The physical time variables are t0
when we set our initial conditions and t f when we insert the operator.

Secondly, we get a doubling of our field variables. Nevertheless, given the actions are
just added together, there seems to be no quadratic mixing and we would naively expect two
independent propagators. However, the matching q+(t f ) = q−(t f ) actually induces a mixing
between the two variables and we get a non-diagonal 2× 2 matrix of propagators.

Finally, given we have to integrate over all possible boundary conditions at t0 we cannot
integrate by parts to complete the square as is usual, we have to be a bit more careful. A
particularly pedagogical overview of how to perform this for a free theory (including finite
temperature and excited states) can be found in [20].

3 Tree-level propagators

In this section, we will describe how to construct the Schwinger-Keldysh style path integral,
using a finite temperature initial density matrix, set at a finite time in the past, and without
assuming the theory to be free at any time. We end by presenting the corresponding Feynman
rules for a φ4 theory.

3.1 The finite temperature path integral

The finite temperature density matrix is a particularly simple state to construct at any time
and without assuming the theory to be free. This is because it is straightforward to convert
it to a path integral. We just have to note that the usual Gibbs state (where β is the inverse
temperature, H is the Hamiltonian and we have ignored the normalisation as its only role is
to cancel the vacuum bubbles):

ρ = e−βH (3.1)

can be written as a time evolution, albeit in an imaginary direction,

ρ = e−βH = U(t0, t0 − iβ), (3.2)

where, for a time dependent Hamiltonian, we should evaluate it at time t0. This can be readily
converted to a Euclidean path integral.

The integration over q1 and q2 in (2.2) then implies that the field values are matched along
a contour that includes a segment in an imaginary direction as is shown in Fig. 2.
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t0

t f

t0 − iβ

Figure 2: Finite temperature time contour

Our path integral then looks like (for the quantum mechanical theory):

Z =

∫

Dq+Dq−DqE eiS[q+]−iS[q−]−SE[qE], (3.3)

where

S[q±] =

∫ t f

t0

dt
�

1
2

q̇2
± −

1
2

m2q2
± + J±q±

�

, (3.4)

SE[qE] =

∫ β

0

dτ
�

1
2

q′E
2 +

1
2

m2q2
E + JEqE

�

, (3.5)

and where τ= −it is a real parameter for the imaginary segment, · represents derivatives with
respect to t and ′ derivatives with respect to τ. We have also included sources in anticipation
of the calculations to follow and to be more explicit about the sign convention for the factors
in front of the sources.

As is clear from the canonical construction for the Schwinger-Keldysh path integral we
should impose the following boundary conditions:

q+(t f ) = q−(t f ), (3.6a)

q−(t0) = qE(0), (3.6b)

q+(t0) = qE(β). (3.6c)

Slightly less obviously we should also impose boundary conditions on the time derivatives
of the fields. This will be necessary to solve the propagator equations as they will involve
second time derivatives. As is argued in appendix A we are free to choose these to be whatever
we want. For simplicity we then choose the time derivatives such that all the boundary terms
cancel when we integrate by parts:

q̇+(t f ) = q̇−(t f ), (3.7a)

q̇−(t0) = iq′E(0), (3.7b)

q̇+(t0) = iq′E(β). (3.7c)

Note that i d
dτ =

d
dt which gives some intuition for the factor of i in these equations.

3.2 The propagator equations

In order to derive the Feynman rules for φ4 theory in D-dimensional Minkowski spacetime we
need to first compute the quadratic path integral including sources. By Fourier transforming in
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the spatial directions we get the same as in (3.4) where the coefficient in front of the quadratic
term is replaced by Ep =

p

p2 +m2 where p is the spatial momentum, and m is the mass of
the particle. Due to this we will continue to use quantum mechanical notation, knowing that
it is equivalent to D-dimensional Minkowski spacetime.

Our path integral then looks like, after integrating by parts,

Z =

∫

Dq+Dq−DqE exp

�

i

∫ t f

t0

dt

�

−
1
2

q+(t)

�

d2

dt2
+m2

�

q+(t) + J+(t)q+(t)

�

−

− i

∫ t f

t0

dt

�

−
1
2

q−(t)

�

d2

dt2
+m2

�

q−(t) + J−(t)q−(t)

�

−

−
∫ β

0

dτ

�

−
1
2

qE(τ)

�

d2

dτ2
−m2

�

qE(τ) + JE(τ)qE(τ)

�

+

+ i
�

1
2

q+(t)q̇+(t)
�t f

t0

− i
�

1
2

q−(t)q̇−(t)
�t f

t0

−
�

1
2

qE(τ)q
′
E(τ)
�β

0

�

. (3.8)

Now we need to complete the square. We do the following change of variables:

Q+(t1) = q+(t1)+

∫ t f

t0

dt2 G++(t1, t2)J+(t2)−
∫ t f

t0

dt⋆2 G+−(t1, t⋆2)J−(t
⋆
2)+

+i

∫ t f

t0

dτ2 G+E(t1,τ2)JE(τ2) (3.9a)

Q−(t
⋆
1) = q−(t

⋆
1)+

∫ t f

t0

dt2 G−+(t
⋆
1, t2)J+(t2)−
∫ t f

t0

dt⋆2 G−−(t
⋆
1, t⋆2)J−(t

⋆
2)+

+i

∫ t f

t0

dτ2 G−E(t
⋆
1,τ2)JE(τ2) (3.9b)

QE(τ1) = qE(τ1)+

∫ t f

t0

dt2 GE+(τ1, t2)J+(t2)−
∫ t f

t0

dt⋆2 GE−(τ1, t⋆2)J−(t
⋆
2)+

+i

∫ t f

t0

dτ2 GEE(τ1,τ2)JE(τ2) (3.9c)

note that we include off diagonal terms. This is because the boundary conditions mix the
different kind of fields therefore we expect some mixing in the propagator as well. The factors
in front of the integrals are mostly conventional but they help match the factors in the integrals
for the source terms. The ⋆ on the ts are just a convenience to remind which arguments belong
to the forwards and backwards time segments.

The propagators need to obey the following equations:
�

−
∂ 2

∂ t2
1

−m2

�

G++(t1, t2) = δ(t1 − t2) (3.10a)

�

−
∂ 2

∂ t⋆1
2 −m2

�

G−+(t
⋆
1, t2) = 0 (3.10b)

�

−
∂ 2

∂ τ2
1

+m2

�

GE+(τ1, t2) = 0 (3.10c)

�

−
∂ 2

∂ t2
1

−m2

�

G+−(t1, t⋆2) = 0 (3.10d)
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�

−
∂ 2

∂ t⋆1
2 −m2

�

G−−(t
⋆
1, t⋆2) = −δ(t

⋆
1 − t⋆2) (3.10e)

�

−
∂ 2

∂ τ2
1

+m2

�

GE−(τ1, t⋆2) = 0 (3.10f)

�

−
∂ 2

∂ t2
1

−m2

�

G+E(t1,τ2) = 0 (3.10g)

�

−
∂ 2

∂ t⋆1
2 −m2

�

G−E(t
⋆
1,τ2) = 0 (3.10h)

�

−
∂ 2

∂ τ2
1

+m2

�

GEE(τ1,τ2) = −iδ(τ1 −τ2) (3.10i)

with boundary conditions coming from the field boundary conditions:

G++(t f , t2) = G−+(t f , t2),
∂ G++(t1, t2)

∂ t1

�

�

�

�

t1=t f

=
∂ G−+(t⋆1, t2)

∂ t⋆1

�

�

�

�

t⋆1=t f

(3.11a)

G−+(t0, t2) = GE+(0, t2),
∂ G−+(t⋆1, t2)

∂ t⋆1

�

�

�

�

t⋆1=t0

= i
∂ GE+(τ1, t2)

∂ τ1

�

�

�

�

τ1=0

(3.11b)

GE+(β , t2) = G++(t0, t2), i
∂ GE+(τ1, t2)

∂ τ1

�

�

�

�

τ1=β
=
∂ G++(t1, t2)

∂ t1

�

�

�

�

t1=t0

(3.11c)

G+−(t f , t⋆2) = G−−(t f , t⋆2),
∂ G+−(t1, t⋆2)

∂ t1

�

�

�

�

t1=t f

=
∂ G−−(t⋆1, t⋆2)

∂ t⋆1

�

�

�

�

t⋆1=t f

(3.11d)

G−−(t0, t⋆2) = GE−(0, t⋆2),
∂ G−−(t⋆1, t⋆2)

∂ t⋆1

�

�

�

�

t⋆1=t0

= i
∂ GE−(τ1, t⋆2)

∂ τ1

�

�

�

�

τ1=0

(3.11e)

GE−(β , t⋆2) = G+−(t0, t⋆2), i
∂ GE−(τ1, t2)

∂ τ1

�

�

�

�

τ1=β
=
∂ G+−(t1, t⋆2)

∂ t1

�

�

�

�

t1=t0

(3.11f)

G+E(t f ,τ2) = G−E(t f ,τ2),
∂ G+E(t1,τ2)

∂ t1

�

�

�

�

t1=t f

=
∂ G+E(t1,τ2)

∂ t1

�

�

�

�

t1=t f

(3.11g)

G−E(t0,τ2) = GEE(0, t2),
∂ G−E(t⋆1,τ2)

∂ t⋆1

�

�

�

�

t⋆1=t0

= i
∂ GEE(τ1,τ2)

∂ τ1

�

�

�

�

τ1=0

(3.11h)

GEE(β ,τ2) = G+E(t0,τ2), i
∂ GEE(τ1,τ2)

∂ τ1

�

�

�

�

τ1=β
=
∂ G+E(t1,τ2)

∂ t1

�

�

�

�

t1=t0

(3.11i)

so that Q± and QE have vanishing boundary conditions. They are ordered them in this par-
ticular way to highlight that even though they are nine coupled equations they come in three
cycles of three equations each. Also note that the boundary conditions are only imposed in the
first argument, the only way the two arguments mix is via the delta functions in the diagonal
components. There is a diagonal component in each set so all equations end up mixing the
two arguments.

After these simplifications it is fairly straightforward to solve the equations to get:

G++(t1, t2) =−
i

2m
cos
�

m
�

t1 − t2 −
iβ
2

��

csch
�

mβ
2

�

−

−
1
m
Θ(t1 − t2) sin(m(t1 − t2)) (3.12a)
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G−−(t
⋆
1, t⋆2) =−

i
2m

cos
�

m
�

t⋆1 − t⋆2 +
iβ
2

��

csch
�

mβ
2

�

+

+
1
m
Θ(t⋆1 − t⋆2) sin
�

m(t⋆1 − t⋆2)
�

(3.12b)

GEE(τ1,τ2) =−
i

2m
cosh
�

m
�

τ1 −τ2 +
β

2

��

csch
�

mβ
2

�

+

+
1
m
Θ(τ1 −τ2) sinh(m(τ1 −τ2)) (3.12c)

G+−(t1, t⋆2) =−
i

2m
cos
�

m
�

t1 − t⋆2 −
iβ
2

��

csch
�

mβ
2

�

= G−+(t
⋆
2, t1) (3.12d)

G+E(t1,τ2) =−
i

2m
cos
�

m
�

t1 − t0 + iτ2 −
iβ
2

��

csch
�

mβ
2

�

= GE+(τ2, t1) (3.12e)

G−E(t
⋆
1,τ2) =−

i
2m

cos
�

m
�

t⋆1 − t0 + iτ2 −
iβ
2

��

csch
�

mβ
2

�

= GE−(τ2, t⋆1) (3.12f)

Symmetrising the diagonal components and inserting 1= Θ(t1− t2)+Θ(t2− t1) we get:

Gsym
++ (t1, t2) = −

i
2m

cos
�

m
�

|t1 − t2|+
iβ
2

��

csch
�

mβ
2

�

(3.13a)

Gsym
−− (t

⋆
1, t⋆2) = −

i
2m

cos
�

m
�

�

�t⋆1 − t⋆2
�

�−
iβ
2

��

csch
�

mβ
2

�

(3.13b)

Gsym
EE (τ1,τ2) = −

i
2m

cosh
�

m
�

|τ1 −τ2| −
β

2

��

csch
�

mβ
2

�

(3.13c)

We now have nine propagators which seem largely independent. Nevertheless, there are
some symmetries that can be exploited to reduce the number of propagators we actually have
to consider. This is accomplished by changing to the average-difference basis, also called the
Keldysh basis [7–13,16,18,20,53,55,58].

We define,

Jave =
J+ + J−

2
, Jdif = J+ − J− (3.14a)

qave =
q+ + q−

2
, qdif = q+ − q− (3.14b)

Plugging this into the above and using the fact that

Gsym
++ (t1, t2) + Gsym

−− (t1, t2) = G+−(t1, t2) + G−+(t1, t2) (3.15)

we get

Z = exp
§

−
i
2

∫

dt1 dt2 Jdif(t1)Gave,ave(t1, t2)Jdif(t2)−

−
i
2

∫

dt1 dt2 Jave(t1)Gdif,ave(t1, t2)Jdif(t2)−

−
i
2

∫

dt1 dt2 Jdif(t1)Gave,dif(t1, t2)Jave(t2)+

+
1
2

∫

dt1 dτ2 Jdif(t1)Gave,E(t1,τ2)JE(τ2)+

+
1
2

∫

dτ1 dt2 JE(τ1)GE,ave(τ1, t2)Jdif(t2)+

9
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+
i
2

∫

dτ1 dτ2 JE(τ1)GE,E(τ1,τ2)JE(τ2)
ª

(3.16)

where

Gave,ave(t1, t2) = −
i

2m
cos(m(t1 − t2)) coth

�

mβ
2

�

(3.17a)

Gdif,ave(t1, t2) =
1
m

sin(m(t1 − t2))Θ(t2 − t1) = Gave,dif(t2, t1) (3.17b)

Gave,E(t1,τ2) = G+,E(t1,τ2) = G−E(t1,τ2) = GE,ave(τ2, t1) (3.17c)

Note that the JaveJave and the JaveJE terms vanish identically. Also note that we have
labelled the propagators so that any ‘dif’ label is together with a Jave and vice-versa, this is on
purpose because

J+q+ − J−q− = Javeqdif + Jdifqave (3.18)

With this convention the ‘dif’ and ‘ave’ labels on diagrams will coincide with that will appear
in correlators as functions of fields and with what appears in the potential.

3.3 Feynman rules in the average-difference basis

To deduce the Feynman rules we have to be careful with factors of i and −1 due to the mixing
between real and imaginary fields, in appendix B we present the derivation, in the main text
we will just present the result.

For the average-difference basis in particular, since in Gdif,ave(t1, t2) we know that t2 > t1
we will draw an arrow from ‘dif’ to ‘ave’. This flow implied by the arrows is usually called
‘causal flow’ because it tells you the direction of time. It is straightforward to see we cannot
have a closed ‘causal’ loop, because we would have products of Heaviside-Θs that would always
vanish. The other propagators do not have any causal connections but for ease of visibility
there will always be arrows pointing towards a ‘ave’ end and legs that connect with Euclidean
times will be dashed. In summary, here’s the notation we shall use:

t1 t2 = iGave,ave(t1, t2) (3.19a)

t1 t2 = iGdif,ave(t1, t2) (3.19b)

t1 τ2 = iGave,E(t1,τ2) (3.19c)

τ1 τ2 = iGE,E(τ1,τ2) (3.19d)

In terms of vertices, there are three kinds. We have a quartic Euclidean vertex, and two
Lorentzian ones. Since

1
4!

q4 −
1
4!

q′4 =
q3

ave

3!
qdif +

1
4

qave

q3
dif

3!
(3.20)

there is one Lorentzian vertex with three ‘ave’ and one ‘dif’ and another with three ‘dif’ and
one ‘ave’. Because there are only three identical legs in these vertices, the vertex with three
‘dif’ comes with an additional factor of 1

4 . In summary, we have:

t = −iλ

∫

dt (3.21a)

10
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t = −i
λ

4

∫

dt (3.21b)

τ = −λ
∫

dτ (3.21c)

where in the last rule the dashed external legs may also have arrows if they come form a
Gave,E.

In higher dimensions all of the propagators also carry a momentum label. We should pro-
ceed exactly as in ordinary Feynman rules, we impose momentum conservation along prop-
agators and vertices, and we integrate over loop momenta. Throughout the paper we shall
drop overall momentum conserving Dirac-δs for ease of notation.

4 One-Loop symmetric propagator

We now compute the symmetric 2-point function 〈{φ(x1),φ(x2)}〉. In the average-difference
basis it becomes:

〈{φ(x1),φ(x2)}〉= 〈φ+(x1)φ−(x2) +φ−(x1)φ+(x2)〉=

=
�

φave(x1) +
φdif(x2)

2

��

φave(x2)−
φdif(x1

2

�

+

+
�

φave(x1)−
φdif(x2)

2

��

φave(x2) +
φdif(x1)

2

�·

=


2φave(x1)φave(x2)−
1
2
φdif(x1)φdif(x2)

·

(4.1)

where in the first line we have forced the ordering by placing one of the field operators in
the forward moving segment (which appears first in the time contour) and the other on the
backwards moving segment (which appears later in the contour). Also note that the last term
in (4.1) vanishes (at least up to one-loop).

The diagrams that contribute to the symmetric 2-point function at 1-loop level are:

t1 t t2

p p

k

=

=−
iλ
2

∫ t f

t0

dt

∫

dd k
(2π)d

iGave,ave(p, t1, t)iGave,ave(k, t, t)iGdif,ave(p, t, t2) =

=−
λ

2

∫ t f

t0

dt

∫

dd k
(2π)d

−i
2Ep

cos[Ep(t1 − t)] coth

�

Epβ

2

�

−i
2Ek

coth
�

Ekβ

2

�

·

11
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·
1
Ep

sin[Ep(t − t2)]Θ(t2 − t) =

=
λ

32E3
p

coth

�

Epβ

2

�

�

cos[Ep(t1 + t2 − 2t0)]− cos[Ep(t1 − t2)] + 2Ep(t2 − t0) sin[Ep(t1 − t2)]
�

·

·
∫

dd k
(2π)d

coth
�

Ekβ
2

�

Ek
(4.2)

t1 t t2

p p

k

=

=−
iλ
2

∫ t f

t0

dt

∫

dd k
(2π)d

iGave,dif(p, t1, t)iGave,ave(k, t, t)iGave,ave(p, t, t2) =

=−
λ

2

∫ t f

t0

dt

∫

dd k
(2π)d

1
Ep

sin[Ep(t − t1)]Θ(t1 − t)
−i

2Ek
coth
�

Ekβ

2

�

·

·
−i

2Ep
cos[Ep(t − t2)] coth

�

Epβ

2

�

=

=
λ

32E3
p

coth

�

Epβ

2

�

�

cos[Ep(t1 + t2 − 2t0)]− cos[Ep(t1 − t2)]− 2Ep(t1 − t0) sin[Ep(t1 − t2)]
�

·

·
∫

dd k
(2π)d

coth
�

Ekβ
2

�

Ek
(4.3)

t1 τ t2

p p

k

=

=−
λ

2

∫ β

0

dτ

∫

dd k
(2π)d

iGave,E(p, t1,τ)iGE,E(k,τ,τ)iGE,ave(p,τ, t2) =

=
iλ
2

∫ β

0

dτ

∫

dd k
(2π)d

−i
2Ep

cos
�

Ep

�

t1 − t0 + iτ− i
β

2

��

csch

�

Epβ

2

�

−i
2Ek

cosh
�

−
Ekβ

2

�

csch
�

Ekβ

2

�

·

·
−i

2Ep
cos
�

Ep

�

t2 − t0 + iτ− i
β

2

��

csch

�

Epβ

2

�

=

=−
λ

32E3
p

�

csch2

�

Epβ

2

�

Epβ cos
�

Ep(t1 − t2)
�

+ 2 coth

�

Epβ

2

�

cos
�

Ep(t1 + t2 − 2t0)
�

�

·

·
∫

dd k
(2π)d

coth
�

Ekβ
2

�

Ek
(4.4)

notice how in this diagram we have contributions which do not depend on t0. Therefore, even
for initial conditions set in the infinite past you need to include these cross terms.

12
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Adding it all up we get:

�

φ̃(p, t1), φ̃(−p, t2)
	�

1-loop = 2



φ̃ave(p, t1)φ̃ave(−p, t2)
�

1-loop =

=−
λ

16E3
p

∫

dd k
(2π)d

coth
�

Ekβ
2

�

Ek

�

2 coth

�

Epβ

2

�

�

Ep(t1 − t2) sin
�

Ep(t1 − t2)
�

+

+ cos
�

Ep(t1 − t2)
��

+ csch2

�

Epβ

2

�

Epβ cos
�

Ep(t1 − t2)
�

�

(4.5)

Note that the t0 dependence cancelled between the three diagrams as is to be expected from
the time-translation invariance of the thermal state.

We still need to add the counterterms. Usually we need to resum the series to consider 1PI
graphs [1,3,4,57], but this is much harder in this formalism, so what we shall do instead is to
make m2→ m2+δm2 in the tree-level answer and expand in powers of δm2. The idea is that
δm2 is linear in λ. This is actually a bit closer to the spirit of renormalisation, we are figuring
out what is the function m2(λ,Λ) that we need to put in the action so that m2 corresponds
to the physical measured mass (squared) and then expanding in powers of λ (Λ is the cutoff,
we’ll be mostly agnostic about how exactly we are regulating the theory). We then get:

−
i coth
�1

2β
p

m2 +δm2 + p2
�

cos
�

(t1 − t2)
p

m2 +δm2 + p2
�

2
p

m2 +δm2 + p2
=

=−
i

2Ep
cos
�

Ep(t1 − t2)
�

coth

�

Epβ

2

�

+

+

�

2coth

�

Epβ

2

�

�

Ep(t1 − t2) sin
�

Ep(t1 − t2)
�

+ cos
�

Ep(t1 − t2)
��

+

+ csch2

�

Epβ

2

�

Epβ cos
�

Ep(t1 − t2)
�

�

iδm2

8E3
p
+O(δm2)2 (4.6)

The contribution to the symmetric 2-point function at O(λ) is then:


�

φ̃(p, t1), φ̃(−p, t2)
	�

δm2 = −
δm2

4E3
p

�

2coth

�

Epβ

2

�

�

Ep(t1 − t2) sin
�

Ep(t1 − t2)
�

+

+ cos
�

Ep(t1 − t2)
��

+ csch2

�

Epβ

2

�

Epβ cos
�

Ep(t1 − t2)
�

�

(4.7)

Similarly, there is also the question of field renormalisation. In the same vein as above,
what we need to do is insert a Z(λ,Λ) as a coefficient to the kinetic term, expand in powers of
λ and figure out what is the physical normalisation. This avoids dealing with diagrams with
time derivatives. Naively it seems like we need to solve the equations once again, however,
by looking at the derivation of (3.10) we see that adding Z would correspond to multiplying
the ∂ 2

∂ t2 terms by Z . However, if we define m′2 = m2

Z and G′ = ZG then G′ solves the same
equation as if we had no field renormalisation since the boundary conditions don’t depend on
the normalisation of G. Therefore, we have:

G′ave,ave(p, t1, t2) =−
i coth
�1

2β
p

m′2 + p2
�

cos
�

(t1 − t2)
p

m′2 + p2
�

2
p

m′2 + p2
⇔

⇔ Gave,ave(p, t1, t2) =−
i coth
�

1
2β
q

m2

Z + p2
�

cos
h

(t1 − t2)
q

m2

Z + p2
i

2Z
q

m2

Z + p2
(4.8)

13
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Now expanding in powers of λ as Z = 1+δZ we get:

=−
i

2Ep
cos
�

Ep(t1 − t2)
�

coth

�

Epβ

2

�

−

−
�

2 coth

�

Epβ

2

��

Ep(t1 − t2) sin
�

Ep(t1 − t2)
�

+

+

�

1−
2E2

p

m2

�

cos
�

Ep(t1 − t2)
�

�

+

+ csch2

�

Epβ

2

�

Epβ cos
�

Ep(t1 − t2)
�

�

im2δZ
8E3

p
+O(δZ)2 (4.9)

which is very similar to the mass counterterm, except it has an additional term.
The full 1-loop contribution to the symmetric 2-point function including counterterms is:

�

φ̃(p, t1), φ̃(−p, t2)
	�

1-loop+c.t. =

=−
λIβ(Λ) + 4δm2 − 4m2δZ

16E3
p

�

2coth

�

Epβ

2

�

�

Ep(t1 − t2) sin
�

Ep(t1 − t2)
�

+

+ cos
�

Ep(t1 − t2)
��

+ csch2

�

Epβ

2

�

Epβ cos
�

Ep(t1 − t2)
�

�

−
δZ
Ep

cos
�

Ep(t1 − t2)
�

(4.10)

where

Iβ(Λ) =

∫

dd k
(2π)d

coth
�

Ekβ
2

�

Ek
(4.11)

and the integral is assumed to be regulated in some way.

4.1 Choice of counteterms

In order to choose an appropriate δm2 and δZ we need some physical definition of mass and
field renormalisation. Given these are parameters in the action/Hamiltonian we do not expect
them to depend on the temperature. For example, if the mass is defined as the energy gap
in the spectrum, this will be a feature of the Hamiltonian rather than of the initial state we
put our system in. This means we should take the zero temperature limit and then use the
usual Källén-Lehmann spectral representation [1, 3] to get an appropriate definition of mass
and field renormalisation.

The β →∞ limit of the above reads


�

φ̃(p, t1), φ̃(−p, t2)
	�β→∞

1-loop+c.t. = 〈Ω|
�

φ̃(p, t1), φ̃(−p, t2)
	

|Ω〉1-loop+c.t. =

=−
λI∞(Λ) + 4δm2 − 4m2δZ

8E3
p

�

Ep(t1 − t2) sin
�

Ep(t1 − t2)
�

+ cos
�

Ep(t1 − t2)
�

�

−

−
δZ
Ep

cos
�

Ep(t1 − t2)
�

(4.12)

where

I∞(Λ) =

∫

dd k
(2π)d

1
Ek

(4.13)

and |Ω〉 is defined as the ground state of the Hamiltonian (in principle at time t0). In the limit
β →∞ this is the only state that contributes.
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By running the usual arguments for the Källén-Lehmann spectral representation [1,3] but
for the symmetric 2-point function we get

〈Ω|
�

φ̃(p, t1), φ̃(−p, t2)
	

|Ω〉=
∫ ∞

0

dM2

2π
ρ(M2)

Ep
cos
�

Ep(t1 − t2)
�

(4.14)

by setting p = 0, t2 = 0, and t1 = t to simplify our calculations (ρ cannot depend on any of
these variables by construction) it is straightforward to get

ρ(M2) =

�

1−
λI∞(Λ) + 4δm2 − 4m2δZ

8m2
−δZ

�

2πδ(M2 −m2)+

+
�

λ

4
I∞(Λ) +δm2 −m2δZ

�

2π
∂

∂M2

�

δ(M2 −m2)
�

(4.15)

This seems like a bit of a weird behaviour since we get a delta function at m2 but we also
get a derivative of a delta function, which is more singular than would be expected. However,
this is just an artefact of our perturbative expansion. In fact, this expression is equivalent to
shifting the pole by an amount

∆=
λ

4
I∞(Λ) + 2δm2 − 2m2δZ (4.16)

that is, we can also write ρ(M2) as

ρ(M2) =
�

1−
∆

2m2
−
δZ
2

�

2πδ(M2 −m2 +∆) (4.17)

and obtain the previous answer by expanding in powers of λ, δm2, and δZ .
Our physical renormalisation conditions (choosing m2 to be our physical mass) are that

the pole is at m2 and that the coefficient in front is 1. Solving for the counterterms we get:

δm2 =−
λ

4
I∞(Λ) (4.18a)

δZ =0 (4.18b)

The end result is then:


�

φ̃(p, t1), φ̃(−p, t2)
	�

1-loop+c.t. =

=−
λ(Iβ(Λ)− I∞(Λ))

16E3
p

�

2coth

�

Epβ

2

�

�

Ep(t1 − t2) sin
�

Ep(t1 − t2)
�

+

+ cos
�

Ep(t1 − t2)
��

+ csch2

�

Epβ

2

�

Epβ cos
�

Ep(t1 − t2)
�

�

(4.19)

Note that the integral

∫

dd k
(2π)d

coth
�

Ekβ
2

�

− 1

Ek
(4.20)

is convergent even without a cutoff. With a finite cutoff it depends on the cutoff but that
dependence is negligible if the cutoff is far above any scales of interest. This behaviour is
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exactly what is expected of a field theory at finite temperature [5–8, 10, 11, 13, 18, 21, 22, 25,
59,60].

The final answer does not contain any terms proportional to t1 + t2 therefore there are
no secular effects. However, there is still a temporal IR growth from the term proportional to
(t1− t2). This does not affect the energy-momentum tensor (as it vanishes in the coincidence
limit) but it means that naive perturbation theory is inadequate if the temporal separation is
too large. However, this effect is easy to resum.

First note that if instead we chose a temperature dependent counterterm:

δm2 =−
λ

4
Iβ (4.21)

the mass parameter would not correspond to the physical mass as it won’t be the energy gap
in the spectrum, but the secular effect won’t be there. It is also not very physical to have terms
in the Hamiltonian that depend on the choice of initial conditions3. However, this tells us how
to resum these terms.

Then note that the physical choice of counterterm means that the relation between the
physical mass m2

phys and the mass parameter in the Lagrangian m2
Lagrangian is

m2
Lagrangian = m2

phys −
λ

4
I∞ (4.22)

where mphys is independent of the regulator.
All in all this suggests that if we insert as a mass parameter in the propagators:

m2
prop = m2

Lagrangian +
λ

4
Iβ = m2

phys +
λ

4
(Iβ − I∞) (4.23)

then we rescue perturbation theory at large temporal separations. Note that we are not in-
serting this in the Lagrangian, the claim is that the contribution from these diagrams could be
resumed by using this modified propagator. This agrees with what is found in the literature
for the thermal mass shift [5–8,10,11,13,18,21,22,25,59,60].

Had we taken the naive approach and not considered the Gave,E cross terms we would
have found several issues. Firstly, we would find that the final answer depends on t0. This is
to be expected, by disregarding these terms we are essentially taking ρ = exp(−βH0) as our
initial state, where H0 is the free part of the Hamiltonian. Given the free Hamiltonian does not
commute with the full Hamiltonian we ought to expect time dependence. However, this time
dependence is not ameliorated by taking the limit t0→−∞ as the dependence is oscillatory
rather than decaying. We could perhaps take the limit in such a way to turn those oscillations
into damping [23,50] however, we would then not recover the final term that arises from the
cross terms which puts this method into question.

However, there is some evidence that in some sense ρ = exp(−βH0) is ‘close enough’ to the
desired state. Had we only included the 2×2 propagators and only included the counterterms
in the interaction Hamiltonian rather than expanding the tree-level propagator as we did, we
would obtain the correct IR resummation. This suggests there could be some dynamical effect
which makes the two states agree once we fix their IR behaviour. Nevertheless, this claim
relies on the fact this resummation would continue to agree at every loop level, which, to the
knowledge of the author, has not been proven.

Further, we would have obtained a different answer depending on whether we do coun-
terterms as usual (which corresponds to inserting them in the interaction Hamiltonian) or
expanding the tree-level propagator (which corresponds to inserting them in the free Hamil-
tonian). This difference arises because the initial state depends on the free Hamiltonian but

3The author thanks Stefan Hollands for pointing this out.
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not the interaction Hamiltonian. This puts into question the mathematical consistency of the
whole formalism.

To fully settle the debate, in the next section we explicitly calculate the equal-time 4-point
function, checking whether or not it would be possible to get an agreement between the various
approaches. Once more this is a very physical quantity to calculate as it is often the object of
interest in, e.g. cosmological applications [29–42].

5 Tree-level equal-time 4-point function

We wish to calculate:




φ̃(p1, t f )φ̃(p2, t f )φ̃(p3, t f )φ̃(p4, t f )
�

β
=

=



φ̃ave(p1, t f )φ̃ave(p2, t f )φ̃ave(p3, t f )φ̃ave(p4, t f )
�

β
(5.1)

where, in the last line, we used the fact that the equal-time means we can use φ± interchange-
ably and therefore we can use φave.

The diagrams that contribute are:

1 2

3 4

+ permutations (5.2)

1 2

3 4

+ permutations (5.3)

1 2

3 4

+ permutations (5.4)

Let’s choose Ep1
= Ep2

= Ep3
= Ep4

= E, or equivalently |p1| = |p2| = |p3| =
�

�p4

�

� for
simplicity, then

(5.2) =− iλ

∫ t f

t0

dt iGdif,ave(p1, t, t f )iGave,ave(p2, t, t f )iGave,ave(p3, t, t f )iGave,ave(p4, t, t f )+

+ permutations=
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=− 4iλ

∫ t f

t0

dt
1
E

sin
�

E(t − t f )
�

Θ(t f − t)
︸ ︷︷ ︸

=1

�

−
i

2E
cos
�

E(t − t f )
�

coth
�

Eβ
2

��3

=

=−
λ

8E5
coth3
�

Eβ
2

�

�

1− cos4(E∆t)
�

(5.5)

where ∆t = t f − t0.

(5.3) =− i
λ

4

∫ t f

t0

dt iGave,ave(p1, t, t f )iGdif,ave(p2, t, t f )iGdif,ave(p3, t, t f )iGdif,ave(p4, t, t f )+

+ permutations=

=− iλ

∫ t f

t0

dt
−i
2E

cos
�

E(t − t f )
�

coth
�

Eβ
2

�





1
E

sin
�

E(t − t f )
�

Θ(t f − t)
︸ ︷︷ ︸

=1





3

=

=
λ

8E5
coth
�

Eβ
2

�

sin4(E∆t) (5.6)

(5.4) =−λ
∫ β

0

dτ iGave,E(p1, t f ,τ)iGave,E(p2, t f ,τ)iGave,E(p3, t f ,τ)iGave,E(p4, t f ,τ) =

=−λ
∫ β

0

dτ
�

−i
2E

cos
�

E
�

∆t + iτ− i
β

2

��

csch
�

Eβ
2

��4

=

=−
λ

256E5
csch4
�

Eβ
2

�

(6βE + 8cos(2∆E) sinh(βE) + cos(4∆E) sinh(2βE)) (5.7)

Therefore, the total answer is

(5.2) + (5.3) + (5.4) = −
λ

256E5
csch4
�

βE
2

�

(6βE + 8sinh(βE) + sinh(2βE)) (5.8)

This end result is completely independent of time and fully agrees with an imaginary-time
formalism calculation as it should. However, that time independence was once more only
there due to the cross-terms. What is more, it is more accurate to say the real-time terms
canceled the time dependence of the cross terms as the final answer comes purely from the
cross terms. This is not recoverable from a modification of the quadratic components or the
2 × 2 propagator matrix. Further, it is now completely transparent that in no way the non-
Gaussianities of the initial density matrix are damped or disappear at early times, in fact they
are completely independent of time.

The only reasonable conclusion is that finite temperature quantum field theories are not
free in the far past and that, if we wish to calculate higher point functions we must use the
full 3× 3 propagator matrix.

6 Conclusion

We conclude by contrasting this paper with what is found in the pre-existing body of literature.
The first main difference with the most common approaches is that, so far, we have not

relied too heavily on transforming to Fourier space in time. This difference is mostly cosmetic
but there are reasons behind the choice made in this paper.
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Firstly, a priori, all our time variables exist in a compact time interval, either [t0, t f ] or
[0,β], therefore, naively, we cannot just Fouier transform.

However, we might wish to take a Fourier series instead. This is complicated by the fact
none of our functions is periodic in these intervals individually. If we performed a Fourier
series we would either ruin the boundary conditions for the value of the function or for its first
derivative, we cannot keep both arbitrary.

Finally, one might want to leverage the fact the boundary conditions are joined in a loop
as if the time variable was merely following a contour in the complex plane. This is perfectly
legitimate in non-relativistic theories, which have first order equations of motion. However, for
relativistic theories we run into a problem with matching the first derivatives. The issue is that,
in order for this picture to work we would need to impose continuity of the first derivatives
along the contour, which would actually mean imposing:

q̇+(t f ) = −q̇−(t f ) (6.1)

which does not cancel the boundary terms when integrating by parts.
These subtleties may be ameliorated if one takes the limits t0 → −∞ and t f →∞, but

we do not wish to do at this stage to make sure we have not been sloppy with these limits.
This is ultimately why we avoid going to temporal Fourier space and mostly do not speak in
terms of the time contour.

On a related point, the average-difference basis is not the only basis which can provide
simplifications. Namely, there is the retarded-advanced basis [16, 58] which takes advantage
of the Kubo-Martin-Schwinger (KMS) relation:

G+−(t1 + iβ , t2) = G−+(t1, t2) (6.2)

However, this relates functions at different points in time, therefore it can only be easily
used in Fourier space. For the reasons stated above we have avoided Fourier space and there-
fore not used the retarded-advanced basis. It is still important to note that there is even further
structure in the propagators used in this paper.

The most important difference with the pre-existing literature is the treatment of the cross
terms between the real and imaginary segments. In the vast majority of the literature they are
simply disregarded [7,8,10,11,13–16,18,19,21,22,26]. There are several arguments that are
used to justify not taking them into consideration, but, in essence, they boil down to taking
the limit t0→−∞ and either just assuming the interactions decay at very early times [8,10]
or changing the dynamics explicitly to forcibly turn off the interactions in the far past [49,50].

Up to an extent this is perfectly legitimate. After all we can use whatever Hamiltonian we
wish and whatever initial conditions we wish. There is no mathematical or physical inconsis-
tency with choosing the initial density matrix to be ρ = exp(−βH0), where H0 is the quadratic
part of the Hamiltonian, or adding an exponential decay to the interaction Hamiltonian. The
real question is whether or not this is accurately capturing thermal physics.

If one used the ad-hoc ρ = exp(−βH0) the issue is that, in contrast with the full Gibbs
state, it is not time independent, the free Hamiltonian does not commute with the interaction
Hamiltonian. Therefore we would have to trust this state is in some sense ‘close enough’ to the
true finite temperature state so that the difference in observables calculated with either state
would small or decaying with time. In sections 4 and 5 we have explicitly compared these two
methods and reached the conclusion no such mechanism appears to exist.

If one changed the Hamiltonian to turn off the interactions there are two ways in which
we could test its accuracy at describing thermal physics. The first is by comparing with exper-
imental results. The second is to take the limit in which this damping is removed, which is
what is usually described as desired [49, 50]. The issue with this last method is that the two
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limits may not commute. We may get different answers if we remove the damping before or
after taking the t0→−∞. The calculations in sections 4 and 5 indeed demonstrate this will
be the case.

There have also been some works in the past that tried to take the effect of the interactions
into account [51, 52, 56, 61]. Most notably, in the non-relativistic community these effects
have been widely studied and it is even a matter of textbooks and reviews [60, 62–64]. In
this case it has even been argued that the 3× 3 propagator matrix is equivalent to including
an explicit coupling term to an external bath [64]. Nevertheless, the lessons from this case
cannot be straightforwardly imported to relativistic theories. The main objection being that
the propagator equations are first order in time which means time contour arguments are
much more straightforward. The solutions are just distinct and there is no a priori reason that
the arguments and proofs that work in that case can be extended to the relativistic case.

Another relatively known approach is that in [51,52]which attempts to give a prescription
for how to modify the 2×2 propagators into giving the full answer. However, the arguments do
not quite hold up to scrutiny as they do not correctly take into account the presence of internal
Euclidean vertices. Indeed as the calculations in section 5 demonstrate, no such reasoning can
be true.

Finally, in [56] the role of the interactions is correctly taken into account and t0 is held fixed
until the very end by using a 2PI formalism. Unfortunately, none of the relativistic works that
cite them correctly take interactions into account instead using the incorrect 2×2 propagator
matrix. In [61] these effects are also taken into account but the technical points are mixed in
with the disorder averaging, which complicates the interpretation.

All in all, despite the existence of some works which do take these effects into account
misconceptions regarding the role of these interactions are overwhelming prevalent in the
literature. The most popular textbooks and reviews, even recent ones, do not take these effects
into account. The author hopes this work can demonstrate in a simple manner the importance
of the cross-terms and clear the confusion in the field.
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A Derivative boundary conditions

From the propagator perspective, we have second order equations of motion so we need to
impose boundary conditions on the first derivatives to get well posed equations. From the
Lagrangian perspective, as we need to integrate by parts and the boundary term depends on
first derivatives, we need some condition on the first derivatives to be able to manipulate the
boundary terms.

However, from the canonical point of view, these boundary conditions appear because we
have at some point inserted a complete set of states, but those states only depend on the field
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values, not its time derivatives. Furthermore, we have some intuition that we might need to
consider fields which are not differentiable and deal with the discrete sum over time, rather
than a continuous integral [4, 57]. How can we see the first derivative condition from this
point of view?

The discrete derivative we introduce when doing the calculation is [57]

D(qi) =
qi+1 − qi

ε
(A.1)

which obeys a modified product rule

D(qihi) = D(qi)hi+i + qi D(hi) (A.2)

therefore the integration by parts is

N−1
∑

i=0

εD(qi)D(qi) =

=
N−1
∑

i=0

εD(qi D(qi))−
N−1
∑

i=0

εD(D(qi))qi+1 =

=D(qN )qN − D(q0)q0 −
N−1
∑

i=0

εD(D(qi))qi+1 (A.3)

Notice how, to integrate by parts, we needed to introduce a D(qN ) which depends on qN+1
which seems to make this ill-defined, however, there is also a term that depends on the qN+1 in
the second derivative which cancels this contribution, hence the whole thing doesn’t depend
on qN+1 and all is well. This then means that we are free to choose qN+1 to be whatever we
want as it cancels in the final answer. This is equivalent to a freedom in choosing the time
derivative therefore we conclude we are free to choose the time derivative at the boundary of
the time integral.

B Feynman rules with real and imaginary time mixing

First note that in the average-difference basis we no longer have the minus sign from the
backwards contour, we have real propagators (with off-diagonal terms) and imaginary time
propagators (with off-diagonal terms). So let’s simplify and consider a fictitious theory with
two sets of fields, one with real time (subscript ‘M’ for Minkowski) and one with imaginary
time (subscript ‘E’ for Euclidean) and with off-diagonal propagators. In this theory,

〈 f [qM , qE]〉=
∫

DqM DqE eiSM−SE f [qM , qE] =

= f
�

−i
δ

δJM
,−

δ

δJE

�

∫

DqM DqE eiSM ,J−SE,J

︸ ︷︷ ︸

Z[V,JM ,JE]

�

�

�

�

�

�

�

�

�

JM=JE=0

(B.1)

where

SM ,J =

∫

dt
§

1
2

q̇2
M −

1
2

m2q2
M − V (qM ) + JM qM

ª

= SM +

∫

dt JM qM (B.2)
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SE,J =

∫

dτ
§

1
2

q̇2
E +

1
2

m2q2
E + V (qE) + JEqE

ª

= SE +

∫

dτ JEqE (B.3)

Our job is then to calculate Z[V, JM , JE].

Z[V, JM , JE] = e−i
∫

dtV
�

−i δ
δJM

�

e−
∫

dτV
�

− δ
δJE

�

∫

DqM DqE eiSM ,0,J−SE,0,J

︸ ︷︷ ︸

Z[JM ,JE]

(B.4)

where

SM ,0,J =

∫

dt
§

1
2

q̇2
M −

1
2

m2q2
M + JM qM

ª

(B.5)

SE,0,J =

∫

dτ
§

1
2

q̇2
E +

1
2

m2q2
E + JEqE

ª

(B.6)

From the discussion in the main body of the manuscript we know that Z[JM , JE] will be of
the form (up to normalisation):

Z[JM , JE] = exp
§

−
i
2

∫

dt1 dt2 JM (t1)GM M (t1, t2)JM (t2)+

+
1
2

∫

dt1 dτ2 JM (t1)GM E(t1,τ2)JE(τ2)+

+
1
2

∫

dτ1 dt2 JE(τ1)GEM (τ1, t2)JM (t2)+

+
i
2

∫

dτ1 dτ2 JE(τ1)GEE(τ1,τ2)JE(τ2)
ª

(B.7)

Now let J ′M = iJM and J ′E = −JE so that there are no confusing factors in the argument of
the V ’s in front. Coincidentally, this makes all factors in (B.7) the same and equal to i/2. Then
we can use the results from (B.11) from [57] to get

Z[V, JM , JE] =exp

�

i
2

∫

dt1 dt2 GM M (t1, t2)
δ

δqM (t1)
δ

δqM (t2)

�

·

·exp

�

i
2

∫

dt1 dτ2 GM E(t1,τ2)
δ

δqM (t1)
δ

δqE(τ2)

�

·

·exp

�

i
2

∫

dτ1 dt2 GEM (τ1, t2)
δ

δqE(τ1)
δ

δqM (t2)

�

·

·exp

�

i
2

∫

dτ1 dτ2 GEE(τ1,τ2)
δ

δqE(τ1)
δ

δqE(τ2)

�

·exp

�

−i

∫

dt V (qM )−
∫

dτV (qE) +

∫

dt J ′M qM +

∫

dτ J ′EqE

�

(B.8)

The factors that appear in the currents will cancel with the factors that are in the functional
derivatives on f above, in the end, for each power of q we just need to add an external line.
For the other Feynman rules we have (for a quartic potential):

t1 t2 = iGM M (t1, t2) (B.9a)

τ1 τ2 = iGEE(τ1,τ2) (B.9b)
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t1 τ2 =
i
2
(GM E(t1,τ2) + GEM (τ2, t1)) (B.9c)

τ1 t2 =
i
2
(GEM (τ1, t2) + GM E(t2,τ1)) (B.9d)

t = −iλ

∫

dt (B.9e)

τ = −λ
∫

dτ (B.9f)

C Additional 1-loop checks

If the picture described in the main body of the text is to hold then the same counterterms as
defined in (4.18) should cancel all divergences regardless of whether we include them in the
free or the interaction Hamiltonian. Further, the resummation prescribed in (4.23) should still
work, which implies a very particular structure of the 1-loop corrections. A full proof to all
orders in perturbation theory is still lacking but in this appendix we test it for the remaining
propagators.

C.1 Corrections to Gdif,ave

The only diagram that contributes to this is:

t1 t t2

p p

k

(C.1)

Via a straightforward evaluation of this diagram and expanding the tree-level propagator
in a similar manner to (4.6) we get:

G1-loop
dif,ave(p, t1, t2) =−

λIβ + 4δm2

8E3
p

Θ(t2 − t1)
�

Ep(t2 − t1) cos
�

Ep(t1 − t2)
�

+

+ sin
�

Ep(t1 − t2)
�

�

(C.2)

which has the required structure.
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C.2 Corrections to Gave,E

In this case we get two diagrams:

t1 τ τ2

p p

k

t1 t τ2

p p

k

(C.3)

It is not immediately obvious that what we get via direct computation of the diagrams and
the expansion of the propagator match. However, after some tedious trigonometric simplica-
tions one finds

G1-loop
ave,E (p, t1,τ2) =

λIβ + 4δm2

32E3
p

csch

�

Epβ

2

��

2i cos
�

Ep

�

t1 − t0 + iτ2 −
iβ
2

��

+

+ iEpβ cos
�

Ep

�

t1 − t0 + iτ2 −
iβ
2

��

coth

�

Epβ

2

�

+

+ 2
�

it1 − it0 +
β

2
−τ2

�

sin
�

Ep

�

t1 − t0 + iτ2 −
iβ
2

��

�

(C.4)

Which has the expected structure. It is worth noting that this diagram seems to have
genuine secular behaviour, however, it does not by itself correspond to a physical observable
therefore this is of no major concern. Calculating this and the next diagram is useful merely
as a way to organise the perturbative expansion.

C.3 Corrections to GE,E

There is only one diagram to consider:

τ1 τ τ2

p p

k

(C.5)

Once more it is not entirely trivial to manipulate the trigonometric expressions, nonethe-
less, the final answer is:

G1-loop
E,E (p,τ1,τ2) =i

λIβ + 4δm2

32E3
p

csch

�

Epβ

2

��

Ep(β − 2|τ1 −τ2|) sinh
�

Ep

�

|τ1 −τ2| −
β

2

��

+

+ cosh
�

Ep

�

|τ1 −τ2| −
β

2

��

�

2+ βEp coth

�

Epβ

2

���

(C.6)

All the above comments apply: the divergence structure is what we desire and despite not
being physical it is still useful in perturbation theory.
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