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We discuss an interferometric scheme employing interference of bright solitons formed as specific bound
states of attracting bosons on a lattice. We revisit the proposal of Castin and Weiss [Phys. Rev. Lett. vol.
102, 010403 (2009)] for using the scattering of a quantum matter-wave soliton on a barrier in order to create a
coherent superposition state of the soliton being entirely to the left of the barrier and being entirely to the right
of the barrier. In that proposal, it was assumed that the scattering is perfectly elastic, i.e. that the center-of-mass
kinetic energy of the soliton is lower than the chemical potential of the soliton. Here we relax this assumption:
By employing a combination of Bethe ansatz and DMRG-based analysis of the dynamics of the appropriate
many-body system, we find that the interferometric fringes persist even when the center-of-mass kinetic energy
of the soliton is above the energy needed for its complete dissociation into constituent atoms.

I. INTRODUCTION

Bright-soliton interferometry working in the quantum
regime has the potential to achieve quantum advantage with an
improvement of a device’s sensitivity of a factor of a hundred
with respect to the standard matter-wave solutions [1]. This
idea can be technologically relevant for high-precision force
and rotation sensing [1] and measurement of small magnetic-
field gradients [2]. At the same time, at more fundamen-
tal level, bright solitons separated through beam-splitters are
predicted to provide an important route for the creation of
macroscopic superposition states [3–6]. Atomtronic devices
featuring soliton interferometry were theoretically considered
in Refs. [7–9] (see [10, 11] for review and roadmap articles
of the atomtronic field). Narrow-barrier beam splitters were
studied in Ref. [12–14]. The effect of harmonic confinement
on the internal degrees of freedom of a quantum soliton was
investigated in [15]. For the splitting process, our major inspi-
ration comes from the work of Castin and Weiss [6, 16]. In
their proposal, a bright soliton is scattered off by a Gaussian
barrier that is much wider than the soliton width (which was
the typical experimental situation at that time). This way, af-
ter the scattering, the soliton is in a coherent superposition of
being entirely to the left of the barrier and being entirely to the
right of the barrier. In such a process, the bright soliton is in a
regime where, to an excellent approximation, its behavior can
be described as that of an effective point-particle whose mass
is that of the whole soliton, and whose position and velocity
are those of the center-of-mass (CoM) of the soliton. Follow-
ing Castin and Weiss, the quantum nature of the problem can
be taken into account by assuming that the particle experience
an effective barrier potential given by the convolution of the
actual barrier potential with the soliton density profile [17, 18]
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(see also our Eq. 5 below). Such scheme works well be-
cause the CoM velocity of the incoming soliton is kept so low
that the soliton’s CoM kinetic energy is lower than its chem-
ical potential. This ensures that the soliton is energetically
protected from breaking into fragments during the collision.
Such process, that wewill denote ’ionization’, is perfectly elas-
tic. In such elastic scattering, the incoming effective particle
is quasi-monochromatic: its wavepacket contains a spread of
velocities, but the width of the spread is much smaller than
the mean incoming velocity of the wavepacket. The quantum
transmission probability as a function of the incoming velocity
of a strictly monochromatic particle is almost a step function
(it would be a perfect step-function of the velocity if all the pro-
cess was entirely classical): as the incoming velocity increases
from below the classical threshold to above it, the transmission
probability changes from zero to one, and it does this over a
velocity interval (the step width) that is narrow compared to
the width of the velocity spread of the wave packet. Under
such conditions, the scattering process behaves like classical
filtering in Fourier space: to an excellent approximation, the
Fourier components that are below the classical threshold are
completely reflected and those above it are completely trans-
mitted. Supposing that the velocity spread of the incoming
particle includes the classical threshold velocity, the effective
particle—and thus the soliton itself—will split coherently into
a part that is completely reflected and a part that is completely
transmitted. If the mean incoming velocity of the effective
particle is exactly at the classical velocity threshold, then the
split is 50%–50%.

We should note that scattering of bright solitons on barri-
ers such that the soliton is typically either wholly transmitted
or wholly reflected was experimentally realized and studied
in [19]. The authors say that their solitons are too large to
form mesoscopic quantum superpositions in the process, but
note that such superpositions should be observable for smaller
numbers of atoms.
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In the present paper, we will work out a specific complete
interferometry cycle in which a bright soliton is split on a suit-
able barrier and then recombined in a harmonic trap. We relax
the assumption of perfectly elastic scattering, and the CoM
kinetic energy is allowed to be above the ionization threshold.
Relying on the recent remarkable progress of light sculpting
techniques[20–22], we can make a realistic beam splitter as-
sumption in which the scattering potential can be tightly con-
fined on the spatial length scale of the soliton width[14]. We
need to be able to detect the degree of coherence between the
reflected and transmitted part of the soliton. For this purpose,
we use the coherent splitting described above to construct an
interferometer that is sensitive to the presence of an external
constant field. The quality of the interferometric fringes is our
measure of coherence.
To capture the physics of continuous systems, our numerical

analysis is based on DMRG dynamics of lattice bosons in the
dilute limit of small filling fractions [23]. Therefore, we are
enforced to consider large systems making the DMRG analysis
particularly challenging.
Our main result is that, remarkably, the interferometric

fringes persist even if the soliton CoM kinetic energy is high
enough that it would be energetically allowed for the soliton
to break into fragments upon impact with the barrier. Our
model is also of experimental relevance as similar schemes
have been investigated, albeit they worked in the large particle-
number regime and attractive barriers [13]. Finally, we also
demonstrate the quantum advantage by considering the quan-
tum Fisher information after splitting, which shows the quan-
tum character of the interferometric scheme.

II. DESCRIPTION OF THE MODEL SYSTEM

We consider a gas of attracting one-dimensional bosons
subjected to various types of external potentials, some of them
time-dependent, as required by the interferometric protocol.
Our analysis involves both a continuummodel employed for the
analytical estimates and a lattice model used in the numerical
simulations.
We describe 𝑁 one dimensional bosons of mass 𝑚 and

subjected to attractive contact interactions of strength 𝑔 < 0
by the Hamiltonian

Ĥ (𝜔, �̃�, 𝑥0, 𝐹) =
∫ ∞
−∞𝑑𝑥

{
Ψ̂†

[
− ℏ2

2𝑚𝜕
2
𝑥 + �̃� 𝛿(𝑥)

+𝑚𝜔
2 (𝑥−𝑥0)2

2

]
Ψ̂ + 𝑔

2 Ψ̂
†Ψ̂†Ψ̂Ψ̂ + Ψ̂†𝐹𝑥Ψ̂

}
, (1)

where Ψ̂ and Ψ̂† are bosonic annihilation and creation field
operators operators satisfying [Ψ̂(𝑥), Ψ̂† (𝑦)] = 𝛿(𝑥 − 𝑦). The
case Ĥ (0, 0, 0, 0) defines the Bose-gas integrable field theory
that is governed by the Lieb-Liniger Hamiltonian [24, 25].
The beam-splitting barrier strength is given by �̃�; 𝜔 is the fre-
quency of the harmonic potential that is either used to form
the interferometer arms (𝜔mirror) or for the initial preparation
(𝜔preparation), and 𝐹 is a constant force acting on the interfer-
ometer, i.e. the “phase object” of the interferometer. The
particle number operator is �̂� ≡

∫
𝑑𝑥 Ψ̂†Ψ̂. The initial state

is chosen as the ground state of Ĥ (𝜔preparation, 0, 𝑥0, 0); where
𝑥0 is the center of a shifted harmonic potential. Note that the
preparation Hamiltonian includes no barrier and no force.
Continuous models can be obtained as lattice systems in the

dilute limit [23, 26–28] - see also the appendix. The lattice
Hamiltonian leading to Eq. (1) is

Ĥlattice (𝜅,𝑊, 𝐿0, 𝐹lattice) = −𝐽
𝐿∑︁
𝑗=1

(�̂�†
𝑗
�̂� 𝑗+1+h.c.)

+𝑈
2

𝐿∑︁
𝑗=1
�̂� 𝑗 (�̂� 𝑗−1) +𝑊�̂� 𝑗center +

𝐿∑︁
𝑗=1

𝜅( 𝑗 − ( 𝑗center − 𝐿0))2 �̂� 𝑗

+
𝐿∑︁
𝑗=1

( 𝑗 − 𝑗center) 𝐹lattice �̂� 𝑗 . (2)

where 𝐹lattice = 𝐹𝑑 with 𝐹 the continuum one and 𝜅 the spring
constant for the harmonic potential on the lattice, with 𝜅mirror
being used as the spring constant of the arms of the interfer-
ometer and 𝜅preparation for the preparation stage. Here, �̂� 𝑗 and
�̂�
†
𝑗
are bosonic creation and annihilation operators satisfying

[�̂�
𝑗
, �̂�

†
𝑘
] = 𝛿 𝑗𝑘 , and �̂� 𝑗 ≡ �̂�†𝑗 �̂� 𝑗 . Furthermore, 𝐽 is the hopping

amplitude, 𝑈 is the onsite interaction constant, and 𝑊 is the
barrier strength. We impose periodic boundary conditions, i.e.
we denote �̂�

𝐿+1 ≡ �̂�1. We will be working in a sector with a
fixed number of particles,i.e. we fix the value of ⟨�̂�⟩, where
the number operator is given by �̂� ≡ ∑𝐿

𝑗=1 �̂� 𝑗 . We assume that
number of sites 𝐿 is odd. The central point of the lattice is
given by 𝑗center ≡ 𝐿+1

2 . The length 𝑑 is the distance between
neighboring lattice sites. Similarly to the continuous case, the
initial state is the ground state of the following Hamiltonian,
Ĥlattice (𝜅preparation, 0, 𝐿0, 0): Note that the spring constant is
different in the initial state 𝜅preparation and the trapping poten-
tial is offset to the left from the center by 𝐿0 = int[𝑥0/𝑑] lattice
sites. In the following, the analytical calculations will be car-
ried out for the continuous theory Eq. (1). The lattice effects
are considered through DMRG of the Hamiltonian Eq. (2).

III. INTERFEROMETRIC CYCLE WITH A UNIFORM
FIELD AS A PHASE OBJECT

In figure 1 we show a complete interferometric cycle. The
atoms are prepared in the solitonic ground state of a harmonic
oscillator of frequency 𝜔preparation centered in −𝐿0. At 𝑡 = 0,
the preparation confinement is released and the soliton hits the
barrier at at 𝑡 = 𝑇/4, being 𝑇 ≡ 2𝜋/𝜔mirror. Since the barrier
is tuned to a 50%–50% splitting, after the collision we end
up with an even superposition of half atoms in the left and
half atoms in right. At 𝑡 = 3𝑇/4, both wavepackets return to
the barrier, where they interfere. We will be interested in the
probability of finding the soliton to (say) the left of the barrier.
This probability will be sensitive to the presence of a phase
object, which will be represented by a uniform force field of
intensity 𝐹. We provide here the main details of the regime of
interest for the interferometric protocol. First of all, we work
in the regime of weak coupling, ensured by the conditions
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FIG. 1. Scheme of the complete interferometric cycle considered
in this work. A soliton is prepared at 𝑡 = 0 with an additional
harmonic trap centered at 𝑗 = −𝐿0. The soliton is then released,
making it move to the center of the system and collide with the
barrier at 𝑡 = 𝑇/4. A superposition of the soliton being reflected and
transmitted is here created. After the splitting a different phase is
imprinted in both branches. The cycle then finishes at 𝑡 = 3𝑇/4when
the two matterwaves interfere.

|𝑈 | ≪ 2𝜋2𝐽 and 𝑊 ≪ 𝜋2𝐽 . In such a case there is no
need for lattice renormalization, either for the interactions or
for the barrier. Furthermore, we choose the parameters in
order to ensure that the continuum model applies. This is the
case when the healing length

ℓ = 2
ℏ2

𝑚 |𝑔 |𝑁 =
𝑎

𝑁
(3)

satisfies ℓ ≫ 𝑑. This corresponds to |𝑈 |𝑁 ≪ 4𝐽 . In the
following subsections, we identify all the remaining conditions
on the parameters required in each step of the interferometric
protocol.

A. Preparation

The initial soliton will be prepared so that its center of mass
(CoM) is in the ground state of a “preparation” harmonic trap,
of frequency 𝜔preparation. Consider the mean kinetic energy of
the soliton,

𝐸kinetic, CoM =
1
2
𝑀V̄2, (4)

where 𝑀 = 𝑁𝑚 is the soliton mass and V̄ is the mean CoM
velocity. Also consider the uncertainty in this kinetic energy

𝛿𝐸kinetic, CoM ≈ 𝑀V̄𝛿V , where 𝛿V =

√︂
ℏ𝜔preparation

2𝑀
is the

preparation r.m.s. velocity. We will work in the case where the
uncertainty in the kinetic energy is finite, but small relative to
the mean kinetic energy. It then follows that the preparation
r.m.s. velocity is small relative to the mean CoM velocity:

𝛿𝐸kinetic, CoM ≪ 𝐸kinetic, CoM ⇒ 𝛿V ≪ V̄ .

B. Beam-splitting

The interferometric scheme is based on the splitting of the
initial soliton into two copies by means of an atomic beam
splitter made by the barrier potential. The condition for a
50%–50% classical filtering as quantum beam-splitting reads
[6, 16]

𝐸kinetic, CoM = max
𝑋
𝑉soliton-on-barrier (𝑋) ,

where 𝑋 is the CoM position. Note that when the number
of atoms 𝑁 is large, the right-hand side is given by Eq. (B2),
below. The effective potential 𝑉soliton-on-barrier (𝑋) is defined
[6] by the convolution of the barrier profile with the soliton
density for a center of mass position localized at 𝑥 = 0, 𝜌(𝑥 |0),
according to

𝑉soliton-on-barrier (𝑋) =
∫

𝑑𝑥𝑉𝑏𝑎𝑟𝑟𝑖𝑒𝑟 (𝑥 − 𝑋)𝜌(𝑥 |0). (5)

The latter is known exactly from Bethe Ansatz (we refer the
reader to Ref. [18] for a clear derivation). The original result
is in Ref. [29].

C. Mirrors and recombination

Wewill be using another harmonic trap of frequency𝜔mirror
as a “mirror” on each end, to ensure the return of the wavepack-
ets for recombination. The trap frequency and the initial po-
sition of the CoM wavepacket, −𝐿0, will conspire to produce
the incident energy we need:

𝑀𝜔2
mirror (𝐿0)2

2
= max

𝑋
𝑉soliton-on-barrier (𝑋) , (6)

where, again, if the number of atoms 𝑁 is large, the right-hand
side is given by Eq. (B2).

D. The prediction for the fringes, assuming an elastic
scattering of the CoM off the barrier.

In the absence of inelastic effects, for a spatially even beam-
splitter, the signal will behave as

Probleft (𝐹) = sin2
(

2𝑁𝐹𝐿0
ℏ𝜔mirror

)
; (7)

we will derive this in the next subsection. Notice the “quan-
tum advantage factor” 𝑁 appearing in the argument of the sine
function. Due to velocity filtering, there appears a difference
between the kinetic energies of the reflected (left) and trans-
mitted (right) wavepackets. However, this does not introduce
any phase shift on recombination.
In the following, we will derive Eq. (7) in the assumption of

no inelastic effects. As in Ref.[6], we assume that sufficiently
far from the barrier the CoM wavefunction is accurately de-
scribed by an effective one-body Schroedinger equation. Let
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us first define the phase 𝜙right as the total phase accumulated
by the right wavepacket of the CoM wavefunction between
the beam-splitting and recombination. It will not include the
phase acquired in course of the beamsplitting process itself.
The phase 𝜙right can be decomposed as

𝜙right = 𝜙
(0)
right + 𝛿𝜙right . (8)

Here 𝜙 (0)
right is the phase that would be accumulated if the “phase

object” were not present, and 𝛿𝜙right is the contribution from
the “phase object.” Analogously, we introduce

𝜙left = 𝜙
(0)
left + 𝛿𝜙left . (9)

1. The signal for a given phase difference 𝜙right − 𝜙left

For our interferometer, the signal will be defined as the
probability of finding the soliton to the left from the barrier
after the recombination. Assuming elastic scattering and no
external potential besides the barrier, i.e. neglecting here the
effect of the mirror trapping potential, the scattering solution
𝜓CoM ( �̄�) for the CoM wave function takes asymptotically the
form

𝜓CoM ( �̄�) =
{
𝑒+𝑖�̄� �̄� + 𝑟𝑒−𝑖𝑘�̄� for �̄� → −∞

𝑡𝑒+𝑖�̄� �̄� for �̄� → +∞ ,

where 𝑟 and 𝑡 are respectively the reflection and transmission
coefficients.
It is easy to show that, after the beam-splitting and recom-

bination, the signal has the form

Probleft = |𝑟2𝑒𝑖𝜙left + 𝑡2𝑒𝑖𝜙right |2 .

From the conservation of matter, we have |𝑟 |2 + |𝑡 |2 = 1,
so that, a priori, the family of possible values for 𝑟 and 𝑡 is
parametrized by three real numbers. But if the scatterer used
for both beam-splitting and recombination is spatially even,
then 𝑟 and 𝑡 are more constrained and their possible values
form a family parametrized by two real numbers, 𝜂e and 𝜂o
(see, e.g. [30]). Here ‘e’ stands for even and ‘o’ for odd waves.
This parametrization is as follows:

𝑟 = 𝑓e − 𝑓o

𝑡 = 1 + 𝑓e + 𝑓o ,

where

𝑓e,o = − 1
1 + 𝑖𝜂e,o

are the scattering amplitudes for the even and odd waves. The
signal now reads

Probleft =
1(

𝜂2
e + 1

)2 (
𝜂2
o + 1

)2

×
{
− 2(𝜂e𝜂o + 1)2 (𝜂e − 𝜂o)2 cos

(
𝜙right − 𝜙left

)
+ (𝜂e − 𝜂o)4 + (𝜂e𝜂o + 1)4

}
.

Wenext require that the scatterer be a 50%–50%beam-splitter:

|𝑡 |2 = |𝑟 |2 =
1
2
.

There are two disjoint one-parametric families of 𝑟 and 𝑡 that
have this property, and both can be parametrized by 𝜂e:

𝜂o = − 𝜂e + 1
𝜂e − 1

and 𝜂o = +𝜂e − 1
𝜂e + 1

.

For both families, 𝜂e can be any real number except 1 for the
first family and −1 for the second. While the magnitudes of
𝑟 and 𝑡 are now fixed to 1/2, their phases will depend on the
choice of family and the choice of the value of 𝜂e. Nonethe-
less, unexpectedly and inexplicably (in the sense that we don’t
know of any a priori reason why the mathematics had to work
out this way), in an interferometer featuring a 50%–50%beam-
splitter and a 50%–50% recombiner, the produced signal obeys
a universal formula that depends only on the phases accumu-
lated between beam-splitting and recombination (and not on
the phases of 𝑟 and 𝑡, i.e. neither on the choice of the family
nor on the choice of 𝜂e):

Probleft = sin2
(
𝜙right − 𝜙left

2

)
. (10)

To reiterate, this formula applies to any spatially even scatterer,
which must be the same for both beam-splitting and recombi-
nation.

2. The vanishing of the unperturbed phase shift, 𝜙 (0)right − 𝜙
(0)
left

First, let us discuss the effect of the velocity filtering. There
will be a difference in kinetic energies between the slow part of
the incident wavepacket that gets reflected (left interferometer
arm) by the barrier and the fast component that is transmitted
(right interferometer arm). A priori, this difference is expected
to introduce a phase shift between the arms on recombination.
This phase shift will depend on both the width and the shape
of the velocity distribution of the incident wavepacket. More-
over, since the “slow” and the “fast” trajectories arriving at
the recombiner at the same time would have left the beam-
spitter at two different instances of time, our interferometer
would require a degree of spatio-temporal coherence. Notice,
however, that for an interferometer formed by a harmonic po-
tential, the latter effect disappears. This is not a coincidence,
but an indication that in a harmonic interferometer, velocity
filtering does not introduce any additional left-right arm phase
shift at all. This is indeed the case and can be proven in three
ways: (a) quantum-mechanically, (b) semi-classically, using
an explicit calculation, and (c) semi-classically, using a varia-
tional principle, for small energy differences between the arms
only. Moreover, each of the two phases, 𝜙 (0)

left and 𝜙
(0)
right, vanish

separately.

(a) In a harmonic potential, any initial state 𝜓(𝑥, 𝑡=0)
gets transformed, after a half-period, to a state
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𝜓 (𝑥, 𝑡=𝜋/𝜔mirror) = −𝑖𝜓(−𝑥, 𝑡=0), i.e. to a mirror im-
age of the initial state. No energy-dependent effects are
present.

(b) Semi-classically, the phase acquired by the right
wavepacket between beam-splitting and recombination
will be given by the classical action:

𝜙
(0)
right = 𝑆

(0)
right/ℏ

=
1
ℏ

∫ 𝑡REC=𝑡BS+𝑇/2

𝑡BS
𝑑𝑡 L( �̄� (0)

right (𝑡), V̄
(0)
right (𝑡))

=
1
ℏ

∫ 𝑡REC=𝑡BS+𝑇/2

𝑡BS
𝑑𝑡

{
1
2
𝑀V̄2

0 cos2 (𝜔mirror𝑡)

−1
2
𝑚𝜔2

mirror (V̄0/𝜔mirror)2 sin2 (𝜔mirror𝑡)
}

=
1
ℏ

𝐸right

𝜔mirror

∫ 𝑡BS/𝜔mirror+𝜋

𝑡BS/𝜔mirror
𝑑𝜉

{
cos2 (𝜉) − sin2 (𝜉)

}
= 0 ,

where L( �̄�, V̄) ≡ 𝑀V̄2/2−𝑀𝜔2
mirror �̄�

2/2 is the clas-
sical Lagrangian for the CoM motion,

�̄�
(0)
right (𝑡) = (V̄0/𝜔mirror) sin(𝜔mirror𝑡)

and

V̄ (0)
right (𝑡) = V̄0 cos(𝜔mirror𝑡)

are the unperturbed CoM trajectory and the correspond-
ing velocity dependence in the right arm, and 𝑀 ≡ 𝑚𝑁
is the soliton mass. Further,

V̄0 = 𝐿0𝜔mirror

is the velocity of the wavepacket on the beamsplitter,
𝐸right = 𝑀V̄2

0 /2 is its energy, and 𝑡BS and 𝑡REC are the
beamsplitting and recombination time instances. As one
can see, the action vanishes identically for any energy
of the wavepacket. This derivation can be repeated
verbatim for the left interferometer arm. This proof
shows that 𝜙 (0)

left = 0 and 𝜙 (0)
right = 0 separately.

(c) Finally, the absence of the energy dependence of the
phase accumulated between the beamsplitting and re-
combination can be proven variationally, within the
semiclassical approximation, for small energy varia-
tions. Notice, again, that the slow (left) and the fast
(right) wavepackets share the initial and the final points
of their trajectories, in both space and time. If the energy
difference between the trajectories is small, then one of
them can be considered a small variation of the other,
with fixed space-time end-points. Since the latter tra-
jectory obeys laws of classical mechanics, it must obey
principle of least action. Thus, the difference between
the two actions (hence between the two quantum phases,
in the semi-classical approximation) must vanish to lin-
ear order in the amplitude of trajectory variation.

To sum up, we have just showed that

𝜙
(0)
right − 𝜙

(0)
left = 0 . (11)

This property is specific for an interferometric cycle driven by
a harmonic potential. Since the right-left energy disparity is
conjectured to be unavoidable in interferometry with massive
objects [6, 16], a harmonic control of the interferometer arms
may provide a remedy for a possible dependence of the fringe
position on the energy and shape of the wavepacket.

3. An explicit calculation of the fringe shift due to a uniform field

Finally, we turn to the phase shift accumulated due to the
“phase object.” Let us compute the phase shift induced by
the uniform field 𝐹𝑥 on, for example, the right arm of the
interferometer. Note that the potential energy correction 𝐹𝑥
refers to a single atom. For the CoM, the energy correction
and the resulting quantum phase correction accumulatedmust
both be multiplied by the number of atoms 𝑁 . The resulting
correction to the CoM Lagrangian becomes

𝛿L( �̄�, V̄) = −𝑁𝐹�̄� .

This amplification, combined with a suppression (which is
much harder to achieve) of decoherence of the CoMmotion to
other degrees of freedom, paves the way to quantum advantage
in particle interferometry.
Using the principle of the least action, one can easily show

(see, e.g. Ref. [31]) that a correction to the arm trajectory in-
troduced by a correction to the Lagrangian does not contribute
to a correction to the action, in the first order in 𝛿L. Thus,

𝛿𝜙right = 𝛿𝑆right/ℏ

=
1
ℏ

∫ 𝑡REC=𝑡BS+𝑇/2

𝑡BS
𝑑𝑡 𝛿L( �̄�right (𝑡), V̄right (𝑡))

=
1
ℏ

∫ 𝑡REC=𝑡BS+𝑇/2

𝑡BS
𝑑𝑡 (−𝑁𝐹𝐿0) sin(𝜔mirror𝑡)

= − 𝑁𝐹𝐿0
ℏ𝜔mirror

∫ 𝑡BS/𝜔mirror+𝜋

𝑡BS/𝜔mirror
𝑑𝜉 sin(𝜉)

= − 2𝑁𝐹𝐿0
ℏ𝜔mirror

.

An analogous computation for the left arm gives

𝛿𝜙left = + 2𝑁𝐹𝐿0
ℏ𝜔mirror

.

Putting the two contributions together, we get

𝛿𝜙right − 𝛿𝜙left = − 4𝑁𝐹𝐿0
ℏ𝜔mirror

. (12)

Combining our results in Eqs. (8) to (12), we finally obtain
Eq. (7).
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IV. NUMERICAL SIMULATIONS

Below, we will investigate the effects that soliton ‘ioniza-
tion’ has on the interference fringes of a solitonic quantum
matter-wave interferometer. In particular, we consider the
cases where ionization is energetically allowed (i.e. how large
is the CoM kinetic energy of the soliton, Eq. (4), as com-
pared with the interaction effects) affects the degradation of
interference fringes from their idealized behavior in Eq. (7).
The full internal energy of the soliton, in the continuous limit

(C.L.) and relying on Bethe ansatz perfect string solution, is
given by

𝐸
(𝑁 )
S, interaction

C. L.
= − (𝑁 + 1)𝑁 (𝑁 − 1)

24
𝑚𝑔2

ℏ2 . (13)

The gap to the first excitation is

𝐸
(𝑁−1)
S, interaction − 𝐸

(𝑁 )
S, interaction

C. L.
=

𝑁 (𝑁 − 1)
8

𝑚𝑔2

ℏ2 ;

the gap to the first two-atom excitation is

𝐸
(𝑁−2)
S, interaction − 𝐸

(𝑁 )
S, interaction

C. L.
=

(𝑁 − 1)2

4
𝑚𝑔2

ℏ2 .;

the gap to the first three-atom excitation is

𝐸
(𝑁−3)
S, interaction − 𝐸

(𝑁 )
S, interaction

C. L.
=

3𝑁2 − 9𝑁 + 8
8

𝑚𝑔2

ℏ2 ;

and the gap to a complete ‘ionization’ is

0 − 𝐸 (𝑁 )
S, interaction

C. L.
=

(𝑁 + 1)𝑁 (𝑁 − 1)
24

𝑚𝑔2

ℏ2 .

We will be studying how the stability of the CoM inter-
ferometric signal depends on the potential for ionization [32].
Note the following: (a) Refs. [6] and [16] conjecture that being
below the single-atom ionization threshold is a prerequisite for
a coherence between the transmitted and reflected parts of the
CoM wavepacket; (b) Ref. [4] indicates that such coherence is
preserved even above the six-atom ionization threshold, in a
100-atom soliton.
Thus, the ionization threshold is

𝐸kinetic, CoM > 𝐸
(𝑁−1)
S, interaction − 𝐸

(𝑁 )
S, interaction .

This works out to

𝐸kinetic, CoM >
𝑁 (𝑁 − 1)

8
𝑚𝑔2

ℏ2 . (14)

Meanwhile, the following gives the energy window in which a
one-atom ionization is allowed but already a two-atom one is
forbidden:

𝐸
(𝑁−2)
S, interaction − 𝐸

(𝑁 )
S, interaction ≥

𝐸kinetic, CoM > 𝐸
(𝑁−1)
S, interaction − 𝐸

(𝑁 )
S, interaction ,

which works out to

(𝑁 − 1)2

4
𝑚𝑔2

ℏ2 ≥ 𝐸kinetic, CoM >
𝑁 (𝑁 − 1)

8
𝑚𝑔2

ℏ2 . (15)

The ratio of the CoM kinetic energy to the ionization thresh-
olds can be tuned by adjusting one or more of 𝜅mirror,𝑈, and𝑊 .
Once the parameters that determine this ratio are set, we com-
pute Probleft (in fact, simply the number of atoms 𝑁L detected
to the left of the barrier, since Probleft = 𝑁L/𝑁) for various
values of 𝐹. This produces a curve like that in Fig. 2, featuring
interference fringes. We will present two such curves, corre-
sponding to two different ratios of the CoM kinetic energy to
the ionization threshold.
We work in a system of units in which 𝑑 = 𝐽 = ℏ = 1 .

In all the runs that we will present, the number of atoms is
𝑁 = 6, the number of lattice sites is 𝐿 = 29, and the initial
offset is 𝐿0 = 7. In principle, the condition in Eq. (6) links
the values of 𝜅preparation,𝑈,𝑊 , so that only two of them can be
chosen independently. However, after some experimentation,
we found that best fringes are obtained if this condition is
slightly violated. We ended up varying just the value of 𝑈
while keeping preparation frequency 𝜔preparation = 0.0075
and the barrier strength𝑊 = 0.24. Furthermore, we also kept
𝜔mirror = 0.06.
Under these conditions, we can vary the ratio of the CoM

kinetic energy to the ionization thresholds by varying 𝑈. For
each choice of 𝑈, need to produce a curve of Probleft versus
𝐹. We do this by numerically simulating, using DMRG, the
complete interferometric cycle from Fig. 1, at quantum many-
body level. We compute the number of atoms 𝑁L detected to
the left of the barrier at the end of the cycle.
Having obtained a numerical curve of 𝑁L versus 𝐹, we

compare it to the idealized result in Eq. (7) by fitting the
numerical curve to the following function:

𝑦(𝐹) = 𝑎1 + 𝑎2𝐹 + 𝑎3
[
cos2 (𝜔fit𝐹)

]
. (16)

There are 4 fitting parameters accounting for the (𝑎1, 𝑎2, 𝑎3
and 𝜔fit,), but we are only interested in 𝜔fit. According to
Eq. (7), 𝜔fit should be correspond to 2𝑁𝐿0

ℏ𝜔mirror
, which works out

to 990 for our chosen values of parameters. All the other fitting
parameters are merely ‘empirical’, introduced to account for
deviations from the idealized behavior in Eq. (7).

V. RESULTS

A. Interferometric signal

The analytical predictions (7), strictly valid only in the con-
tinuum limit, show that for 𝑈/𝐽 = −0.3 and 𝑁 = 6 the soliton
should disintegrate onto six individual atoms, leading to a sig-
nificant suppression of fringes. Increasing the interparticle
attractions to 𝑈/𝐽 = −0.4 brings us slightly above the double
ionization: the system has enough energy to extract two atoms
from the soliton, but not more. In this second case, some part
of the system’s coherence is preserved and the suppression of
fringes is expected to be less strong than for the previous case.
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FIG. 2. Interference fringes for (a) 𝑈/𝐽 = −0.3 and (b) 𝑈/𝐽 = −0.4 with 𝑁 = 6 and 𝐿 = 29. In (a) the CoM kinetic energy is sufficiently
high that total ionization is energetically allowed, while in (b) only two-particle ionization is energetically allowed. Insets show the full time
evolution of the interferometric cycle at a force 𝐹lattice/𝐽 = 0.

Our main result, presented in Figs. 2, shows that the interfero-
metric signal still exists evenwhen a complete disintegration of
the soliton onto six individual atoms is energetically allowed.

Insets in Figs. 2 (a) and (b) displays a density plot of the
time evolved density distribution of the particles for a chosen
set of parameters: 𝐹 = 0, 𝑁 = 6 and 𝑈 = −0.3 and 𝑈 = −0.4
respectively. In the plot is evident how the initial solitonic
wavepacket splits and recombines when interacting with the
potential barrier. We note that such interferometric sequence
does not fully follow the idealized scenario described by the
continuum model. A possible cause could come from a com-
bination of effects related to lattice effects introduced in the
discretization used in DMRG. One of the most clear differ-
ences between the continuum and lattice descriptions is the
self-trapping behaviour of the wavepacket close to the barrier
potential. This phenomenon, that results in a loss of visibility,
has been previously reported [33–36].

Quite remarkably, even above the ionization threshold, in
Fig. 2(a) we still resolve the interference fringes of the split
solitons. A fitting procedure allows us to extract the oscillation
frequency, which is found of the order, but somewhat smaller
than the analytical estimate. Note that we only fit around small
values of the induced force, as other effects take over for larger
values; the main effect being the asymmetric splitting at the
first collision due to the force and a delay on the “meeting”
point of the split solitons.

Figures 2 and 3 show that the interferometric scheme pro-
posed here is robust against dissociation, and even when the
system is energetically allowed to dissociate all particles the
fluctuations show us that the state still presents a quantum
advantage. Nonetheless, we still need to take into account
that one key element is the visibility of the fringes, which are
reduced when interactions are smaller (see Fig. 2).

0

1

2

3

4

5

6

−0.005 0 0.005

Flattice/J = 0

N
le

ft

Flattice/J

U/J = −0.4
3.02 +−49.09x+ 0.93 cos(855.37Flattice/J)

2

Si
te

s

Time

FIG. 3. Interferometric fringes for 𝑁 = 5, 𝐿 = 41 and 𝐿0 = 10. CoM
kinetic energy is sufficiently high that total ionization is energetically
allowed. Other parameters are kept the same as in Fig. 2.

B. Quantum Fisher Information

Our interferometric protocol aims to create an optimal spa-
tial macroscopic superposition state

��𝜙opt〉, a superposition of
𝑁 particles on the left and 𝑁 particles on right of the barrier:��𝜙opt〉 ≡ ��𝜓𝑁0,0𝑁

〉
(17)

=
1
√

2
(|0⟩𝐿 |𝑁⟩𝑅 ± |𝑁⟩𝐿 |0⟩𝑅) (18)

The quality of the preparation of this type of state is captured
by the the fluctuations of the number of particles over half of
the system, defined as:

F (𝑁𝐿)opt = ⟨�̂�2
𝐿⟩ − ⟨�̂�𝐿⟩2 (19)

where �̂�𝐿 =
∑𝑖0
𝑖=1 �̂�𝑖 . For a pure state such quantity is equiv-

alent to the quantum fisher information and, through the
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Kramer-Rao bound [37], it gives us the sensitivity of the state
to an external applied force. For a NOON state of the form
(18), it reads:

F (𝑁𝐿)opt = ⟨�̂�2
𝐿⟩ − ⟨�̂�𝐿⟩2 (20)

=
1
2
𝑁2 −

(
𝑁

2

)2
=
𝑁2

4
(21)

with the expectation value taken over the state
��𝜙opt〉. For

an imperfect cat state these fluctuations are smaller, in the
limit of a product state |𝜙c⟩ = |𝑁/2⟩𝐿 |𝑁/2⟩𝑅 we would have
F (𝑁𝐿)c = 0. We will quantify the quality of the interfer-
ometric state |𝜙int⟩ we prepare at half of our interferometric
protocol, with the parameter 𝑓 :

𝑓 =
F (𝑁𝐿)int
𝑁2 (22)

where now the expectation value is taken over the state after
the splitting procedure |𝜙int⟩ = |𝜓(𝑡 = 𝑡int)⟩. If the prepared
state has a finite 𝑓 then the state is of metrological utility and
posses a quantum advantage over a classical state. We now
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<latexit sha1_base64="O8x5lHQhh3Z632ilq8FpDcz7i7s=">AAAB/XicbVDJSgNBEO2JW4zbuNy8NAbBU5yRoB6DgoinCGaBJISeTiVp0rPQXSPGYfBXvHhQxKv/4c2/sbMcNPFBweO9qu6q50VSaHScbyuzsLi0vJJdza2tb2xu2ds7VR3GikOFhzJUdY9pkCKACgqUUI8UMN+TUPMGlyO/dg9KizC4w2EELZ/1AtEVnKGR2vbeVTtpIjxgIhmi4JCmxzdtO+8UnDHoPHGnJE+mKLftr2Yn5LEPAXLJtG64ToSthCnzooQ014w1RIwPWA8ahgbMB91Kxtun9NAoHdoNlakA6Vj9PZEwX+uh75lOn2Ffz3oj8T+vEWP3vJWIIIoRAj75qBtLiiEdRUE7QgFHOTSEcSXMrpT3mWIcTWA5E4I7e/I8qZ4U3NNC8baYL11M48iSfXJAjohLzkiJXJMyqRBOHskzeSVv1pP1Yr1bH5PWjDWd2SV/YH3+APiClZE=</latexit>
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FIG. 4. Ratio 𝑓 as a function of applied force 𝐹lattice/𝐽 of both initial
state 𝜓0 and the prepared state 𝜙𝑖𝑛𝑡 . Parameters are set to 𝑁 = 5
(blue) and 𝑁 = 6 (red), 𝐿 = 41 and 𝐿0 = 10. Other parameters are
kept the same as in Fig. 2.

study in Fig. 4, the parameter 𝑓 as a function of the applied
force 𝐹lattice/𝐽 for the state generated at one fourth of the
full interferometric cycle, 𝑡 = 𝑡𝑖𝑛𝑡 = 𝑇/2. Despite explicitly
calculating this quantity in the regime where particles can be
dissociated we are still able to see fringes in Fig. 3 The large
value for the parameter 𝑓 obtained on a broad range of values
for the applied force is an indication of having reached the
quantum advantage regime.

VI. CONCLUSIONS

We simulated the matter-wave interferometer of the kind
originally proposed by Weiss and Castin [6, 16]. Unlike in
the original proposal, we considered situations where either

partial or complete disintegration of the soliton is energeti-
cally allowed. Our main result is that, surprisingly, the inter-
ferometric signal survives even when the soliton has enough
energy to completely disintegrate. Moreover, the analysis of
the quantum Fisher information reflects a quantum advantage
of our interferometric setup, even while being well above the
aforementioned dissociation threshold.
Our analysis opens the way to further investigations: while

our expectation was that the suppression of the interferomet-
ric fringes will depend in some simple way on the number
of atoms that the soliton is energetically allowed to lose, the
numerical simulations did not bear this out. The fringe dis-
tortion sequence is more complicated and seems to depend on
the structure of the final state.
Two experimental implementation notes are in order. (i)

In an experiment, the number of atoms in a soliton fluctu-
ates, leading to fringe degradation. For smaller solitons, a
post-selection of the solitons by mass can be sought. For
larger particles, one may contemplate using the culling meth-
ods [38]. (ii) While the interferometer accuracy will increase
with the soliton size (provided the soliton can still be cooled
to its ground vibrational state of the “preparation” trap), for
large enough solitons, their interaction energy may exceed the
transverse vibrational quantum in the waveguide, leading to a
collapse [39]. In a typical experiment involving bosonic soli-
tons of 7Li atoms [40], collapse occurs at the soliton sizes as
large as 𝑁 ∼ 104 [41].
Finally, in view of the applications, it would be useful to

maximize the visibility of the interference pattern at varying
the parameters and the conditions of the interferometric setup.
This could be realized e.g. by employing a machine-learning
scheme. In addition, in this analysis we limited our numerical
calculations to be in the dilute regime of the lattice, such that
we can rely on the exact solutions of the continuum. However,
we can also expect similar behavior in the pure lattice regime
[9], while some effect might vary due to the small coupling
between COM and relative degrees of freedom occurring in
the attractive BHM [42].
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Appendix A: Continuous vs lattice bosons

The effective one-body mass is given by

𝑚 =
1
2

ℏ2

𝐽𝑑2 ;

with 𝑑 being the lattice spacing. Next, let us introduce a
two-body scattering length 𝑎, which is the same in both the
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continuum and the lattice cases:

𝑎 = −
2𝑑𝐽rel.

𝐾=0
𝑈

(
1 − 1

𝜋2
𝑈

𝐽rel.
𝐾=0

)
.

Here, 𝐽rel.
𝐾

= 2𝐽 cos(𝐾𝑑/2) is the hopping amplitude of the
lattice on which the relative motion occurs [43]. For an expla-

nation of the lattice renormalization factor
(
1 − 1

𝜋2
𝑈

𝐽 rel.
𝐾=0

)
, see

Ref. [17].
The corresponding coupling constant is given in terms of

the scattering length in the usual way, from which we may
deduce its dependence on the parameters of the lattice model:

𝑔 = − ℏ2

(𝑚/2)𝑎 ≈ 𝑈𝑑 .

Note that it is not an accident that the lattice and continuum
models share the same scattering length. In fact, the effec-
tive continuum coupling 𝑔 is introduced in such a way that it
reproduces the lattice scattering length exactly.
In a similar manner, we introduce a scattering length for the

particle-barrier interaction,

�̃� = −2𝑑𝐽
𝑊

(
1 − 1

𝜋2
𝑊

𝐽

)
,

and the corresponding particle-barrier coupling constant:

�̃� = − ℏ2

𝑚�̃�
≈ 𝑊𝑑 .

The frequency of the “mirror” trapping potential satisfies
1
2𝑚𝜔

2
mirror𝑑

2 = 𝜅mirror, so that

𝜔mirror =
2
ℏ

√︁
𝜅mirror𝑑𝐽 .

Analogously, the “preparation” frequency is given by
𝜔preparation =

2
ℏ

√︁
𝜅preparation𝑑𝐽.

Appendix B: Calculation of 𝑉soliton-on-barrier (𝑋) for 𝑵 ≫ 1

If the number of atoms is large, the mean-field approxima-
tion simplifies the calculations.

The number-density distribution in a soliton is

𝑛(𝑥) = 1
2
𝑁

ℓ
sech2 (𝑥/ℓ) ,

where ℓ is the healing length, Eq. (3). The potential seen by
the CoM of the soliton scattered off a 𝛿-function barrier

𝑣barrier (𝑥) = �̃�𝛿(𝑥)

can be computed as

𝑉soliton-on-barrier
𝑁≫1≈

∫
𝑑𝑥 ′ 𝑛(𝑥 ′)𝑣barrier (𝑥 ′ + 𝑋) = �̃�𝑛(𝑋) ;

(B1)
see Refs. [6, 16]. This gives

max
𝑋
𝑉soliton-on-barrier (𝑋)

𝑁≫1≈ 1
4
𝑚 |𝑔 |�̃�𝑁2

ℏ2 . (B2)

The ionization threshold (14) and the single-atom ionization
window (15) respectively become

𝐸kinetic, CoM > 𝜇𝑁 , (B3)

and

2𝜇𝑁 ≥ 𝐸kinetic, CoM > 𝜇𝑁 , (B4)

where

𝜇𝑁 =
𝑁2

8
𝑚𝑔2

ℏ2 (B5)

is the chemical potential of an 𝑁-atom soliton, in the mean-
field limit. For the 6-atom solitons used in this work, exact
formulas must be used starting from about 3-atom excitations.
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