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Abstract

We obtain an exact matrix product steady state for a class of multi species
asymmetric simple exclusion process with impurities, under periodic boundary
condition. Alongside the usual hopping dynamics, an additional flip dynam-
ics is activated only in the presence of impurities. Although the microscopic
dynamics renders the system to be non-ergodic, exact analytical results for
observables are obtained in steady states for a specific class of initial config-
urations. Interesting physical features including negative differential mobility
and transition of correlations from negative to positive with changing vacancy
density, have been observed. We discuss plausible connections of this exactly
solvable model with multi lane asymmetric simple exclusion processes as well
as enzymatic chemical reactions.
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1 Introduction

Non-equilibrium stochastic processes are ubiquitous in nature, with wide range of appli-
cability in physics [1–3], chemistry [1], biology [4] and interdisciplinary areas [5–7]. In
fact, even in one dimension, several models of non-equilibrium statistical mechanics ex-
hibit surprisingly rich physical phenomena including phase transitions [8] along with the
important feature of analytical tractability [9]. The asymmetric simple exclusion pro-
cess (ASEP) [2, 10–12] is broadly regarded as a paradigmatic model for non-equilibrium
transport processes as diverse as traffic and pedestrian flow [13], mRNA translation by
ribosomes [14] and motor protein transport through single filaments [15,16] etc.

Apart from its extensive success in modeling numerous real-world phenomena, ASEP
and its variations have been instrumental in understanding the mathematical structures
and physical characteristics of generic non-equilibrium steady states and dynamics [2, 12,
17–20]. In particular, the exact steady states of the totally asymmetric simple exclusion
process (TASEP) [12,21] and the general ASEP [22] with open boundary conditions, have
been obtained using matrix product ansatz. Except for the infinite dimensional represen-
tations [21,22], interesting and especially useful finite dimensional matrix representations
have been achieved for corresponding quadratic algebra for certain conditions on the transi-
tion rates [23,24]. The matrix product ansatz has been extremely effective in deriving the
non-equilibrium steady states of several generalizations of ASEP including two species [25]
and multi-species processes [26], see Ref. [27] for a detailed review. In fact, the stationary
state for the multi species TASEP has been solved remarkably by a different method of
multiline queuing process [28], which is explored further in terms of combinatorial R in
crystal base theory [29]. Several two point and three point correlations have been studied
analytically in the multi species TASEP [30] and inhomogeneous multi species TASEP
with species dependent rates have been analyzed [31, 32]. The multi species ASEP has
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also been investigated with integrable open boundary conditions [33] and matrix product
solutions are found [34]. Due to the connection of TASEP to integrable spin chains [35],
the algebraic Bethe Ansatz has been applied to study the dynamics of TASEP [36] and
ASEP [37] with open boundaries. Interestingly, ASEP belongs to Kardar-Parisi-Zhang
universality class [38] with dynamic exponent 3

2 [39, 40]. With the aid of Monte Carlo
simulations and several improved versions of mean-field theories, TASEP has also been
generalized to non-conserved dynamics [41], two-lane [42–44] and multi-lane [45–48] mod-
els relating to traffic flow and complex networks [49].

It is quite natural to expect the presence of multiple species of particles with a variety
of microscopic dynamics in a system in general. Often due to the distinction between the
dynamics of different species, some species are referred to as impurities and give rise to
fascinating physical and mathematical structures. For example, the presence of a single
impurity which hops with a different rate and allows overtaking of ordinary particles in
the TASEP on a periodic lattice, leads to a matrix product steady state with six distinct
phases including the creation of a shock in one of the phases [50]. This impurity model
has been generalized by considering bidirectional asymmetric hopping of the ordinary
particles [51] which allows for finite dimensional matrix representations in certain regions of
the parameter space, in comparison to the infinite dimensional representation in Ref. [50].
A phase transition arising from the motion of the single impurity in the direction opposite
to the ordinary particles has also been observed [52]. The long time limit behavior of
the TASEP with a single impurity has been solved using the Bethe Ansatz [53] and the
diffusion constant of the impurity has been calculated from both the Bethe Ansatz [53] and
the matrix product ansatz [54]. Remarkably, a disordered ASEP with species dependent
hop rates, has been shown to exhibit Bose-Einstein condensation [55]. A variation of
the ASEP with ordinary particles and many impurities has been considered in Ref. [56],
where the impurities are not allowed to hop to the vacant neighbors but they can exchange
positions with ordinary particles. Interestingly, such an impurity model in [56] possesses
a different scaling exponent 5

2 in comparison to the usual KPZ exponent 3
2 for the ASEP

without impurities [39, 40]. Other than the disorders or impurities associated with the
particles themselves, there are many exciting studies with position dependent or site-wise
disorders for ASEP [57–63].

In this article, we study a class of the multi-species (I = 1, 2, . . . , µ) ASEP in the
presence of impurities, under periodic boundary conditions. In addition to the usual hop-
ping of particles to vacant sites in ASEP, we consider flips of different species among each
other (e.g. species I transforming to species J and vice versa). Importantly, these flip
processes are initiated only in the presence of a special type of particles (as nearest neigh-
bors) that we denote impurities. These impurities activate the flip processes. Therefore,
we name this non-equilibrium stochastic process to be multi species asymmetric simple
exclusion process with impurity activated flips (µ-ASEP-IAF). Note that the total number
of impurities, along with that of the vacancies, remain conserved in the µ-ASEP-IAF.
Specifically, we emphasize that the flip processes between two non-conserved species (I, J)
do not occur through the interaction with any non-conserved species K (= 1, 2, . . . , µ)
at the nearest neighbors. Thus, the microscopic dynamics considered here is different
from previously studied models like TASEP with internal degrees of freedom [64] and
multi-species reaction-diffusion processes [65, 66]. Notably, the distinction in the micro-
scopic dynamics also makes µ-ASEP-IAF non-ergodic in nature in contrast to the ergodic
models [64–66]. We should mention that the non-ergodicity of exactly solvable models is
related to undecidability of thermalization in integrable models [67].

The motivations for studying the µ-ASEP-IAF are as follows. (i) We aim to obtain an
exact non-equilibrium steady state of the µ-ASEP-IAF under periodic boundary condition,
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so that it would be an important addition to the category of exact solvable models in
disordered systems. (ii) The µ-ASEP-IAF being non-ergodic, it would be interesting to
derive exact analytical expressions for partition function and observables for suitable choice
of initial configurations and compare the corresponding steady state results with that of a
random initial configuration. (iii) The µ-TASEP-IAF can be mapped to multi-lane TASEP
which is a basic model for multi-lane traffic flow. Different species of particles in µ-ASEP-
IAF play the roles of particles in different lanes of multi-lane TASEP and the impurities
in µ-ASEP-IAF act as bridges between lanes that allow particles to exchange lanes in
multi lane TASEP. See Appendix A for details. (iv) Considering the conserved impurities
as enzymes (E) and different non-conserved species as substrates (S) and products (P ),
the flip process of µ-ASEP-IAF can be thought as an enzymatic chemical reaction like
S+E → P +E, which is a crude approximation of the Michaelis-Menten reaction scheme
S + E 
 SE → P + E [68–70]. See Appendix C for details. Notably, both the mappings
in (iii) and (iv) would not be possible if the impurities could also flip to other species.

Below we briefly summarize our main results.
(i) We find that the steady states of µ-TASEP-IAF (totally asymmetric hopping) and µ-
ASEP-IAF (bidirectional hopping) under periodic boundary conditions, can be obtained
exactly as matrix product states, where distinct matrices represent different components
(each species, impurity, vacancy) of the system. We provide explicit finite dimensional
matrix representations for the totally asymmetric case, whereas the matrices for the gen-
eral asymmetric case are found to be infinite dimensional .
(ii) For a specific choice of initial configuration, we could analytically calculate the parti-
tion function in the sector of allowed configurations in the steady state and consequently
the observables of interests (average densities of non-conserved species, currents and spa-
tial correlations). The analytical results are in agreement with Monte Carlo simulations.
For a fixed set of input parameters, we show considerable quantitative deviations between
steady state observable values for different initial configurations, establishing the initial
configuration dependence or non-ergodicity of the dynamics.
(iii) Two-point nearest neighbor correlations exhibit interesting non-trivial behaviors. Par-
ticularly, with the variation of the vacancy density, we observe characteristics like certain
correlations changing signs i.e. varying from negative to positive with some intermediate
zero correlation point, and, non-monotonic behavior with both local maximum and local
minimum.
(iv) We find negative differential mobility in µ-ASEP-IAF. For special choices of hopping
rates, both the drift current and flip current decrease with increasing bias giving rise to
negative differential mobility.

The article is organized as follows. In Sec. 2 we describe the µ-TASEP-IAF in de-
tails and show that the steady state can be achieved using matrix product ansatz. The
analytical calculation of partition function starting from a suitably chosen initial configu-
ration is presented in Sec. 3. We discuss the behaviors of observables like species densities,
drift current, flip current and spatial correlations from both analytical calculation and
Monte Carlo simulations with variation of input parameters in Sec. 4. The µ-TASEP-IAF
is generalized to µ-ASEP-IAF with bidirectional motions of the species in Sec. 5, where
we show the corresponding matrix product states and discuss the negative differential
mobility of particles. In Sec. 6, we summarize the results with future directions. We
discuss the mapping between µ-TASEP-IAF and multi lane TASEP in Appendix A. A
variation of µ-TASEP-IAF that comes up with better features in connection to traffic in
multi-lane problems is discussed in Appendix B. The connections between µ-TASEP-IAF
and enzymatic chemical reactions are briefly presented in Appendix C. In Appendix D,
we provide explicit solutions for the fugacity, in the grand canonical ensemble, for some
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Figure 1: The figure illustrates all possible microscopic dynamical processes for
the 2-TASEP-IAF with µ = 2. The species 1 and species 2 particles can hop to
right (if vacant) with rates p1 and p2 whereas the corresponding hopping rate for
the impurity (+) is ε. The flip process between the species 1 and 2 can occur
only in the presence of an impurity at the right neighbor. The corresponding flip
rates are w12 (for 1 transforming to 2) and w21 (for 2 transforming to 1).

special choices of the input parameters. The block-diagonal structure of the transition
rate matrix dictating the transitions between configurations in the configuration space, is
presented in Appendix E.

2 Model: µ-TASEP-IAF

2.1 Microscopic dynamics

Let us consider a system of µ different species of particles and impurities on a one dimen-
sional periodic lattice with L sites i = 1, 2, . . . , L. Each site can either be vacant or it can
be occupied by only one particle of any of the species I = 1, 2, . . . , µ or by an impurity.
All the particles obey hardcore exclusion. The impurity and the vacancy are denoted by
+ and 0, respectively. The system evolves according to the microscopic dynamics given
below,

drift (species) : I0
pI−→ 0I, I = 1, 2, ..., µ,

drift (impurity) : + 0,
ε−→ 0 +

flip : I+
wIK−−−⇀↽−−−
wKI

K+, I,K = 1, ..., µ. (1)

According to the dynamics of the 2-TASEP-IAF in Eq. (1), a particle of species I can
hop to its right nearest neighbor with rate pI if the target site is vacant. The impurity (+)
hopping rate is ε. If the right neighbor of a particle of species I is occupied by an impurity,
then the species I can transform to species K with rate wIK and the reverse transformation
from species K to I occurs with rate wKI . Clearly, this flip dynamics is activated by the
presence of the impurities (+). The total number of impurities N+ along with the total
number of vacancies N0 are conserved quantities, which can be readily seen from Eq. (1).
The complete set of input parameters for the µ-TASEP-IAF is (pI , ε, wIK , ρ+, ρ0), where
ρ+ = N+/L and ρ0 = N0/L are the conserved densities for the impurities and the vacancies
respectively. To illustrate the dynamics, we present a schematic figure of the allowed
dynamical processes for the µ = 2 case in Fig. 1.

From the microscopic dynamics in Eq. (1), it is clear that starting from a specific initial
configuration, the different species and the impurities cannot overtake each other. Indeed
the flip dynamics changes the number of accessible configurations by transforming one
species to another, but does not allow the dynamics to be ergodic. To discuss the non-
ergodicity with an example, let us consider an initial configuration (for 2-TASEP-IAF) of
the form {. . . 0 + 102011 + 2 . . . }. In the rest of this section, we will denote the particle
under consideration by italics e.g. 1 for the chosen particle 1, 2 for the chosen particle 2
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etc. If we consider the 1 in {. . . 0 + 102011 + 2 . . . }, it can transform into 2 by the + at its
right neighbor, thereby changing the configuration to {. . . 0 + 102012 + 2 . . . }. However,
another 1 in the initial configuration {. . . 0 + 102011 + 2 . . . } can never transform to 2 at
any stage of the evolution because it can never come in contact with any + (due to the
non-overtaking nature of the dynamics), so that the configuration {. . . 0 + 102021 + 2 . . . }
is never accessible.

2.2 Steady state: matrix product ansatz

Any configuration of the µ-TASEP-IAF can be represented by {si} ≡ {s1, s2, . . . , sL},
where si denotes the occupation at site i. Clearly, si can be one of the species K =
1, 2, . . . , µ or it can be an impurity (+) or it can be a vacancy (0). We find that the steady
state of the present model can be written in the following matrix product form

P ({si}) ∝ Tr

[
L∏
i=1

Xi

]
,

Xi = E δsi,0 +Aδsi,+ +

µ∑
K=1

DK δsi,K . (2)

In Eq. (2), any configuration {si} is represented by a string of matrices {Xi} where the
matrices DK , A and E corresponds to a particle of species K, impurity and vacancy
respectively. The time evolution of any configuration of the µ-TASEP-IAF is dictated by
the Master equation

d

dt
|P (t)〉 = M |P (t)〉, (3)

which in steady state becomes M |P 〉 = 0. Here |P 〉 is a column vector containing all
possible configurations and M is the rate matrix made up of the transition rates between
configurations. Since the dynamics in Eq. (1) is a two-site microscopic dynamics, the
transition rate matrix, under the periodic boundary condition, can be expressed as M =∑L

i=1Mi,i+1, where Mi,i+1 is a (µ+ 2)2 × (µ+ 2)2 dimensional matrix. Then the steady
state M |P 〉 = 0 of the µ-TASEP-IAF can be achieved through the following two-site flux
(probability current) cancellation condition

Mi,i+1Xi ⊗Xi+1 = X̃i ⊗Xi+1 −Xi ⊗ X̃i+1, (4)

where

X = (E,A,D1, D2 . . . , Dµ)T , (5)

and

X̃ =
(
Ẽ, Ã, D̃1, D̃2 . . . , D̃µ

)T
, (6)

where (.)T denotes the transpose of the row vector (.) and Ẽ, Ã, D̃K are auxiliary matrices
that are introduced to satisfy the steady state equation and these have to be found out
consistently along with the matrix representations for E,D,DK (K = 1, 2, . . . , µ). We
find that suitable choices for the auxiliary matrices for the µ-TASEP-IAF are

Ẽ = 1, Ã = 0, D̃K = 0 K = 1, 2, . . . , µ. (7)

Correspondingly, the matrices E,A and DK have to obey the matrix algebra consisting of
the equations given below

pKDKE = DK , K = 1, . . . , µ
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εAE = A,
µ∑
I=1
I 6=K

wIKDIA = DKA

µ∑
I=1
I 6=K

wKI , K = 1, . . . , µ. (8)

The last relation in Eq. (8) is reminiscent of the Kirchhoff’s current law for each species
K, in the sense that the total flip current from all other species to species K is equal to
the total flip current from K to all other species. Note that the matrix algebra in Eq. (8)
allows scalar solutions when the hopping rates for every species and the impurity become
equal i.e. pK = ε for all K. Naturally for this special set of rates, since the matrices
reduce to scalars, no spatial correlations exist between the constituents of the system. For
any other choice of rates, we expect matrix solutions to the Eq. (8). Below we discuss the
cases µ = 2, µ = 3 extensively with explicit matrix representations and then generalize
them to get the matrix representations for general µ.

µ = 2 : For the 2-TASEP-IAF (K = 1, 2), the matrix algebra [Eq. (8)] simplifies to

p1D1E = D1, p2D2E = D2,
εAE = A,

w12D1A = w21D2A. (9)

Clearly, the matrix relation for the flip process becomes trivial for the two-species case
implying the absence of net flip current between the two species. More precisely, the flip
process satisfies detailed balance condition for µ = 2. However, there are non-zero drift
currents in the system. We find the following 3× 3 matrix representations that satisfy the
matrix algebra in Eq. (9),

D1 = w21

 1 1 0
0 0 0
0 0 0

 , D2 = w12

 1 0 1
0 0 0
0 0 0

 ,

E =

 1
ε 0 0

1
p1
− 1

ε
1
p1

0
1
p2
− 1

ε 0 1
p2

 , A =

 1 0 0
0 0 0
0 0 0

 . (10)

The matrix representation of the impurity i.e. A, in the projector form, resembles that
of the defect of second class particles in case of TASEP with first and second class parti-
cles [25,71] except the fact that the matrices are infinite dimensional in Refs. [25, 71].

µ = 3 : The matrix algebra in Eq. (8) for the 3-TASEP-IAF process reads as

p1D1E = D1, p2D2E = D2, p3D3E = D3,
εAE = A,

w21D2A+ w31D3A = (w12 + w13)D1A,
w12D1A+ w32D3A = (w21 + w23)D2A,
w13D1A+ w23D2A = (w31 + w32)D3A. (11)

In comparison to the last relation in Eq. (9), clearly the flip processes for the three-species
case given by the last three relations in Eq. (11) do not require the detailed balance as
a necessary condition. Rather, the general condition (without putting any constraint on
the set of flip rates) that satisfies the flip processes in Eq. (11) is

w12D1A− w21D2A = w23D2A− w32D3A = w31D3A− w13D1A. (12)
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We obtain the following 4 × 4 representations of the matrices that satisfy Eq. (11) along
with Eq. (12),

D1 = d1


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , D2 = d2


1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

D3 = d3


1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

E =


1
ε 0 0 0

1
p1
− 1

ε
1
p1

0 0
1
p2
− 1

ε 0 1
p2

0
1
p3
− 1

ε 0 0 1
p3

 , A =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (13)

where

d1 = w21w31 + w23w31 + w32w21,
d2 = w12w32 + w13w32 + w31w12,
d3 = w13w23 + w12w23 + w21w13. (14)

We note that the condition Eq. (12), with the explicit matrix representations from Eq. (13),
becomes

wKIDKA− wIKDIA = αA, α = w12w23w31 − w21w13w32. (15)

The parameter α in Eq. (15) quantifies the deviations of the flip processes from the detailed
balance condition between any pair of species. As we would see later, the net flip current
between any two species is proportional to α. In fact α = 0, which puts some constraints
on the flip-rates, correspond to a straightforward generalization of the two-species process
to three-species process with similar flip process matrix relations wKIDKA = wIKDIA.

general µ : For the general case of µ-TASEP-IAF (K = 1, 2, . . . , µ), the structures of
the matrices DK , E,A would be similar to that of Eq. (10) and Eq. (13). More precisely,
the matrices are (µ+1)×(µ+1) dimensional and the corresponding explicit representations
of the matrices are given by

DK = dK |1〉 (〈1|+ 〈K|) , K = 1, . . . , µ,

E =
1

ε
|1〉〈1|+

µ+1∑
K=2

1

pK−1
|K〉〈K|+

(
1

pK−1
− 1

ε

)
|K〉〈1|,

A = |1〉〈1|. (16)

In Eq. (16), the vector 〈I| = (0, . . . , 0, 1, 0, . . . 0) where 1 is placed at the I-th element with
all other elements being zero and |I〉 is the transpose of 〈I|. Notably, the values of the
coefficients dK associated with matrices DK in Eq. (16), can be calculated by solving the
set of µ homogeneous linear equations of the form

dK
∑
I 6=K

wKI +
∑
I 6=K

wIKdI = 0, K = 1, 2, . . . , µ. (17)

The summations over the index I in Eq. (17) generally includes all I = 1, . . . , µ except K.
This corresponds to the general dynamics in Eq. (1) where any two species can transform
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Figure 2: The figure illustrates an example of µ = 4 case where certain flips are
activated between pairs of species by the impurity, whereas some of the flips are
absent e.g. w24 = 0. In this scenario, αKI would be different for different pairs
(I,K).

into one another in the presence of the impurity (at right neighbor). However, one might
be interested in special cases where the flip processes are restricted between certain pairs
of species only. For example, one particular situation can be where any species K can
only transform to species numbers (K + 1) and (K − 1). In that case, the parameter
α [Eq. (15)] which dictates the flip-current between any two species, will be given by

α = (
µ∏

K=1

wKK+1−
µ∏

K=1

wK+1K). Notably, this reduces to the general solution of µ = 3 as

given in Eq. (15). However, unlike the cases of µ = 2 or µ = 3 or the special instance of
the multi-species case stated above which allow α to be independent of the species I, in
general α would depend on the particulars of the pairs (I,K) for µ > 3. Mathematically,
Eq. (15) would be generalized as follows

wKIDKA− wIKDIA = αKIA, I,K = 1, 2, 3, 4, . . . , µ, (18)

where αKI have different values for different pairs (I,K). As an example, one can consider
µ = 4 with the allowed set of flip dynamics described in Fig. 2. In Fig. 2, among twelve
total possible flip rates, only six are present. Specifically, in this example, the impurity
cannot activate flips between species (2, 3), implying α23 = 0 whereas for other pairs
αKI 6= 0.

3 Partition function for special initial configuration

The non-ergodic nature of the microscopic dynamics in Eq. (1) ensures that we cannot
express the partition function of the µ-TASEP-IAF in the usual form of Tr[TL], even under
periodic boundary conditions. Here the “transfer matrix” T refers to

T = z0E + z+A+
∑
K

DK , (19)

with z0 and z+ being the fugacities corresponding to the vacancies and impurities respec-
tively, in the grand canonical ensemble. This is because TL generates all configurations
in the configuration space irrespective of the initial ordering of the species, but the dy-
namics in Eq. (1) allows only those configurations which preserve certain orderings from
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the initial configuration. To illustrate this with an example, let us consider a string of
(n+1) number of species 1 particles followed by an impurity in the initial configuration i.e.
{..11..11 + ..} ≡

{
..1n+1 + ..

}
. At any step in the µ-TASEP-IAF, the ordering of the first

n number of species 1 particles in this string cannot be broken, i.e. no species 2 particle
or impurity can appear inside this string, except for the last 1 (which may transform to
2). On the other hand, TL generates configurations which do not preserve such order-
ings. Naturally, to calculate partition function for µ-TASEP-IAF analytically, it becomes
essential to choose suitable initial configurations for which we can correctly identify the
accessible set of configurations in the steady state. In the rest of this section, we discuss
such special initial configurations, corresponding steady states and partition functions.

3.1 µ = 2

One special initial configuration C(t = 0) ≡ C(0) (represented by matrices) for the 2-
TASEP-IAF is

C(0) = D1A . . .D1A︸ ︷︷ ︸ D2A . . .D2A︸ ︷︷ ︸ D2 . . . D2︸ ︷︷ ︸ D1 . . . D1︸ ︷︷ ︸ E . . . E︸ ︷︷ ︸, (20)

where X...X︸ ︷︷ ︸ represents an uninterrupted sequence of the matrix X. We consider the

densities of the uninterrupted sequences of D2-s and D1-s to be equal, which is ρ̄ = N̄/L.
Further, we have taken the two sequences of D1A and D2A to be of equal density ρ+ so
that the density of impurity (A) in each of these sequences is ρ+/2. This ensures that
the total density of impurities is ρ+. The initial configuration in Eq. (20) satisfies the
relation ρ̄ = 1

2(1−ρ0−2ρ+), where ρ0 and ρ+ are densities of the vacancies and impurities
respectively. In the steady state we have ρ0 + ρ+ + ρ1 + ρ2 = 1, with ρ1 and ρ2 being the
average densities of species 1 and species 2 particles in the steady state. We emphasize
that ρ0 and ρ+ are input parameters while ρ1 and ρ2 are derived quantities. Starting from
Eq. (20), any accessible configuration Css in the steady state is of the following generic
form

Css =

N+∏
k=1

(τD1 + (1− τ)D2)EmkAEnk
N̄∏
i=1

D2E
ri

N̄∏
j=1

D1E
sj , (21)

subjected to the constraint
N+∑
i=1

(mi+ni)+
N̄∑
j=1

(rj+sj) = N0. The parameter τ in Eq. (21) can

take value either 1 or 0. The partition function, obeying the above mentioned constraint,
is given by

QN0,N+ =
∑
{ni}

∑
{mi}

∑
{rj}

∑
{sj}

Tr

N+∏
k=1

(D1 +D2)EmkAEnk
N̄∏
i=1

D2E
ri

N̄∏
j=1

D1E
sj


× δ(

N+∑
i=1

(ni +mi) +
N̄∑
j=1

(rj + sj)−N0). (22)

It would be useful to get rid of the δ(.) constraint by associating a fugacity z0 to the
vacancy (represented by E) and considering the system in a grand canonical ensemble.
The matrix strings (D1 +D2)EmAEn, D2E

r and D1E
s can be evaluated by incorporating

the matrix algebra in Eq. (9) along with the explicit representations from Eq. (10). It
should be mentioned that the projector form of A [Eq. (10)] leads to factorization of the
matrix strings, e.g.

. . . AD1ED2EAD2EEA · · · = . . . |1〉 〈1|D1ED2E|1〉 〈1|D2EE|1〉 〈1| . . . , (23)

10
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which helps significantly in carrying out the analytical calculations. Consequently, the
partition function in the grand canonical ensemble under the periodic boundary condition,
finally becomes

QN+(z0) =

([
w21

1− z0
p1

+
w12

1− z0
p2

](
1

1− z0
ε

))N+
(

w21w12

(1− z0
p1

)(1− z0
p2

)

)N̄
. (24)

For the special initial configuration in Eq. (20), we have derived the partition function in
Eq. (24). The fugacity z0 can be obtained as a function of the vacancy density and other
input parameters by inverting the density-fugacity relation

ρ0 =
z0

L

d

dz0
ln(QN+(z0)). (25)

In general, the solution of z0 obtained from Eq. (25), using Mathematica, appears to be
complicated and lengthy. However, in Appendix D, we would discuss two special cases
(with specific choices of the input parameter) that provide closed form solutions for the fu-
gacity. The other conserved quantity, the impurity density is already fixed at ρ+ = N+/L.
The expression Eq. (24) would be used for evaluating the observables of interest in the
next Sec. 4.

3.2 µ = 3

Similar to the initial configuration C(t = 0) for µ = 2, a suitable initial configuration
for the three species case that enables us to perform analytical calculation of partition
function and observables, is

C(0) ≡ D1A . . .D1A︸ ︷︷ ︸ D2A . . .D2A︸ ︷︷ ︸ D3A . . .D3A︸ ︷︷ ︸D3 . . . D3︸ ︷︷ ︸ D2 . . . D2︸ ︷︷ ︸ D1 . . . D1︸ ︷︷ ︸ E . . . E︸ ︷︷ ︸ .(26)

The density of the uninterrupted sequence of each species 1, 2, 3 in Eq. (26) is taken to be
equal to ρ̄ = N̄/L. Moreover, we have chosen the density of each of the sequences D1A,
D2A and D3A to be 2ρ+/3 where the density of impurities in each of these sequences is
ρ+/3. Consequently, the choice of initial configuration in Eq. (26) ensures that the total

density of impurities remain ρ+. In the steady state, ρ0 + ρ+ +
3∑
I=1

ρI = 1, where ρI is the

average density of the non-conserved species I. Starting from Eq. (26), the form of any
accessible configuration Css in steady state would be

Css ≡
N+∏
k=1

(D1δτ,1 +D2δτ,2 +D3δτ,3)EmkAEnk
N̄∏
i=1

D3E
li

N̄∏
i=1

D2E
ri

N̄∏
i=1

D1E
si , (27)

with the conservation of the total number of vacancies N0 =
N+∑
k=1

(mk+nk)+
N̄∑
i=1

(li+ri+si),

where δτ,K is the Kronecker delta symbol with K = 1, 2, 3. As done in case of µ = 2, here
also we associate a fugacity z0 with the vacancy. Using the matrix algebra from Eq. (11)
alongside the matrix representations in Eqs.(13) and (14), the partition function in grand
canonical ensemble becomes

QN+(z0) =

([
3∑
I=1

dI
1− z0

pI

](
1

1− z0
ε

))N+
(

3∏
I=1

dI
1− z0

pI

)N̄
,

(28)

where the explicit expressions for dI -s have been presented earlier in Eq. (14).
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3.3 general µ

For the µ-TASEP-IAF (K = 1, . . . , µ), the generalization of the initial configurations in
Eq. (20) (µ = 2) and Eq. (26) (µ = 3) would be

C(0) ≡

N+/µ∏
i=1

D1A

N+/µ∏
i=1

D2A · · ·
N+/µ∏
i=1

DµA

  N̄∏
i=1

D1

N̄∏
i=1

D2 · · ·
N̄∏
i=1

Dµ

 N0∏
i=1

E. (29)

The above initial configuration is chosen in a way that the density of each sequence DIA
(I = 1, . . . , µ) is 2ρ+/µ in which the density of impurities is equal to ρ+/µ, so that the

total impurity density adds up to ρ+. We have ρ0 + ρ+ +
µ∑
I=1

ρI = 1 in the steady state,

with ρI being the average density of the non-conserved species I. Proceeding in the same
way as shown in cases of µ = 2 and µ = 3, we obtain the partition function for the general
µ-TASEP-IAF to be

QN+(z0) =

([
µ∑
I=1

dI
1− z0

pI

](
1

1− z0
ε

))N+
(

µ∏
I=1

dI
1− z0

pI

)N̄
,

(30)

where dI is the solution of Eq. (17) and z0 is the fugacity associated with the vacancy in
the grand canonical ensemble.

In this section, we have derived the partition functions of the µ-TASEP-IAF with
µ = 2, µ = 3 and general µ in Eq. (24), Eq. (28) and Eq. (30), respectively, for specific
initial configuration Eq. (20), Eq. (26) and Eq. (29), respectively, under periodic boundary
conditions. These results would be useful to calculate the average values of observables in
the next section for the same initial configurations discussed here.

4 Observables: comparisons of analytical results with Monte
Carlo simulations

In this section, we analytically calculate the following observables in the steady state, (i)
average density ρI of the non-conserved species I, (ii) average drift currents JI0 and J+0,
for species I and impurities respectively, (iii) average flip current JI↔K between species
pair (I,K) and (iv) two-point correlations C0I between vacancies (0) and species I. Mostly
we will restrict the calculations to the number of species µ = 2, except using µ = 3 for
the case of average flip current (since there is no net flip current between pair of species
for µ = 2). In particular, starting from the special initial configuration Eq. (20) for µ = 2
(or, Eq. (26) for µ = 3), we will show agreements between the analytical calculations and
the Monte Carlo simulation results.

4.1 Species densities

First we consider the average densities (ρI) of the non-conserved species I = 1, 2. The
formal expression for ρI in the steady state under the periodic boundary condition, can
be written as

ρ1 =
1

2
(1− ρ0 − 2ρ+) +

ρ+

QN+

∞∑
n1=0

..
∞∑

nN+
=0

∞∑
m1=0

..
∞∑

mN+
=0

∞∑
r1=0

..
∞∑

rN̄=0

∞∑
s1=0

..
∞∑

sN̄=0

12
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Figure 3: The figures (a) and (b) show the variations of the average species
densities ρI (I = 1, 2) against vacancy density ρ0 and flip rate w12 respectively
in the steady state. The species densities decrease linearly with increasing ρ0 in
(a). In (b), with increasing w12, ρ1 and ρ2 decrease and increase respectively,
both in nonlinear manners. Notably, in the parameter range w21 < w12 < w?12,
we observe ρ2 < ρ1 in spite of the higher flip rate of transformation from species
1 to species 2. The common parameters for both figures (a) and (b) are L =
103, p1 = 0.3, p2 = 1.0, ε = 0.1, ρ+ = 0.2. For (a), w12 = 0.4 and w21 = 1.0. For
(b), ρ0 = 0.2 and w21 = 0.6. The ensemble average is done over 105 samples.

Tr

D1(z0E)m1A(z0E)n1

N+∏
k=2

(D1 +D2)(z0E)mkA(z0E)nk
N̄∏
k=1

D2(z0E)rk
N̄∏
k=1

D1(z0E)sk

 .
(31)

To elaborate Eq. (31), the main point is to note the expression inside the trace (Tr[.])
that denotes configurations with at least one D1. This can be understood more clearly by
comparing it with the expression for any possible configuration in Eq. (21). From Eq. (21),
to arrive at the matrix string inside the trace in Eq. (31), one has to put τ = 1 for one
k value to ensure the presence of at least one species 1 particle (D1) in the configuration.
Since this D1 could have been placed for any k = 1, 2, . . . , N+, we have a combinatorial
pre-factor ρ+ = N+/L in Eq. (31). The summations over all the variables {m,n, r, s} from
zero to infinity are performed as the system is considered in the grand canonical ensemble.
The first factor (1 − ρ0 − 2ρ+)/2 in Eq. (31) is to take care of the N̄ number of D1-s
present in the initial configuration Eq. (20) that cannot flip. Using the matrix algebra
and matrix representations from Eqs. (9) and (10) respectively, we finally arrive at the
following expressions for the average densities of the non-conserved species,

ρ1 = ρ+
w21(

1− z0
p1

) 1[
w21

1− z0
p1

+ w12

1− z0
p2

] +
1

2
(1− 2ρ+ − ρ0)

ρ2 = ρ+
w12(

1− z0
p2

) 1[
w21

1− z0
p1

+ w12

1− z0
p2

] +
1

2
(1− 2ρ+ − ρ0).

(32)
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Figure 4: The figure illustrates the non-monotonic behaviors of the drift currents
JI0 (I = 1, 2) with increasing vacancy density ρ0, unlike the drift current for the
impurities J+0 which increases monotonically with increasing ρ0. The analytical
results (solid lines) are in agreement with the Monte Carlo simulation results
(points). The parameters used are L = 103, p1 = 0.3, p2 = 1.0, ε = 0.1, w12 =
0.4, w21 = 1.0, ρ+ = 0.2. The ensemble average is done over 105 samples.

The fugacity z0 is obtained in terms of the input parameters by solving the density-fugacity
relation ρ0 = z0

d
dz0

ln(QN+(z0)) using Mathematica. Replacing the solution of z0 (which is
too lengthy to provide here) in Eq. (32), we finally get the average densities as functions
of input parameters (p1,2, w12,21, ε, ρ0, ρ+) only.

We compare the analytical results with those of Monte Carlo simulations, starting from
the same initial configuration Eq. (20). In the simulation, we vary the vacancy density
in the initial configuration by changing the lengths of the uninterrupted strings of D2

and D1 in Eq. (20) i.e. simply by tuning ρ̄ which is related to vacancy density ρ0 as
ρ0 + 2ρ̄ = 1 − 2ρ+. In Figs. 3(a) and (b), we observe that the analytical and simulation
results are in agreement with each other, where ρI is plotted against ρ0 and w12 (flip rate of
species 1 to species 2), respectively. The species densities decrease linearly with increasing
ρ0 [Fig. 3(a)] whereas they decrease in non-linear fashion with increasing w12 [Fig. 3(b)].
Notably, in the absence of any drift, we would have ρ2 = ρ1 exactly at w?12 = w21. However,
due to the hopping process, this point shifts to

w?12 = w21

(1− z0
p2

)

(1− z0
p1

)
. (33)

Consequently in Fig. 3(b), for a particular set of chosen parameters, we observe that for
w21 < w12 < w?12, one still has ρ2 < ρ1. In other words, when w12 ∈ (w21, w

?
12), although

the species 1 particles more often transform to species 2 particles, still the average density
of species 2 particles is less than that of species 1 particles. For any value of µ, the general
expression for the average density ρI for the non-conserved species I (I = 1, 2, . . . , µ) is

ρI = ρ+
dI(

1− z0
pI

) 1
µ∑

K=1

dK(
1− z0

pK

) +
1

µ
(1− 2ρ+ − ρ0),

(34)

where dI is the solution of Eq. (17) (e.g. the solution for µ = 3 is explicitly given in
Eq. (14)).
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Figure 5: The figure shows comparison of drift currents JI0 between theory (solid
lines) and Monte Carlo simulations (points) by changing flip rate w12. The non-
linear monotonic decrease and increase in J10 and J20 respectively are similar
in nature to the effect of w12 on the species densities (Fig. 3). The impurity
drift current increases slowly with increasing w12. The parameters used are
L = 103, p1 = 0.3, p2 = 1.0, ε = 0.1, w21 = 0.6, ρ+ = 0.2, ρ0 = 0.2. The en-
semble average is done over 105 samples.

4.2 Drift current

Next we consider the average drift currents JI0 and J+0 for the non-conserved species I
(I = 1, 2) and the impurity respectively. We focus on I = 1 to explain the procedure for
calculating the current J10, because the parallel procedure applies for any other species.
The average drift current J10 is equal to p1〈10〉, where 〈10〉 is the ensemble average of the
pair 10. In terms of matrices the expression 〈10〉 simply translates to 〈D1E〉. The current
J10 can be calculated in two parts,

J10 = p1〈10〉 = p1〈D1E〉 = J
(1)
10 + J

(2)
10 = p1〈D1E〉(1) + p1〈D1E〉(2), (35)

where J
(1)
10 = p1〈D1E〉(1) is the contribution from the drift of species 1 particles that

can flip and J
(2)
10 = p1〈D1E〉(2) is the corresponding contribution from species 1 particles

that cannot flip (as they cannot have any impurity as right neighbor) according to the
initial configuration in Eq. (20). Correspondingly, the term D1E in the averages 〈D1E〉(1)

and 〈D1E〉(2) would come from the product sequences (τD1 + (1− τ)D2)EmA and D1E
s

respectively Eq. (21). The expression for J
(1)
10 is given by

J
(1)
10 = p1〈D1E〉(1) =

ρ+

QN+

∞∑
n1=0

..
∞∑

nN+
=0

∞∑
m1=1

..
∞∑

mN+
=0

∞∑
r1=0

..

∞∑
rN̄=0

..

∞∑
sN̄=0

Tr

z0p1D1E(z0E)m1−1A(z0E)n1

N+∏
k=2

(D1 +D2)(z0E)mkA(z0E)nk
N̄∏
k=1

D2(z0E)rk
N̄∏
k=1

D1(z0E)sk

 .
(36)

The construction of Eq. (36) follows similar arguments as of Eq. (31), except now we have
to place D1E instead of D1. This also reflects in the summations, note that the lower
limit of the index m1 has been changed to 1 instead of 0 to ensure the presence of one
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D1E. Similarly, the formal expression for J
(2)
10 is

J
(2)
10 = p1〈D1E〉(2) =

1

QN+

∞∑
n1=0

..
∞∑

rN̄=0

∞∑
s1=1

..
∞∑

sN̄=0

Tr

N+∏
k=1

(D1 +D2)(z0E)mkA

N̄∏
k=1

D2(z0E)rkz0p1D1E(z0E)s1−1
N̄∏
k=2

D1(z0E)sk

 .(37)

Obviously in Eq. (37), the lower limit of the index s1 is shifted to 1 from 0. Using the
matrix algebra and matrix representations from Eqs. (9) and (10), we get from Eqs. (36)
and (37):

J
(1)
10 = z0ρ+

w21(
1− z0

p1

) 1[
w21

1− z0
p1

+ w12

1− z0
p2

] , J
(2)
10 =

z0

2
(1− 2ρ+ − ρ0). (38)

Substituting Eq. (38) into Eq. (35), we obtain J10. Following the same procedures, one
can calculate J20 and J+0. We finally arrive at the analytical expressions for the drift
currents under the periodic boundary condition, given below:

J10 = z0ρ+
w21(

1− z0
p1

) 1[
w21

1− z0
p1

+ w12

1− z0
p2

] +
z0

2
(1− 2ρ+ − ρ0),

J20 = z0ρ+
w12(

1− z0
p2

) 1[
w21

1− z0
p1

+ w12

1− z0
p2

] +
z0

2
(1− 2ρ+ − ρ0),

J+0 = ρ+z0. (39)

In Figs. 4 and 5 we present the variation of the drift currents as functions of vacancy density
ρ0 and flip rate w12, respectively. For both cases, the analytical results match with the
Monte Carlo simulation results. The drift currents for the species 1 and 2 exhibit non-
monotonic behaviors with increasing vacancy density whereas the impurity drift current
increases monotonically (Fig. 4). At lower vacancy densities, as we increase ρ0, the chances
for hopping increase, thereby increasing the drift current in Fig. 4. However, after a
particular value of ρ0, if we increase it further, the densities of the non-conserved species fall
considerably so that drift current ultimately decreases, although there are many vacancies
in the system. Since the impurities do not flip, the density of impurities is fixed and the
corresponding impurity drift current can only increase with increasing ρ0 (Fig. 4). The
maximum of the drift current for different species generally occur at distinct values of ρ0.
With variation of the flip rate w12 (Fig. 5), the drift currents of the non-conserved species
show similar non-linear behaviors like their corresponding densities [Fig. 3(b)]. Notably,
although the flip dynamics does not affect the drift of the impurities explicitly, still we
observe that the impurity drift current increases with increasing w12, albeit weakly.

For any positive integer value of µ, the general expression for the drift current of any
non-conserved species I (I = 1, . . . , µ) is obtained to be

JI0 = z0ρ+
dI(

1− z0
pI

) 1
µ∑

K=1

dK(
1− z0

pK

) +
z0

µ
(1− 2ρ+ − ρ0), (40)

where the dI is the solution of Eq. (17).
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Figure 6: The figure illustrates the variation of two-point correlation C01 between
the vacancy and species 1 by tuning the vacancy density ρ0. We observe that
this correlation initially starts increasing with increasing ρ0, reaches to a local
maximum, then decreases. However, as ρ0 is increased further, C01 reaches to
a local minimum and then starts increasing again. The parameters used are
L = 103, p1 = 0.3, p2 = 1.0, ε = 0.1, w12 = 0.8, w21 = 1.0, ρ+ = 0.2. The ensemble
average is done over 105 samples.

4.3 Two-point correlations

Besides the currents, we would like to calculate some other two point functions which
have interesting features. We have basically calculated the two-point functions 〈10〉 and
〈20〉 in the process of determining the drift currents J10 and J20 respectively. Now we
focus on the nearest neighbors two-point correlations involving 〈01〉 and 〈02〉. We find the
exact expressions for the corresponding two-point correlations under the periodic boundary
condition as

C01 = 〈0 1〉 − 〈0〉〈1〉 =
(z0

ε
− ρ0

) w21(
1− z0

p1

) ρ+[
w21

1− z0
p1

+ w12

1− z0
p2

]
+

(
z0

2p1
− ρ0

2

)
(1− 2ρ+ − ρ0),

C02 = 〈0 2〉 − 〈0〉〈2〉 =
(z0

ε
− ρ0

) w12(
1− z0

p2

) ρ+[
w21

1− z0
p1

+ w12

1− z0
p2

]
+

(
z0

2p2
− ρ0

2

)
(1− 2ρ+ − ρ0). (41)

The correlation C01 is plotted against the vacancy density ρ0 in Fig. 6. As ρ0 is increased
starting from zero, the correlation also increases and reaches a local maximum, followed
by a decrease and reaching a local minimum. After this point, if the vacancy density is
increased further, C01 increases again. So, instead of a single maximum or single minimum,
the correlation C01 interestingly exhibits both local maximum and local minimum with
the variation of ρ0. In other words, C01 increases with increasing vacancy density for
both sufficiently high and sufficiently low values of ρ0, with intermediate non-monotonic
character. In Fig. 7, it is interesting to see that the non-monotonic behavior of C02 is such
that it goes from negative correlation values to positive correlation values. Naturally, there
exists some intermediate value of ρ0 for which the special arrangements of the accessible
steady state configurations makes the average correlation C02 to be zero.
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Figure 7: The figure shows a crossover from negative correlation to positive corre-
lation for C02 (between vacancy and species 2) with increasing vacancy density ρ0.
There is some special intermediate density for which C02 becomes zero. The pa-
rameters used are L = 103, p1 = 0.3, p2 = 1.0, ε = 0.1, w12 = 0.8, w21 = 1.0, ρ+ =
0.2. The ensemble average is done over 105 samples.

4.4 Flip current

All the observables we have discussed up to now (average species densities, drift currents,
correlations), correspond to 2-TASEP-IAF. However, the net flip current is zero for µ = 2.
Therefore, in order to have a net non-zero flip current between pairs of species, here we
consider the case µ = 3 (I = 1, 2, 3). We denote the net flip current between species I
and K as JI↔K . For µ = 3, we find that the net flip current between any two species
[(1, 2), (2, 3), (3, 1)] are equal to each other (i.e. independent of the indices I and K) and
its exact form is given by

JI↔K = wIK〈I+〉 − wKI〈K+〉 = ρ+
(w12w23w31 − w21w13w32)[

d1

1− z0
p1

+ d2

1− z0
p2

+ d3

1− z0
p3

] . (42)

The initial configuration that we have used to arrive at Eq. (43) is the one in Eq. (26).
In Eq. (43), we have calculated the current in the cyclic ordering i.e. (I = 1,K = 2),
(I = 2,K = 3), (I = 3,K = 1). We have presented the behavior of the flip current as
functions of the vacancy density ρ0 and flip rate w12 in Figs. 8(a) and 8(b) respectively. We
observe that the analytical calculation are in agreement with the Monte Carlo simulation
results. In Fig. 8(a), the flip-current decreases monotonically in a nonlinear manner with
increasing vacancy density. The reason behind this, is the decrease in species densities
with increasing ρ0 [Fig. 3(a)]. On the other hand, flip current between any pair of species
increases monotonically with increasing flip rate w12 (Fig. 8(b)).

The generalization of the formula Eq. (43) for any µ, under the periodic boundary
condition, is obtained as

JI↔K = ρ+
(dIwIK − dKwKI)

µ∑
K=1

dK(
1− z0

pK

) , (43)

where dI , dK are the solutions of Eq. (17). We should mention that, for µ > 3, the flip
currents between different pairs of species would be in general distinct from one another.
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Figure 8: The figures exhibit the variation of the flip current JI↔K with vacancy
density ρ0 and flip rate w12 in (a) and (b), respectively. The analytical and Monte
Carlo simulation results show good agreement. The flip current monotonically
decreases with increasing ρ0 whereas it increases monotonically with increasing
w12. The common parameters for both figures (a) and (b) are L = 103, p1 =
0.3, p2 = 1.0, p3 = 1.0, ε = 0.1, w21 = 0.5, w23 = 0.5, w32 = 0.2, w31 = 0.8, w13 =
0.2, ρ+ = 0.15. For (a), w12 = 0.4 and for (b), ρ0 = 0.22. The ensemble average
is done over 105 samples.

4.5 Non-ergodicity: dependence on initial configuration

Here we establish the non-ergodicity of the µ-TASEP-IAF by showing explicitly the de-
pendence of the average steady state values of observables on the choice of the initial
configuration. For simplicity, we restrict ourselves to the case of µ = 2. We choose two
different initial configurations as follows. (i) The initial configuration given in Eq. (20) for
which we know exactly which constituent (any species or impurity or vacancy) is placed at
a given lattice site. Since the initial arrangement is specified completely, we call this con-
figuration specified initial configuration (SIC). (ii) A random initial configuration where
the constituent at each site is selected randomly such that the densities of impurities
and vacancies, and the initial densities of species I (I = 1, 2), are exactly the same as
that of the SIC described in (i). Since the initial arrangement for this configuration is
randomly carried out, we call it random initial configuration (RIC). To clarify, both SIC
and RIC are characterized by the same set of rates (p1, p2, ε, w12, w21) and the densities
(ρ+, ρ0, ρ1(0), ρ2(0)), where ρ1(0), ρ2(0) represent the initial (t = 0) densities of the non-
conserved species 1 and 2 respectively. Although the analysis of the steady state for the
SIC can be performed exactly as discussed already, the same could not be done for the
RIC. Therefore, in this section we use Monte Carlo simulations to compare the steady
state observable values for SIC and RIC.

We compare the steady state observable values for SIC and RIC with the same set
of input parameters (p1, p2, ε, w12, w21, ρ+, ρ0) and same initial densities of the species
(ρ1(0), ρ2(0)) in Fig. 9. We denote the data points for SIC and RIC with different symbols,
circles and rectangles respectively, in Fig. 9. The variations of the non-conserved species
densities ρI are presented in Figs. 9(a) and 9(c) as functions of flip rate w12 and hop rate
p2, respectively. Both figures exhibit clear quantitative differences between the density
values for SIC and RIC. We observe that the deviations between SIC and RIC decreases
(increases) with increasing w12 (p2). The initial configuration dependence of the steady
state values of nearest neighbor two-point correlations are shown in Figs. 9(b) and (d). In
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Figure 9: The set of figures exhibits the dependence of steady state values of
observables on the choice of initial configuration. We observe clear deviations
between SIC (denoted by circles) and RIC (denoted by rectangles) in (a)-(d)
and the amount of deviation in each figure changes with the variation of input
parameter. The common set of parameters used for (a)-(d) are L = 103, p1 =
0.3, ε = 0.1, ρ+ = 0.216, ρ0 = 0.203, ρ1(0) = 0.321, ρ2(0) = 0.260. The other
parameters for (a), (b) are p2 = 1.0, w21 = 0.6 and for (c), (d) are w12 =
0.5, w21 = 0.4. The ensemble averages are done over 105 samples.
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Fig. 9(b), we observe that the correlation between species 1 particles C11 = 〈11〉 − ρ2
1 has

distinct numerical values for SIC and RIC when the parameter w12 is tuned. Interestingly,
the correlation corresponding to RIC changes from negative to positive whereas the same
for SIC remains positive with increasing w12. This implies the existence of some interme-
diate w12 which corresponds to uncorrelated species 1 particles for RIC, whereas they are
correlated for the SIC. Similar kind of interesting behavior is observed for the correlation
between species 2 particles C22 = 〈22〉− ρ2

2 when plotted against p2 in Fig. 9(d). Thus we
have illustrated the dependence of steady state values of species densities and correlations
on the choice of the initial configuration. The same can also be investigated in other two
point and higher point functions.

We end this section with a general comment regarding the non-ergodicity in the present
model. If we consider a sequence of the form {+sisi+1 . . . snsn+1+} in an initial configu-
ration, where sj = 0, 1, . . . µ but sj 6= + for i 6 j 6 (n+ 1), then the ordering of different
species 1, . . . , µ (not vacancies) for i 6 j 6 n remains intact for the allowed subspace
of configurations in the steady state. Naturally, number of such orderings increase with
system size. Recent study [72] in context of classical reversible cellular automaton shows
the number of local conservation laws increase exponentially with system size, leading to
block diagonal form of the propagator with exponential scaling of the number of blocks
with system size. In fact there are quantum systems like certain Lindbladian for quan-
tum ASEP [73], dipole-conserving Hamiltonian [74] etc. for which the space of operators
or states fragment into invariant subspaces whose number again scale exponentially with
system size. It would be interesting to investigate in future how does the number of
conserved orderings scale with system size in our non-ergodic model, the detailed block
diagonal structure of the transition rate matrix [M in Eq. (3)] and the role of correspond-
ing underlying symmetries. An explicit illustration of the block-diagonal structure of the
rate matrix in the µ-ASEP-IAF, for small system sizes, is presented in Appendix E.

5 Partially asymmetric generalization: µ-ASEP-IAF

In this section, we consider the µ-ASEP-IAF under periodic boundary conditions, a gen-
eralization of the µ-TASEP-IAF in Eq. (1), by including partially asymmetric motions
of different species of particles. A particle of species I can hop towards right with rate
pI and it can hop towards left with rate qI (I = 1, . . . , µ), if the target site is empty.
Notably, the impurities are not allowed to hop to left. This naturally adds another way
to distinguish the conserved impurities from all non-conserved species. The microscopic
dynamics is given by,

drift (species) : I0
pI−⇀↽−
qI

0I I = 1, 2, ..., µ

drift (impurity) : + 0
ε−→ 0 +

flip : I+
wIK−−−⇀↽−−−
wKI

K + I,K = 1, ..., µ. (44)

The µ-ASEP-IAF remains non-ergodic in nature. Since we could obtain the steady state
of the µ-TASEP-IAF using matrix product ansatz [Eq. (2)], we assume the same can be
done for the partially asymmetric motion also.
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5.1 Matrix algebra, auxiliaries and matrix representations

The matrix algebra for the dynamics in Eq. (44) under the periodic boundary condition,
is

pKDKE − qKEDK = DK , K = 1, . . . , µ
εAE = A,

µ∑
I=1
I 6=K

wIKDIA = DKA

µ∑
I=1
I 6=K

wKI , K = 1, . . . , µ. (45)

In comparison to the matrix algebra [Eq. (8)] for the µ-TASEP-IAF, the only changes
occurring in Eq. (45) correspond to the drifts of the non-conserving species. At this point,
we should mention that the matrix equation pKDKE − qKEDK = DK has been studied
in Ref. [55], in context of a conserved disordered ASEP model. Due to the presence of the
impurities and the flip processes activated by them, the matrix algebra for µ-ASEP-IAF in
Eq. (45), can be considered as a generalization of the matrix algebra in Ref. [55]. To arrive
at the matrix algebra in Eq. (45) from the dynamics (44), ansatz (2) and flux cancellation
condition (4), the choice of the auxiliary matrices are the same as the totally asymmetric
case, i.e.

Ẽ = 1, Ã = 0, D̃K = 0 K = 1, 2, . . . , µ. (46)

However, unlike the totally asymmetric case, we find the matrix representations for the
µ-ASEP-IAF to be infinite dimensional. Notably, this does not necessarily eliminate the
possibility of getting alternate finite dimensional representations of the matrices. Below
we present the matrix representations for µ = 3 case explicitly (as we will stick to µ = 3 for
the discussion of observable in this section) and mention the changes required to construct
the matrices for any µ > 0.

µ = 3 : A possible set of representations of the matrices for the 3-ASEP-IAF (I =
1, 2, 3) is the following

E =



0 0 0 0 . .
1 0 0 0 . .
0 1 0 0 . .
0 0 1 0 . .
0 0 0 1
. . .
. . .


, A =


1 1

ε
1
ε2

1
ε3

. .
0 0 0 0 . .
0 0 0 0 . .
. . . . . .
. . . . . .



DI =



d1,1
I d1,2

I d1,3
I d1,4

I . .

0 d2,2
I d2,3

I d2,4
I . .

0 0 d3,3
I d3,4

I . .

0 0 0 d4,4
I . .

. . .

. . .


, I = 1, 2, 3

dm,m+r
I =

(m)r
r! prI

(
qI
pI

)m−1

d1,1
I , ∀r > 0

d1,1
1 = w21w31 + w23w31 + w32w21,

d1,1
2 = w12w32 + w13w32 + w31w12,

d1,1
3 = w13w23 + w12w23 + w21w13. (47)
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In the absence of the impurities (A) and the flip processes, the term d1,1
µ for every µ

becomes unity, and corresponding the matrix representations for DI and E in Eq. (47)
(and their generalizations for general µ) are the same as that of the conserved disordered
ASEP [27,55]. In Eq. (47), we observe that the matrices (DI) corresponding to the species
(I) are upper triangular. The subscript I in matrix element di,jI denotes the species I
whereas the superscript (i, j) refers to the i-th row and j-th column of the matrix. The
notation (m)r used in the expression of dm,m+r

I corresponds to the Pochhammer symbol
for rising factorials, (m)r = m(m+ 1)(m+ 2) . . . (m+ r − 1) with (m)0 = 1. The matrix
E representing vacancy is a lower shift matrix and the matrix A representing impurity
has non-zero terms in a single row only. For the simpler case µ = 2 the only changes in
comparison to Eq. (47) will be in the values of d1,1

I (I = 1, 2), which would be simply

d1,1
1 = w21 and d1,1

2 = w12. In fact, the matrix representations [Eq. (47)] for the 3-ASEP-
IAF can be generalized for any µ > 0 in a straightforward manner. The representations
will remain the same, only the values of d1,1

I (I = 1, 2, . . . , µ) would change where d1,1
I is

the solution of Eq. (17).

5.2 Partition function for special initial configuration

In the totally asymmetric case, for general µ, we have considered the specific initial con-
figuration Eq. (29) which leads us to acquire analytical expressions for observables of
interest. We choose a particular case of Eq. (29), namely the ρ̄ = 0 case, as the special
initial configuration for analytical calculation in µ-ASEP-IAF. More precisely, the choice
of our special initial configuration for µ-ASEP-IAF is,

C(0) ≡
N+/µ∏
i=1

D1A

N+/µ∏
i=1

D2A · · ·
N+/µ∏
i=1

DµA

N0∏
i=1

E. (48)

The initial configuration Eq. (48) is chosen in a way that fixes the total impurity density
to ρ+. In comparison to Eq. (29), the initial configuration in Eq. (48) is simpler and does
not contain consecutive DI -s. We would see shortly that this specific choice is sufficient
to show negative differential mobility in µ-ASEP-IAF. We find the partition function
in the steady state under the periodic boundary condition corresponding to the initial
configuration Eq. (48), to be

QN+(z0) =

([
µ∑
I=1

dI
1− z0

pI
− qI

pI
z0
ε

](
1

1− z0
ε

))N+

. (49)

We have used short hand notations dI ≡ d1,1
I which are essentially the solutions of Eq. (17).

When qI = 0 for all species, it is straightforward to check that the partition function in
Eq. (49) reduces to the partition function Eq. (30) of the totally asymmetric case, under
the condition ρ̄ = 0.

5.3 Species densities, drift current and flip current

Just like we did in the µ-TASEP-IAF, we can analytically calculate several observables of
interest in the partially asymmetric case also, using the matrix algebra (45) and matrix
representations (47) following the same procedures as before. Starting from the initial
configuration stated in Eq. (48), the average density ρI of any non-conserved species I
(I = 1, . . . , µ) for the µ-ASEP-IAF is obtained as

ρI = ρ+
dI(

1− z0
pI
− qI

pI
z0
ε

) 1
µ∑

K=1

dK(
1− z0

pK
− qK
pK

z0
ε

) , (50)
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where ρ0 and ρ+ are the conserved densities for the vacancies and the impurities, respec-
tively. If we put qI = 0 for all I in Eq. (50), the expression of ρI for the totally asymmetric
case [Eq. (34)] is correctly recovered. The drift currents JI0 and the flip currents JI↔K
for the µ-ASEP-IAF (I,K = 1, . . . , µ) are given by

JI0 = z0 ρ+
dI(

1− z0
pI
− qI

pI
z0
ε

) 1
µ∑

K=1

dK(
1− z0

pK
− qK
pK

z0
ε

) ,

JI↔K = ρ+
(dIwIK − dKwKI)
µ∑

K=1

dK(
1− z0

pK
− qK
pK

z0
ε

) . (51)

5.4 Negative differential mobility

In what follows, we will show that the species in the µ-ASEP-IAF under the periodic
boundary condition, exhibit negative differential mobility [75, 76]. More precisely, we
would see that both the drift currents and the flip current can decrease with increasing
bias (which we define later), giving rise to the phenomena of negative differential mobil-
ity (NDM). NDM has been observed for driven tracer particles in the presence of static
obstacles [78,79] or in crowded medium [77] and for many particle systems in presence of
kinetic constraints [80] or obstacles [81]. There have been many studies to understand the
mechanism of NDM in driven systems and it appears that some kind of trapping that leads
to decrease in dynamical activity, acts as a main cause of NDM [79,82,83]. In connection
to asymmetric simple exclusion process, a two dimensional variant of ASEP where the
kinetic constraint is implemented by restricting the motion of the particles depending on
the number of its occupied neighbors, has been shown to exhibit NDM at high density
and high bias values [80]. In one dimension, a single driven tracer hopping asymmetri-
cally in the environment of bath particles executing symmetric exclusion process, exhibits
negative differential mobility as well as absolute negative mobility (current flowing in a
direction opposite to the bias direction), where the kinetic constraint is imposed by an
additional exchange dynamics of the tracer with a distant bath particle depending on the
vacant nearest neighbors [84]. Another way to incorporate the effect of the kinetic con-
straint leading to NDM, is to consider the escape rate from a configuration as a decreasing
function of the bias, shown elaborately for a biased random walker in Ref. [79].

Recently in Ref. [85], the authors have proposed that slowing down of non-driven
degrees of freedom (modes) through the biasing of the driven mode, can give rise to
negative differential mobility for both the driven and non-driven degrees of freedom in an
interacting many particle system. Here, we apply this mechanism to show that indeed
the µ-ASEP-IAF can exhibit NDM for particular choices of the rates in the microscopic
dynamics.

To illustrate NDM in µ-ASEP-IAF, we will focus on the µ = 3 case. We have three
species of particles (I = 1, 2, 3), impurities (+) and vacancies in the system following
the microscopic dynamics Eq. (44). We choose the drift rates pI and qI of the species
I = 1, 2, 3 to be

p1 = 1, q1 = e−b, p2 = 1
1+b2

= q2, p3 = 1 = q3. (52)

The choices of the hopping rates in Eq. (52) are inspired by similar choices in Ref. [85] in
context of NDM for different models. The special choices of the hopping rates in Eq. (52)
allow us to identify the parameter b as the hopping bias in the system. This is because
ln(p1/q1) = b and the unbiased case p1 = q1 = 1 corresponds to b = 0. Then, the species
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Figure 10: The figure illustrates the negative differential mobility of the currents
in the 3-ASEP-IAF. In (a), the drift current of the species 1 (driven by bias b)
monotonically decreases with increasing bias. The current of the other driven
mode (driven due to unidirectional motion with rate ε) impurity (+) shows non-
monotonic behavior, it increases initially but ultimately decreases with increasing
bias for large values of b. In (b), the drift current of both non-driven modes
(species 2 and species 3) decrease with increasing bias b for large values of the
bias. The figure (c) shows that the flip current between any pair of species also
exhibits negative differential mobility with increasing b. Although the flip current
is not related to the drift bias b directly, still it decreases with increasing bias
for large values of b. The parameters used here are L = 103, ε = 0.1, p3 = q3 =
1.0, w31 = w12 = 0.8, w13 = w32 = 0.2, w21 = w23 = 0.5, ρ+ = 0.3, ρ0 = 0.4. The
ensemble average is done over 106 samples.
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1 particle is a driven mode for any b > 0. Even when b > 0, Eq. (52) clearly states that
species 2 and species 3 particles are non-driven modes in the system because the right and
left hopping rates are equal for both of them. However, there is a key difference between
the hopping rates of species 2 and species 3 particles. The hopping rates of species 2 depend
explicitly on the bias b of the driven mode (species 1). More precisely, the hopping rates
p2 and q2 decrease with increasing bias b. This corresponds to the slowing down of non-
driven mode and turns out to be the key for negative differential mobility. The hopping
rates p3 and q3 of the other non-driven mode species 3, does not depend on b. Here we
should mention the presence of another driven mode in the system, which is the impurity.
Since, the impurity motion is only unidirectional, it is a driven mode by construction.
Consequently, even at b = 0 the system is in a non-equilibrium steady state for ε > 0
where the impurity acts as the lone driven mode. In the present context, we choose ε to
be a constant independent of the bias b. We focus on the behavior of the currents with
the variation of b. To summarize, the driven modes in the 3-ASEP-IAF are (i) species 1
(driven by b) and (ii) impurity (driven due to unidirectional motion with constant rate
ε, independent of b), whereas the non-driven modes are (i) species 2 (hopping rates are
decreasing function of b) and (ii) species 3 (hopping rates independent of b). All the flip
rates wIK (I,K = 1, 2, 3) are kept constants independent of the drift bias b. With this set
up, we now investigate the variation of the drift currents and flip current as functions of
the bias b, both from analytical formulae Eq. (51) and Monte Carlo simulations.

In Fig. 10(a), we present the behaviors of the drift currents of the driven modes with
variation of the bias b, under the periodic boundary condition. Interestingly, although the
bias b is directly applied to species 1 to increase its current, the drift current for species
1 decreases monotonically with increasing bias giving rise to the phenomena of negative
differential mobility. The current of the other driven mode, the impurities, initially increase
with increasing bias, reaches to a maximum, but then decreases as the bias is further
increased, thereby leading to NDM. The drift currents of both the non-driven modes
exhibit non-monotonic behaviors with increasing bias as shown in Fig. 10(b). Both of them
decrease with increasing bias for sufficiently large values of b, showing negative differential
mobility. Notably, the flip dynamics is not directly affected by the drift bias since all the
flip rates are kept to be constants independent of b. Therefore, it is intriguing to observe
that the net flip current still decreases with increasing bias (for large b) and therefore
exhibits NDM, as presented in Fig. 10(c). The mechanism behind the negative differential
mobility in drift current is related to the decreasing dynamical activity (number of hops
per unit time) of the species 2 particles (one of the non-driven modes) with increasing
forward bias b for the species 1 particles. Since with increasing b, the hop rate of species
2 [Eq. (52)] decreases, its waiting time at the residing site increases i.e. it becomes more
and more prone to stay at the residing site rather to leave the site as b increases. That is
why, although the increasing bias tries to push particles forward, their ways are blocked
by the slowed down species 2 particles. The exclusion interaction and the non-overtaking
dynamics facilitates the NDM even better by not allowing other species or impurities to
overtake the slowed down species 2 particles. The reason behind the negative differential
mobility occurring in the flip current requires further investigation.

We end this section with mentioning the possibility of further nontrivial transport
properties in the steady state of the µ-ASEP-IAF when one considers the counter flow
scenario. The counter flow in the system arises when the net bias of some species of
particles are opposite to that of the others. For example, in the 2-ASEP-IAF, species 1
can have net bias to right i.e. p1 > q1 whereas the species 2 can have net bias in the
opposite direction i.e. q2 > p2. Counter flow can give rise to interesting physical features
e.g. phase transitions [48,52,86]. This urges for detailed investigation of the counter flow
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situation in µ-ASEP-IAF in future works.

6 Summary and future directions

In this article, we have obtained an exact steady state probability distribution of the
µ-ASEP-IAF on a one dimensional lattice under periodic boundary conditions, using the
matrix product ansatz. The µ-ASEP-IAF consists of (i) drift of the species (I = 1, 2, . . . , µ)
and impurities, and (ii) flip between different species initiated by the impurities. In steady
state, we provide the explicit finite dimensional [(µ+1)×(µ+1)] matrix representations for
any µ > 0 for the totally asymmetric case i.e. µ-TASEP-IAF. For the partially asymmetric
scenario i.e. µ-ASEP-IAF, we obtain the corresponding matrices with infinite dimensional
representations. Importantly, due to the non-ergodicity of the µ-ASEP-IAF dynamics,
the partition function and observables in the steady state depend on the specific choice
of the initial configuration. However, for a special class of initial configurations, we could
indeed analytically calculate the partition function for both the totally asymmetric and
partially asymmetric cases with any µ > 0, under periodic boundary conditions. We
present exact analytical expressions for steady state observables like the average densities
of the non-conserved species, drift current, flip current and some other two-point correla-
tions. We show that our analytical calculations are in agreement with the Monte Carlo
simulations for the analytically tractable specific initial configuration. In this connection,
the non-ergodicity of the model has been established extensively (Monte Carlo simula-
tions) by showing the deviations of the steady state observable values for a random initial
configuration from that of the specific initial configuration mentioned above. Along with
the important exactly solvable analytical structure, the µ-ASEP-IAF also has interest-
ing physical features. Notably, with the variation of vacancy density, several two-point
correlations exhibit interesting behaviors e.g. transiting between negative and positive
correlations, showing both local maximum and local minimum etc. The effect of the drift
on the flip processes are evident from the functional dependence of the species densities on
the flip rates. Interestingly, both the drift current and flip current in the µ-ASEP-IAF are
shown (analytically and numerically) to display negative differential mobility (decreasing
current with increasing bias) for certain choices of the drift rates. The mechanism behind
the negative differential mobility relies on slowing down a non-driven mode in the sys-
tem through the biasing of a driven mode, which eventually leads to decreased dynamical
activity of all the modes in the steady state.

Apart from its own intriguing mathematical and physical characteristics, the µ-ASEP-
IAF studied here is relevant in two other important contexts. The µ-ASEP-IAF has
interesting connections to (i) multi lane asymmetric simple exclusion proces (m-ASEP)
which serves as a simple yet remarkable model for multi lane traffic flow, and (ii) enzymatic
chemical reactions. For the totally asymmetric model µ-TASEP-IAF, these connections
are discussed in details in Appendix A and Appendix C respectively. Importantly, the
exact solution of µ-ASEP-IAF suggests possible exact solutions in corresponding multi
lane ASEP and traffic models with correlations between particles in different lanes and
non-zero net current between lanes. The detailed and rigorous analysis to develop these
connections and incorporate them for studying multi-lane traffic flow, constitutes one of
the main future directions. We also propose a variation of the µ-ASEP-IAF that exhibits
better prospects for being a model for multi lane traffic flow (see Appendix B). In future we
plan to investigate the exact steady state and observables of this varied µ-ASEP-IAF model
using matrix product ansatz. Just like the multi lane traffic flow, the connections between
µ-ASEP-IAF and enzymatic chemical reactions both in steady state as well as dynamics,
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should be analyzed in more details by considering observables relevant for the chemical
reactions. In the present article, we have considered impurities with fixed finite density
and constant hopping rate. It would be useful to explore the effects of the variations
of impurity density and impurity hopping rate on the observables in the µ-ASEP-IAF.
Another important future direction would be to analyze the exact steady state of the µ-
ASEP-IAF with open boundary conditions which is more pertinent in context of transport
processes, and might also lead to rich phase transitions. It would be interesting to look into
the effect of counter flow (i.e. some species having net bias in opposite direction relative to
the other species) on the transport properties and possibility of phase separations in the
µ-ASEP-IAF. We would also like to investigate the dynamics of the µ-ASEP-IAF in detail,
in particular if the product form of the steady state also prevails in the dynamics (using
dynamical matrix product ansatz), the dynamical activity in terms of large deviations and
possibility of dynamical phase transitions in related models.
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A Connection between µ-TASEP-IAF and multi lane TASEP

Here we explore the connections between the multi lane totally asymmetric simple exclu-
sion process (m-TASEP) and the one dimensional µ-ASEP-IAF. For simplicity, we consider
µ = 2 i.e. the 2-TASEP-IAF (and correspondingly 2-TASEP or two lane TASEP).

In Fig. 11, we present a two lane TASEP where particles can hop in forward directions
in lane 1 and lane 2 with rates p1 and p2 respectively. The particles in lane 1 and lane 2
can be interpreted as two types i.e. species 1 and species 2 particles in the 2-TASEP-IAF
process. Except for the hopping of particles in the two lanes in the 2-TASEP, the particles

Figure 11: The figure illustrates a two lane totally asymmetric simple exclusion
process and the identification of its components to the equivalent constituents of
the 2-TASEP-IAF.
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can change lanes through bridges connecting the lanes. There are two types of bridges,
active (green vertical lines in Fig. 11) that allows vertical hopping i.e. lane change of
particles and inactive (red vertical lines in Fig. 11) that does not allow lane change of
particles. The active bridges in the two lane TASEP mimic the impurities (+) in the
2-TASEP-IAF. However, the inactive bridges are not counted in the equivalent 2-TASEP-
IAF. Notably, a neighboring pair of (active, inactive) bridges can change to (inactive,
active). This inactive-active transformation of neighboring lanes can be interpreted as a
resultant drift of the active bridges through the system. Consequently, this accounts for
the forward hopping of impurity in the 2-TASEP-IAF.

Figure 12: The figure shows the connection between each microscopic dynamics of
the two lane TASEP with the equivalent microscopic dynamics in the 2-TASEP-
IAF.

The equivalence of the microscopic dynamics of the two lane TASEP and the 2-TASEP-
IAF is shown in Fig. 12. The last (bottom) panel in Fig. 12 exhibits the connection
between the inactive-active lane transformations in 2-TASEP and the impurity hopping
in the 2-TASEP-IAF. The two panels above the bottom panel in Fig. 12 describe the
equivalence of the lane change of particles in 2-TASEP with the impurity activated flip in
the corresponding 2-TASEP-IAF. To elaborate, when the lane 1 (2) particle in 2-TASEP
comes in contact with an active bridge, it can go to lane 2 (1) with rate w12 (w21).
Similarly, when a species 1 (2) particle in the 2-TASEP-IAF encounters an impurity as
a right neighbor, it can flip to a species 2 (1) particle with rate w12 (w21). The first
two panels in Fig. 12 present the relations between usual hopping dynamics in the two
processes.

We can generalize the approaches described above to establish connections between
the multi-lane TASEP and the µ-TASEP-IAF for any µ > 3. It is noteworthy that, for
the multi-species case (µ > 3), we have shown the existence of non-zero net flip current in
the µ-TASEP-IAF. It implies the existence of net non-zero lane change current between
neighboring lanes in the multi lane TASEP. Also, the correlations between different species
of particles and vacancies in the µ-TASEP-IAF suggest non-zero correlations between
particles in the different lanes in the m-TASEP. The mapping can also be extended for the
partially asymmetric motion of particles. We must mention that the connections between
the muti-lane TASEP and µ-TASEP-IAF described here, are approximate. To establish
more accurate relations between the two processes, one has to perform rigorous calculations
for observables in the multi-lane TASEP and compare the corresponding results with that
of the µ-TASEP-IAF.
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Figure 13: The figure shows the variation of the total drift current of species 1 and
2 with the flip rate w12. While the flip rate (equivalent lane change rate in two
lane TASEP) is varied over a large range w12 ∈ (0, 1), the corresponding increase
in the total drift current (total flow along the two lanes in TASEP) is reasonably
small. The parameters used are L = 104, p1 = 0.3, p2 = 1.0, ε = 0.1, w21 =
1.0, ρ+ = 0.2, ρ0 = 0.2. The ensemble average is done over 107 samples.

B A variation of µ-TASEP-IAF, connection to multi-lane
traffic flow

The multi lane TASEP has been widely regarded as a simplistic yet important model for
multi lane traffic flow [2]. Due to the connections between the µ-TASEP-IAF and the
multi-lane TASEP discussed in Appendix A, it is natural to ask about the applicability of
µ-TASEP-IAF [Eq. (1)] as a suitable model for multi lane traffic flow. Before addressing
this question, we should mention that the lane change dynamics in realistic traffic flow
must facilitate the traffic as a whole. More precisely, the change of lanes should increase
the total flow or total current along the lanes. To investigate this for the µ-TASEP-IAF
with µ = 2, we plot the total drift current of species 1 and species 2, Jtotal = J10 + J20 as
a function of the flip rate w12 in Fig. 13. Of course, for the two lane TASEP, this amounts
to investigating the variation of the total drift current of lane 1 and lane 2 by changing
the lane change rate w12.

In Fig. 13 we observe that the total current, although increases with the flip rate, the
amplitude of the increment is quite small keeping in mind the wide range of variation in
the tuning parameter w12 ∈ (0, 1). The reason behind this, as revealed by a careful ob-
servation, is the approximate mapping between the µ-TASEP-IAF and multi lane TASEP
described in Fig. 12. In the µ-TASEP-IAF dynamics, when a species encounters an im-
purity, it flips but does not change its position. On the other hand, in the multi lane
TASEP, when a particle in any lane comes in contact with an active bridge, it actually
changes the lane i.e. not only changes its characteristics (lane 1 particle to lane 2 particle
or vice versa) but also changes its position. To incorporate this in our present model, we
propose a variation of the µ-TASEP-IAF dynamics in Eq. (1). Specifically, the change is
made only in the flip dynamics. Earlier in Eq. (1), the flip dynamics has been

I+
wIK−→ K+, (53)

with I,K = 1, ..., µ and I 6= K. Whereas we propose the new flip dynamics to be

I+
wIK−→ +K. (54)
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Figure 14: The figure illustrates the comparison of the total drift current Jtotal

between the flip process in Eq. (53) and the proposed variation in Eq. (54). The
current Jtotal for the variation Eq. (54) increases considerably with increasing flip
rate (equivalent lane change rate in two lane TASEP) w12, whereas the same for
the original flip process Eq. (53) increase much slowly (Fig. 13). The parameters
used are L = 104, p1 = 0.3, p2 = 1.0, ε = 0.1, w21 = 1.0, ρ+ = 0.2, ρ0 = 0.2. The
ensemble average is done over 107 samples.

Note that, in comparison to Eq. (53), the flip process in Eq. (54) accompanies the flip
of the species with a hop towards right. The other hopping processes in Eq. (1) remain
the same for this varied µ-TASEP-IAF. The effect of the dynamics can be immediately
observed in Fig. 14 where we present the variation of the total drift current as a function
of the flip rate (lane change rate) for both the dynamics in Eq. (53) and Eq. (54) (using
Monte Carlo simulations). Indeed, the Fig. 14 shows that Jtotal increases considerably
with increasing lane change rate for Eq. (54) whereas it grows weakly for Eq. (53) (see
Fig. 13). This observation implies that the proposed variation of the µ-TASEP-IAF acts as
a better model for multi lane traffic flow in comparison to the original model. It would be
interesting to study this variation of the µ-TASEP-IAF both analytically and numerically
and to build connections with the multi lane traffic flow.

C Connection between µ-TASEP-IAF and enzymatic chem-
ical reactions

In this appendix, we briefly discuss some connections between the µ-TASEP-IAF and
enzymatic chemical reactions. One of the simplest form of the enzymatic chemical reaction
is,

E + S
kf−⇀↽−
kb

ES
k̄f−⇀↽−̄
kb

E + P, (55)

where E,S, P denotes enzyme, substrate, product respectively and ES corresponds to
the intermediate complex. The parameters kf and kb are the rate constants for forward
and backward reaction for the intermediate complex formation, while k̄f and k̄b are the
rate constants for forward and backward reactions between the intermediate complex and
the product (along with enzyme). Clearly, the initially present enzyme in the reaction
remains intact after the reaction is completed. Here, to discuss some connections to the
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Figure 15: The figure illustrates the connection between the simplified form of
the enzymatic chemical reaction Eq. (56) (in a narrow channel with many units
of drifting enzymes, substrates and products) and the 2-TASEP-IAF. The en-
zyme, substrate and product in the chemical system can be identified as impurity,
species 1 and species 2 particle in the 2-TASEP-IAF.

µ-ASEP-IAF, we would rather consider a much simplified version of the chemical reaction
(55) as

S + E
kS−−⇀↽−−
kP

P + E, (56)

where we ignore the intermediate complex formation. kS (kP ) is the rate constant for S
transforming to P (P transforming to S).

Let us consider a spatially extended narrow channel with many units of substrates,
enzymes and products all of which drift through the channel at different rates. This system
of chemical reagents can be approximately mapped to an equivalent µ-TASEP-IAF. As
explained in Fig. 15 for µ = 2, the impurity in 2-ASEP-IAF plays the role of the enzyme,
as it can transform one species of particle to another species. One species, e.g. species 1
can be considered as S for chemical reaction Eq. (56), whereas the species 2 particle acts
as P . The flip rates w12 and w21 mimic the rate constants kS and kP . With this set up,
our study of the 2-TASEP-IAF reveals the effect of drift on the resultant concentrations
of substrates and products in the steady state. Notably, the multi-species (µ > 2) case of
the µ-TASEP-IAF can be mapped to generalized version of the chemical reaction Eq. (56)
as

Si + E
kSj−−⇀↽−−
kPj

Pj + E, (57)

where i = 1, . . . , µ1 are identified as µ1 number of substrates and j = 1, . . . , µ2 are identi-
fied as µ2 number of products in the enzymatic chemical reaction system (with E acting
as the enzyme for each chemical reaction) where µ1 + µ2 = µ (µ being the total number
of species in the µ-TASEP-IAF). To study the time evolution of the enzymatic chemical
reaction, one has to study the dynamics of the µ-TASEP-IAF. The connection between the
µ-TASEP-IAF and the enzymatic chemical reactions should be studied more thoroughly
with proper attention to the observables of interest for the chemical reactions.
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D Solution of Eq. (25) for fugacity z0: special cases

We have calculated the partition function (Sec. 3) and observables (Sec. 4) in the grand
canonical ensemble, by associating a fugacity z0 with the vacancies. Since the observables
have to be finally expressed in terms of the input parameters (p1, p2, ε, w12, w21, ρ0, ρ+)
only, an important step in the calculation is to solve Eq. (25) to obtain the fugacity as
a function of these input parameters i.e. z0(p1, p2, ε, w12, w21, ρ0, ρ+). However, in most
cases the solutions of z0 from Eq. (25), cannot be obtained explicitly. In this appendix,
we would provide two simple cases for particular choices of the hop-rates and the initial
configuration where the solutions for z0 get simplified significantly. Specifically, we would
consider ρ̄ = 0 for the initial configuration (see Sec. 3). Consequently, the density-fugacity
relation Eq. (25) becomes a quartic equation in the variable z0, emerging from

ρ0 = ρ+z0

[
1

ε− z0
+

1

p1w21(p2 − z0) + p2w12(p1 − z0)

(
p1w21

p2 − z0

p1 − z0
+ p2w12

p1 − z0

p2 − z0

)]
.(58)

Below we discuss two special cases.

D.1 Case I:

A particularly simple solution can be acquired for the choice p1 = p2 = 1 6= ε. As a result,
Eq. (58) is reduced to a quadratic equation which leads to the following solution

z0 =
(1 + ε)(ρ0 + ρ+)−

√
(1 + ε)2(ρ0 + ρ+)2 − 4ερ0(ρ0 + 2ρ+)

2(ρ0 + 2ρ+)
. (59)

Note that in this case, the fugacity does not depend explicitly on the flip rates w12 and
w21.

D.2 Case II:

A comparatively cumbersome yet closed form solution is attained for the case p1 =
1/2, p2 = ε = w21 = 1, ρ+ = 1/4. Here the fugacity would be a function of w12 and
ρ0 i.e. z0(w12, ρ0). The reason behind keeping w12 and ρ0 as free parameters is that, the
observables in the main text have been mostly analyzed as functions of these two parame-
ters. The corresponding solution (Eq. (58) essentially reduces to a cubic equation) for the
fugacity is given below,

z0 = − a2

3a3
+

21/3(−a2
2 + 3a3a1)

3a3|ν|
− 22/3|ν|

6a3
, (60)

where |ν| denotes the absolute value of ν and its functional form is

ν(a0, a1, a2, a3) =

(−2a3
2 + 9a3a2a1 − 27a2

3a0 +
√
−4(a2

2 − 3a3a1)3 + (2a3
2 − 9a3a2a1 + 27a2

3a0)2)
1
3 .(61)

In Eqs. (60) and (61), the parameters a0, a1, a2, a3 are explicit functions of w12 and ρ0, as
follows

a0 = −4ρ0(1 + w12),
a1 = 3 + 2w12 + 4ρ0(4 + 5w12),
a2 = −7− 8w12 − 4ρ0(5 + 8w12),
a3 = 4(1 + 2ρ0)(1 + 2w12). (62)

Although there seems to be no definite rule for obtaining closed-form solutions of z0 like
Eqs. (59) and (60), one might achieve other convenient solutions by searching for suitable
subspace of the transition rates.
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E Block-diagonal structure of the transition rate matrix

In this appendix, we show the block-diagonal structure of the transition rate matrix M
[Eq. (3)], reflecting the non-ergodicity of µ-ASEP-IAF. To illustrate this with an example
for µ = 2, we consider a small system of size L = 4 where the number of impurity and
vacancy are given by N+ = 1 and N0 = 1, respectively, and the total number of species 1
and species 2 particles is N1 +N2 = 2. Total number of configurations in the configuration
space, in this case, is 48. However, since there is no spatial disorder in the transition
rates, we take into account the translational invariance of the model on a periodic lattice.
Consequently, there are 12 independent configurations of the system, which we denote as
follows (depending on the sequence of species 1 and 2)

11 + 0 ≡ I1, 110+ ≡ I2, 101+ ≡ I3,
12 + 0 ≡ II1, 120+ ≡ II2, 102+ ≡ II3,
21 + 0 ≡ III1, 210+ ≡ III2, 201+ ≡ III3,
22 + 0 ≡ IV1, 220+ ≡ IV2, 202+ ≡ IV3.

(63)

We have divided the 12 configurations in Eq. (63) into 4 sectors I, II, III, IV where the
three configurations within a given sector are connected through the drift dynamics. To
investigate the connectivity between these sectors through the flip dynamics, below we pro-
vide the full transition rate matrix for these 12 configurations (enumerated consecutively
from I1 to IV3),

M =

(
MI,II ©
© MIII,IV

)
, (64)

where

MI,II =



−ε− w12 0 p1 w21 0 0
ε −p1 0 0 0 0
0 p1 −p1 − w12 0 0 w21

w12 0 0 −ε− w21 0 p1

0 0 0 ε −p2 0
0 0 w12 0 p2 −p1 − w21

 ,

MIII,IV =



−ε− w12 0 p2 w21 0 0
ε −p1 0 0 0 0
0 p1 −p2 − w12 0 0 w21

w12 0 0 −ε− w21 0 p2

0 0 0 ε −p2 0
0 0 w12 0 p2 −p2 − w21

 , (65)

and© is 6×6 null matrix. In Eqs. (64) and (65), we clearly observe that the transition rate
matrix in in block-diagonal form with two blocks. We observe that sector I is connected
to sector II through flip dynamics, whereas sector III and IV are also connected to each
other via flip dynamics. However, sectors (I, II) are disconnected from sectors (III, IV ),
thereby creating two separate blocks in the rate matrix.

Note that, in absence of the flip dynamics (i.e. w12 = w21 = 0), sectors I become
disconnected from II, similarly III gets disconnected from IV , resulting in four blocks
in the transition matrix. On the other hand, in the special limit when N1 + N2 = 1, we
would have a single block with the system becoming ergodic.

Next we explore the variation in the number of blocks as the system size is increased.
We keep N0 = 1 throughout, because it appears that the number of blocks depends on the
arrangements of 1, 2 and +, but not on the location of vacancies. This might be better
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understood in a box-particle representation of the model where 1, 2,+ denote boxes and
0-s are particles.

For L = 5, the special case N1 + N2 = 1 (N+ = 3) keeps the system ergodic with
a single block only. But, as we increase N1 + N2, e.g. N+ = 2 and N1 + N2 = 2, one
can check that the rate matrix is block-diagonal with 3 blocks. With further increase in
N1 + N2(=3) which also corresponds to N+ = 1, we have 4 blocks in the transition rate
matrix. Below we present Nblocks in a tabular form, explicitly for a few sets of (L,N+),
with N0 = 1 and N1 +N2 = L−N0 −N+,

L N+ Nblocks

4 1 2

4 2 1

5 1 4

5 2 3

5 3 1

6 1 8

6 2 6

6 3 3

6 4 1

7 1 16

7 2 15

8 1 32

8 2 32

9 1 64

9 2 74

10 1 128

10 2 160

In fact, for fixed system size L, with N0 = 1, the general formulae for number of blocks
Nblocks in the transition rate matrix, for cases N+ = 1 and N+ = 2 turn out to be

N+ = 1 : Nblocks = 2L−3,
N+ = 2 : Nblocks = 2L−6L, L even

= 2L−6(L− 1) + 2
L−7

2

(
2
L−5

2 + 1
)
, L odd,

N+ = L− 2 : Nblocks = 1. (66)

It would be interesting to find out the analytical formula for the number of blocks in the
transition rate matrix for any general N+, which would contain the formulae in Eq. (66)
as special cases.
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[36] N. Crampé, Algebraic Bethe ansatz for the totally asymmetric simple exclusion process
with boundaries, J. Phys. A: Math. Theor. 48, 08FT01 (2015), doi:10.1088/1751-
8113/48/8/08FT01.

[37] J. de Gier and F. Essler, Bethe Ansatz Solution of the Asymmetric Ex-
clusion Process with Open Boundaries, Phys. Rev. Lett. 95, 240601 (2005),
doi:10.1103/PhysRevLett.95.240601.

[38] M. Kardar, G. Parisi and Y-C. Zhang, Dynamic Scaling of Growing Interfaces, Phys.
Rev. Lett. 56, 889 (1986), doi:/10.1103/PhysRevLett.56.889.

[39] L. H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the
noisy Burgers equation, Phys. Rev. A 46, 844 (1992), doi:10.1103/PhysRevA.46.844.

[40] T. Sasamoto and H. Sphon, One-Dimensional Kardar-Parisi-Zhang Equation:
An Exact Solution and its Universality, Phys. Rev. Lett. 104, 230602 (2010),
doi:10.1103/PhysRevLett.104.230602.

[41] A. Parmeggiani, T. Franosch and E. Frey, Phase Coexistence in
Driven One-Dimensional Transport, Phys. Rev. Lett. 90, 086601 (2003),
doi:10.1103/PhysRevLett.90.086601.

[42] E. Pronina and A. B. Kolomeisky, Two-channel totally asymmetric simple exclusion
processes, J. Phys. A: Math. Gen. 37, 9907 (2004), doi:10.1088/0305-4470/37/42/005.

[43] T. Mitsudo and H. Hayakawa, Synchronization of kinks in the two-lane totally asym-
metric simple exclusion process with open boundary conditions, J. Phys. A: Math.
Gen. 38, 3087 (2005), doi:10.1088/0305-4470/38/14/002.

[44] R. Jiang, M. Hu, Y. Wu and Q. Wu, Weak and strong coupling in a
two-lane asymmetric exclusion process, Phys. Rev. E 77, 041128 (2008),
doi:10.1103/PhysRevE.77.041128.

[45] H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for cross-
ing pedestrian traffic flows, J. Stat. Mech. P06009 (2012), doi:10.1088/1742-
5468/2012/06/P06009.

[46] Y. Wang, R. Jiang and Q. Wu, Dynamics in phase transitions of TASEP coupled with
multi-lane SEPs, Nonlinear Dyn 88, 1631 (2017), doi:10.1007/s11071-017-3335-2.

[47] P. Helms , U. Ray and G. K.-L. Chan, Dynamical phase behavior of the single- and
multi-lane asymmetric simple exclusion process via matrix product states, Phys. Rev.
E 100, 022101 (2019), doi:10.1103/PhysRevE.100.022101.

[48] Q.-Y. Hao ,R. Jiang, M.-B. Hu, Y. Zhang, C.-Y. Wu and N. Guo, Theoretical analysis
and simulation of phase separation in a driven bidirectional two-lane system, Phys.
Rev. E 100, 032133 (2019), doi:10.1103/PhysRevE.100.032133.

[49] I. Neri, N. Kern and A. Permeggiani, Totally Asymmetric Simple Exclusion Process on
Networks, Phys. Rev. Lett. 107, 068702 (2011), doi:10.1103/PhysRevLett.107.068702.

[50] K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A:
Math. Gen. 29, 5375 (1996), doi:10.1088/0305-4470/29/17/013.

[51] F. H. Jafarpour, Partially Asymmetric Simple Exclusion Model in the Presence of
an Impurity on a Ring, J. Phys. A: Math. Gen. 33, 1797 (2000), doi:10.1088/0305-
4470/33/9/306.

38

http://dx.doi.org/10.1088/1751-8113/48/8/08FT01
http://dx.doi.org/10.1088/1751-8113/48/8/08FT01
http://dx.doi.org/10.1103/PhysRevLett.95.240601
http://dx.doi.org//10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevA.46.844
http://dx.doi.org/10.1103/PhysRevLett.104.230602
http://dx.doi.org/10.1103/PhysRevLett.90.086601
http://dx.doi.org/10.1088/0305-4470/37/42/005
http://dx.doi.org/10.1088/0305-4470/38/14/002
http://dx.doi.org/10.1103/PhysRevE.77.041128
http://dx.doi.org/10.1088/1742-5468/2012/06/P06009
http://dx.doi.org/10.1088/1742-5468/2012/06/P06009
http://dx.doi.org/10.1007/s11071-017-3335-2
http://dx.doi.org/10.1103/PhysRevE.100.022101
http://dx.doi.org/10.1103/PhysRevE.100.032133
http://dx.doi.org/10.1103/PhysRevLett.107.068702
http://dx.doi.org/10.1088/0305-4470/29/17/013
http://dx.doi.org/10.1088/0305-4470/33/9/306
http://dx.doi.org/10.1088/0305-4470/33/9/306


SciPost Physics Submission

[52] F. H. Jafarpour, Exact solution of an exclusion model in the presence of a mov-
ing impurity on a ring, J. Phys. A: Math. Gen. 33, 8673 (2000), doi:10.1088/0305-
4470/33/48/307.

[53] B. Derrida and M. R. Evans, Bethe ansatz solution for a defect particle in the asym-
metric exclusion process, J. Phys. A: Math. Gen. 32, 4833 (1999), doi:10.1088/0305-
4470/32/26/303.

[54] C. Boutillier, P. Francois, K. Mallick and S. Mallick, A matrix ansatz for the diffusion
of an impurity in the asymmetric exclusion process, J. Phys. A: Math. Gen. 35, 9703
(2002), doi:10.1088/0305-4470/35/46/301.

[55] M. R. Evans, Bose-Einstein condensation in disordered exclusion models and relation
to traffic flow, Europhys. Lett., 36, 13 (1996), doi:10.1209/epl/i1996-00180-y.

[56] M. J. Lazo and A. J. Ferreira, Asymmetric exclusion model with impurities, Phys.
Rev. E 81, 050104(R) (2010), doi:10.1103/PhysRevE.81.050104.

[57] A. B. Kolomeisky, J. Phys. A: Math. Gen. 31, Asymmetric simple exclusion model
with local inhomogeneity, 1153 (1998), doi:10.1088/0305-4470/31/4/006.

[58] S. A. Janowsky and J. L. Lebowitz, Finite-size effects and shock fluctua-
tions in the asymmetric simple-exclusion process, Phys. Rev. A 45, 618 (1992),
doi:10.1103/PhysRevA.45.618.

[59] G. Tripathy and M. Barma, Driven lattice gases with quenched disorder: Ex-
act results and different macroscopic regimes, Phys. Rev. E 58, 1911 (1998),
doi:10.1103/PhysRevE.58.1911.

[60] T. Chou and G. Lakatos, Clustered Bottlenecks in mRNA Translation and Protein
Synthesis, Phys. Rev. Lett. 93, 198101 (2004), doi:10.1103/PhysRevLett.93.198101.

[61] M. Barma, Driven diffusive systems with disorder, Physica A 372, 22 (2006),
doi:10.1016/j.physa.2006.05.002.

[62] J. Szavits-Nossan, Disordered exclusion process revisited: some exact results in the
low-current regime, J. Phys. A: Math. Theor. 46, 315001 (2013), doi:10.1088/1751-
8113/46/31/315001.

[63] B. Waclaw, J. Cholewa-Waclaw and P. Greulich, Totally asymmetric exclusion pro-
cess with site-wise dynamic disorder, J. Phys. A: Math. Theor. 52, 065002 (2019),
doi:10.1088/1751-8121/aafb8a.

[64] U. Basu and P. K. Mohanty, TASEP on a ring with internal degrees of freedom, Phys.
Rev. E. 82, 041117 (2010), doi:10.1103/PhysRevE.82.041117.

[65] S. Zeraati, F.H. Jafarpour and H. Hinrichsen, Phase transition in an ex-
actly solvable reaction-diffusion process, Phys. Rev. E. 87, 062120 (2013),
doi:10.1103/PhysRevE.87.062120.

[66] M. Ghadermazi and F. H. Jafarpour, A new family of exactly solvable disor-
dered reaction-diffusion systems, J. Stat. Mech. P09023 (2013), doi:10.1088/1742-
5468/2013/09/P09023.

[67] N. Shiraishi and K. Matsumoto, Undecidability in quantum thermalization, Nature
Communications 12, 5084 (2021), doi:10.1038/s41467-021-25053-0.

39

http://dx.doi.org/10.1088/0305-4470/33/48/307
http://dx.doi.org/10.1088/0305-4470/33/48/307
http://dx.doi.org/10.1088/0305-4470/32/26/303
http://dx.doi.org/10.1088/0305-4470/32/26/303
http://dx.doi.org/10.1088/0305-4470/35/46/301
http://dx.doi.org/10.1209/epl/i1996-00180-y
http://dx.doi.org/10.1103/PhysRevE.81.050104
http://dx.doi.org/10.1088/0305-4470/31/4/006
http://dx.doi.org/10.1103/PhysRevA.45.618
http://dx.doi.org/10.1103/PhysRevE.58.1911
http://dx.doi.org/10.1103/PhysRevLett.93.198101
http://dx.doi.org/10.1016/j.physa.2006.05.002
http://dx.doi.org/10.1088/1751-8113/46/31/315001
http://dx.doi.org/10.1088/1751-8113/46/31/315001
http://dx.doi.org/10.1088/1751-8121/aafb8a
http://dx.doi.org/10.1103/PhysRevE.82.041117
http://dx.doi.org/10.1103/PhysRevE.87.062120
http://dx.doi.org/10.1088/1742-5468/2013/09/P09023
http://dx.doi.org/10.1088/1742-5468/2013/09/P09023
http://dx.doi.org/10.1038/s41467-021-25053-0


SciPost Physics Submission

[68] K. A. Johnson and R. S. Goody, The Original Michaelis Constant: Translation of the
1913 Michaelis-Menten Paper, Biochemistry 50, 8264 (2011), doi:10.1021/bi201284u.

[69] M. J. Schnitzer, K. Visscher and S. M. Block, Force production by single kinesin
motors , Nat. Cell Biol. 2, 718 (2000), doi:10.1038/35036345.

[70] R. Grima, Noise-Induced Breakdown of the Michaelis-Menten Equa-
tion in Steady-State Conditions, Phys. Rev. Lett. 102, 218103 (2009),
doi:10.1103/PhysRevLett.102.218103.

[71] K. Mallick, S. Mallick and N. Rajewsky, Exact solution of an exclusion process with
three classes of particles and vacancies, J. Phys. A: Math. Gen. 32, 8399 (1999),
doi:10.1088/0305-4470/32/48/303.

[72] K. Klobas, M. Medenjak and T. Prosen, Exactly solvable deterministic lattice model
of crossover between ballistic and diffusive transport, J. Stat. Mech. 123202 (2018),
doi:10.1088/1742-5468/aae853.

[73] F. H. L. Essler and L. Piroli, Integrability of one-dimensional Lindbladi-
ans from operator-space fragmentation, Phys. Rev. E 102, 062210 (2020),
doi:10.1103/PhysRevE.102.062210.

[74] P. Sala, T. Rakovszky, R. Verresen, M. Knap and F. Pollmann, Ergodicity Breaking
Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians, Phys.
Rev. X 10, 011047 (2020), doi:10.1103/PhysRevX.10.011047.

[75] R. K. P. Zia, E. L. Præstgaard and O. G. Mouritsen, Getting more from pushing less:
Negative specific heat and conductivity in nonequilibrium steady states, Am. J. Phys.
70, 384 (2002), doi:10.1119/1.1427088.

[76] R. Eichhorn, P. Reimann, B. Cleuren and C. Van den Broeck, Moving backward
noisily, Chaos 15, 026113 (2005), doi:10.1063/1.1869932.

[77] O. Bénichou, P. Illien, G. Oshanin, A. Sarracino and R. Voituriez, , Phys. Rev. Lett.
113, 268002 (2014), doi:10.1103/PhysRevLett.113.268002.

[78] D. Dhar, Diffusion and drift on percolation networks in an external field, J. Phys. A
17, L257 (1984), doi:10.1088/0305-4470/17/5/007.

[79] P. Baerts, U. Basu, C. Maes and S. Safaverdi, Frenetic origin of negative differential
response, Phys. Rev. E 88, 052109 (2013), doi:10.1103/PhysRevE.88.052109.

[80] M. Sellitto, Asymmetric Exclusion Processes with Constrained Dynamics, Phys. Rev.
Lett. 101, 048301 (2008), doi:10.1103/PhysRevLett.101.048301.

[81] R. Eichhorn, J. Regtmeier, D. Anselmettib and P. Reimann, Negative mobility and
sorting of colloidal particles, Soft Matter 6, 1858 (2010), doi:10.1039/b918716m.

[82] M. Baiesi, C. Maes and B. Wynants, Fluctuations and Response of Nonequilibrium
States, Phys. Rev. Lett. 103, 010602 (2009), doi:10.1103/PhysRevLett.103.010602.

[83] U. Basu and C. Maes, Mobility transition in a dynamic environment, J. Phys. A:
Math. Theor. 47, 255003 (2014), doi:10.1088/1751-8113/47/25/255003.

[84] J. Cividini, D. Mukamel and H. A. Posch, Driven tracer with absolute negative mo-
bility, J. Phys. A: Math. Theor. 51, 085001 (2018), doi:10.1088/1751-8121/aaa630.

40

http://dx.doi.org/10.1021/bi201284u
http://dx.doi.org/10.1038/35036345
http://dx.doi.org/10.1103/PhysRevLett.102.218103
http://dx.doi.org/10.1088/0305-4470/32/48/303
http://dx.doi.org/10.1088/1742-5468/aae853
http://dx.doi.org/10.1103/PhysRevE.102.062210
http://dx.doi.org/10.1103/PhysRevX.10.011047
http://dx.doi.org/10.1119/1.1427088
http://dx.doi.org/10.1063/1.1869932
http://dx.doi.org/10.1103/PhysRevLett.113.268002
http://dx.doi.org/10.1088/0305-4470/17/5/007
http://dx.doi.org/10.1103/PhysRevE.88.052109
http://dx.doi.org/10.1103/PhysRevLett.101.048301
http://dx.doi.org/10.1039/b918716m
http://dx.doi.org/10.1103/PhysRevLett.103.010602
http://dx.doi.org/10.1088/1751-8113/47/25/255003
http://dx.doi.org/10.1088/1751-8121/aaa630


SciPost Physics Submission

[85] A. K. Chatterjee, U. Basu and P. K. Mohanty, Negative differential mo-
bility in interacting particle systems, Phys. Rev. E 97, 052137 (2018),
doi:10.1103/PhysRevE.97.052137.

[86] P. F. Arndt, T. Heinzel and V. Rittenberg, Spontaneous breaking of translational
invariance in one-dimensional stationary states on a ring, J. Phys. A: Math. Gen.
31, L45 (1998), doi:10.1088/0305-4470/31/2/001.

41

http://dx.doi.org/10.1103/PhysRevE.97.052137
http://dx.doi.org/10.1088/0305-4470/31/2/001

	Introduction
	Model: -TASEP-IAF
	Microscopic dynamics
	Steady state: matrix product ansatz

	Partition function for special initial configuration
	=2
	=3
	general 

	Observables: comparisons of analytical results with Monte Carlo simulations
	Species densities
	Drift current
	Two-point correlations
	Flip current
	Non-ergodicity: dependence on initial configuration

	Partially asymmetric generalization: -ASEP-IAF
	Matrix algebra, auxiliaries and matrix representations
	Partition function for special initial configuration
	Species densities, drift current and flip current
	Negative differential mobility

	Summary and future directions
	Connection between -TASEP-IAF and multi lane TASEP
	A variation of -TASEP-IAF, connection to multi-lane traffic flow
	Connection between -TASEP-IAF and enzymatic chemical reactions
	Solution of Eq. (25) for fugacity z0: special cases
	Case I:
	Case II:

	Block-diagonal structure of the transition rate matrix
	References

