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Abstract

Starobinsky inflation is an attractive, fundamental model to explain the Planck measure-
ments, and its higher-order extension may allow us to probe quantum gravity effects. We
show that future CMB data combined with the 21cm intensity map from SKA will mean-
ingfully probe such an extended Starobinsky model. A combined analysis will provide a
precise measurement and intriguing insight into inflationary dynamics, even accounting
for correlations with astrophysical parameters.
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1 Introduction

Inflation [1–3] provides a simple and elegant solution to the observed flatness and horizon
problems and naturally explains the absence of exotic relics. It also seeds primordial
density fluctuations, from which the cosmic large-scale structure evolves. These structures
can be observed in the cosmic microwave background (CMB) anisotropies [4,5] and in the
large-scale distribution of galaxies.

Among inflationary models, Starobinsky or R2-inflation [1,6–9] is one of the best-fitting
models to data [5, 10, 11] of the early Universe. It simply extends the action of general
relativity (GR) by a quadratic term in the Ricci-scalar. For the near-scale invariant power
spectrum, deviations from GR manifest themselves primarily in a weak running of the
spectral index. The value of the scalar amplitude and the spectral index reported by
Planck [5, 10, 11] can be accounted for by adjusting the coefficient of the R2-term. The
extended Starobinsky model with higher-order curvature modifications is motivated by
quantum gravity, but also from a purely phenomenological point of view [12–22] and it
may shed light on the UV-completion of Einstein gravity. In this paper we extend the
Starobinsky model by an R3-term and study the constraining power of future cosmological
data.

Planck’s observations of the cosmic microwave background (CMB) temperature and
polarisation anisotropies have advanced our understanding of inflation tremendously [5].
The next generation of CMB experiments will further develop this legacy. We focus on two
future CMB experiments, LiteBIRD [23–25] and CMB-S4 [26–29]. The LiteBIRD satellite
mission will detect primordial B-mode polarisation with moderate resolution, but excellent
sensitivity. CMB-S4 stands for the next generation of ground-based detectors, which are
going to be installed over the next decade, with excellent sensitivity and resolution, but
limited sky coverage [26–29].

We supplement the CMB measurements with the 21cm intensity mapping by the
Square Kilometre Array (SKA) [30–42], as a second window to primordial structures. We
are primarily interested in the redshift range z = 8 ... 10 and k = 0.01 ... 0.2 Mpc−1 [43].
The combined datasets well pick up variations in the spectral index to probe the extended
Starobinsky model over a large range of scales. Structure formation at these scales is
described well by linear physics with Gaussian statistics [44–47]. The low astrophysical
systematics due to X-ray, UV-sources [48–52] or baryonic feedback processes [53–55] al-
low us to extract inflationary parameters from 21cm tomography. While we will use some
simplifying assumptions, the modelling of the reionisation process at high redshift has
reached a high degree of sophistication [56–61] and takes care of astrophysical processes,
which are likewise modelled in machine learning approaches [62,63].

In Sec. 2 we first discuss the details of the inflationary dynamics, deriving the required
equivalent inflationary potential for extended Starobinsky models using the Einstein-
Jordan duality. We then start with future CMB data and discuss the expected likelihoods
for LiteBIRD and CMB-S4 in Sec. 3.1 and results in Sec. 3.2. In Sec. 4 we study the
21cm intensity mapping by SKA, again detailing the likelihood in Sec. 4.1, followed by a
discussion of the modelling of the neutral hydrogen fraction as a function of redshift as the
most important astrophysical parameter in Sec. 4.2. The results on probing the extended
Starobinsky model with SKA and the next generation of CMB experiments are discussed
in Sec. 4.3. We summarize our results in Sec. 5 and update our results on the slow-roll
parametrization in the Appendix.
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2 Extended Starobinsky model

The Starobinsky model [1,6] is one of the simplest inflationary models, yet best-fitting to
Planck data [5]. It is defined in the Jordan frame as

SJ =
1

2

∫
d4x

√
−gJ f(R) , (1)

where gJ denotes the determinant of space-time metric gµνJ with signature convention

(−,+,+,+), MP = (8πG)−1/2, and

f(R) =M2
P

(
R+

1

6M2
R2

)
, (2)

with M2 > 0. The original Starobinsky model approximates general f(R) gravity models
with an attractor behavior in the large-field regime, where a single mass parameter M
accounts for the observed nearly-scale invariant power spectrum and spectral index [5].
Probing an actual inflationary potential complements results based on an effective recon-
struction of inflationary potentials in the slow-roll approximation [43, 64]. We extend the
original Starobinsky model by a R3-curvature term,

f(R) =M2
P

(
R+

1

6M2
R2 +

c

36M4
R3

)
, (3)

where c is a dimensionless coefficient, which can be generated by quantum corrections.
Higher-order terms involving derivatives, Ricci tensors and Riemann tensors typically
involve ghosts [65], and we neglect them in favor of the R3-term as a phenomenological
window to physics beyond the simple Starobinsky model.

The corresponding scalar-tensor theory can be found by a Legendre transformation of
Eq.(1),

SJ =
1

2

∫
d4x

√
−gJ

[
f(s) + f ′(s)(R− s)

]
SJ ≡

∫
d4x

√
−gJ

[
M2
P

2
Ω2R− V (s)

]
with Ω2 =

f ′(s)

M2
P

= 1 +
1

3M2
s+

c

12M4
s2

and V (s) =
1

2

[
sf ′(s)− f(s)

]
. (4)

The Legendre transform is well defined as long as f(R) is convex, for Eq.(3) translating
into s > −2M2/c. The action in Eq.(1) can be expressed in the Einstein frame through
the conformal transformation gµνE = Ω2gµνJ ,

SE =

∫
d4x

√
−gE

[
M2
P

2
RE − 1

2
gµνE (∇µφ∇νφ)− VE(φ)

]
, (5)

with the canonical field φ and

φ =

√
3

2
MP lnΩ2, (6)

VE(φ) =
V (s)

Ω(s)4

∣∣∣∣∣
s=s(φ)

, (7)

R = Ω2

[
RE + 3□E lnΩ

2 − 3

2
gµνE ∂µ lnΩ

2 ∂ν lnΩ
2

]
. (8)
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Here, □E = gµνE ∂µ∂ν is the d’Alembert operator. This way, modifications of the gravi-
tational law are mapped onto an additional field φ subjected to dynamics in a potential
V (φ). This has the tremendous advantage that the standard inflationary formalism can
be applied for computing the field dynamics and the associated generation of structures.
In the potential one has to use s(φ), as found by inverting Ω2 in Eq.(6) and solving for
s(φ). We find

s(φ) =


2M2

c

[√
1 + 3c(e

√
2
3

φ
MP − 1)− 1

]
for c ̸= 0

−3M2

[
1− e

√
2
3

φ
MP

]
for c = 0 .

(9)

The potential can be expressed as

VE(φ) =

M2
P

[
cs(φ)3

M2
+ 3s(φ)2

]
36M2

[
1 +

s(φ)

3M2
+
cs(φ)2

12M4

]2 . (10)

For c = 0 it can be put into the standard R2 or Starobinsky form

VE(φ) =
3M2

PM
2

4

(
1− e

−
√

2
3

φ
MP

)2

. (11)

Here s(φ) has two solutions, but from Eq.(9) we know that we need to satisfy the convexity
condition s > −M2/(2c) and c > 0, while the potential VE(φ) has to remain positive at
large field values. While the secondary solution can fulfill the convexity condition for
c < 0, the potential becomes unbounded from below for large field values. In Fig 1 we
illustrate VE(φ) for some sample parameter choices.

To study the inflationary dynamics we split φ into a classical background φ̄ and a
perturbation δφ,

φ(xµ) = φ̄(t) + δφ(xµ) . (12)

The perturbed spatially flat Friedmann-Robertson-Walker (FRW) metric can be expanded
as [66–68]

ds2 = −(1 + 2A)dt2 + 2a(t)(∂iB)dxidt+ a(t)2 [(1− 2ψ)δij + 2hij ] dx
idxj , (13)
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Figure 1: The shape of the inflationary potential for few reference choices of M and c.
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where a(t) is scale factor and t is the cosmic time. The A,B,ψ define scalar and hij tensor
metric perturbations.

With the above definitions the background field equation can be written as

¨̄φ+ 3H ˙̄φ+ VE,φ̄ = 0, (14)

where H = d(ln a)/dt is the Hubble function fulfilling

H2 =
1

3M2
P

[
1

2
˙̄φ2 + VE

]
and Ḣ = − 1

2M2
P

˙̄φ2 , (15)

The slow-roll parameter ϵ can then be defined as

ϵ ≡ − Ḣ

H2
. (16)

Inflation ends when ϵ = 1.

Splitting φ(xµ) into a background field φ̄(t) and gauge-dependent field fluctuations
δφ(xµ) motivates the gauge-independent Mukhanov-Sasaki variables for the fluctuations [67,
69–71],

Q = Q+
˙̄φ

H
ψ with Q = Dκφ|κ=0 =

dφ

dκ
|κ=0 , (17)

where κ is the trajectory in field space. The gauge-invariant field fluctuations Q fulfill

Q̈+ 3HQ̇+

[
k2

a2
+ VE,φ̄φ̄ − 1

M2
Pa

3

d

dt

(
a3

H
˙̄φ2

)]
Q = 0 , (18)

where VE,φ̄φ̄ is the double derivative of the potential VE(φ̄) with respect to φ̄. The gauge-
invariant curvature perturbation R is defined as [67,68]

R =
H
˙̄φ
Q , (19)

and we are interested in the power spectrum of the gauge-invariant curvature perturba-
tion [67,72]

⟨R(k1)R(k2)⟩ = (2π)3δ
(3)
D (k1 + k2)PR(k1) with PR(k) = |R|2 . (20)

The dimensionless power spectrum for the curvature perturbation is given by

PR(t; k) =
k3

2π2
PR(k) . (21)

The spectral index ns of the power spectrum of the adiabatic fluctuations is defined as

ns = 1 +
d lnPR(k)

d ln k
. (22)

On the other hand, the mode equation for the tensor amplitude is

v′′k +

(
k2 − a′′

a

)
vk = 0 , (23)
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where vk is the gauge-invariant tensor amplitude and the prime denotes derivative with
respect to conformal time τ defined by dt = a dτ . The power spectrum of the tensor
perturbations is expressed as

PT (t; k) = 8
k3

2π2
|vk|2 . (24)

The tensor-to-scalar ratio r, i.e. the relative strength between the tensor and scalar power
spectrum evaluated at reference scale k∗ = 0.05 Mpc−1, is defined as

r =
PT
PR

. (25)

To determine the constraints on the Starobinsky model parameters M and c defined in
Eq.(10) we solve the background and perturbation equations of Eq.(14), Eq.(18), and
Eq.(23) in the Cosmic Linear Anisotropy Solving System (CLASS III) [73,74].

3 Future CMB data

The first data we want to use to probe the inflationary potential are the CMB anisotropies,
which probe the inflationary dynamics through their sensitivity to the structures in the
early Universe. At the relevant redshifts around z ≃ 103 the cosmic large scale structure is
to a very good approximation in a state of linear evolution. Additionally, the relationship
between fluctuations in the gravitational potential, as predicted by linear perturbation
theory, and the observable temperature and polarisation anisotropies is linear and is not
tainted by astrophysics.

3.1 LiteBIRD and CMB-S4 likelihoods

While we will primarily focus on the future experiments LiteBIRD [23–25] and CMB-
S4 [26–29], we also provide results based on Planck data [5] for validation. Going beyond
Planck, future CMBmeasurements will improve the probe of small-scale fluctuations, allow
better polarisation measurements, and address the B-mode polarisation as an imprint of
tensor fluctuations on large scales. LiteBIRD mainly targets the large scale for polarisation
but lacks sensitivity towards CMB lensing. On the other hand, CMB-S4 adds on this
aspect significantly, except for large scales, where the small sky fraction and foreground
due to lower sky coverage and fewer channels limits its reach [75].

We construct Gaussian likelihoods from all four possible spectra, CTT (ℓ), CTE(ℓ),
CEE(ℓ) and CBB(ℓ). They are computed from the input spectra PR(k) and PT (k)
which carry information about the inflationary potential given in Eq.(10), implemented in
CLASS. Each CMB experiment is characterized by its sky fraction, its instrumental noise,
and its angular resolution. They are incorporated into a covariance, for which we use a
Gaussian approximation.

The gravitational lensing effect in the CMB smoothes out the spectra and, more im-
portantly, converts between E-mode and B-mode polarisation. In our forecasts we assume
the lensing effect to be modelled in the spectra, and we disregard the extracted deflection
angle spectrum Cαα(ℓ) along with the cross-correlation CψT (ℓ) between the lensing poten-
tial and the temperature fluctuation as a source of cosmological information. In light of the
very strong signals from the primordial fluctuations, gravitational lensing would improve
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constraints on the background cosmology and the fluctuation amplitude marginally, but
is not without risk, as the controversy about the Planck lensing amplitude demonstrated.

The evolution of the scalar and tensor perturbation spectra to the observable tem-
perature and polarisation spectra of the CMB is handled by CLASS, and the resulting
spectra are assembled into a χ2-functional in a Markov Chain Monte Carlo (MCMC)
framework MontePython3 [76,77]. A Markov chain generates samples from the likelihood
L ∝ exp(−χ2/2) as a function of the fundamental cosmological parameters, along with the
Starobinsky parameters M and c. While we solve the mode equations for the Starobinsky
model, we consider the subsequent evolution to be governed by standard general relativity.
The mapping of the Starobinsky model from the Jordan to the Einstein frame makes the
computations of the scalar and tensor spectra analogous to single-field inflation with a
similar phenomenology of running spectral indices, so we can check our implementation
against the standard α, β-parametrization for PR(k).

We use the standard CMB-S4 and LiteBIRD likelihoods in MontePython, which are
described in detail in Ref. [75]. For LiteBIRD the angular scales are ℓ = 2 ... 1350, the
sky fraction is fsky = 0.7, while the channel is taken as 140 GHz with full-width-half-max
or FWHM = 31 arcmin, ∆T = 4.1 µK arcmin, and ∆P = 5.8 µK arcmin. The CMB-
S4 specifications are ℓ = 30 ... 3000, fsky = 0.4, 150 GHz channel, FWHM = 3 arcmin,
∆T = 1.0 µK arcmin and ∆P = 1.41 µK arcmin. We need to ensure that the two
experiments cover mutually exclusive ℓ ranges, so just as in Ref. [75] we combine low-ℓ
from LiteBIRD data and high-ℓ CMB-S4 data, separated at ℓ ≤ 50. Noise is estimated
through minimum variance estimator for both experiments. We use the HALOFIT [78]
model for the nonlinear corrections throughout this paper.

3.2 Combined CMB projections

We use the combined estimated measurements from LiteBIRD and CMB-S4 to the funda-
mental parameters M and c in the extended Starobinsky potential. As the reference cos-
mological model we choose spatially flat ΛCDM-cosmology with parameter space spanned
by {ωb, ωcdm, h, τreio}, along with the extended Starobinsky model parameters {M, c},
and N∗ as the number of e-foldings before the end of inflation, when the pivot scale
k∗ = 0.05 Mpc−1 exits the horizon. We first consider Planck data, to see what the com-
bined TT , TE, EE+low-ℓEE+low-ℓTT spectra can tell aboutM and c, with the baseline
model parameters

{ ωb, ωcdm, h, τreio,M, c,N∗ } . (26)

For our MCMC runs in MontePython we use the Metropolis-Hastings algorithm and
sample from a Gaussian proposal function with eight chains totaling up to 5.5 millions
steps. We use flat priors for all parameters except for N∗, for which a Gaussian prior
with mean µN∗ = 55 and standard deviation σN∗ = 5 leads to a faster convergence of the
chains. To check for convergence we use the criterion R − 1 ≲ 0.05. The marginalized
posterior distributions are shown by the green contours in Fig. 2 with the best fit, mean
with errors and corresponding 95%CL limits given in Tab. 1. It is clear from the Tab. 1
that c is compatible with zero, but showing a mild positive bias. Our marginalized values
are completely compatible with Refs. [18, 20,21].

Next, we take the best-fit values from the from Planck data shown in Fig. 2, specifically
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Figure 2: Marginalized CMB posteriors for the extended Starobinsky model, based on
Planck (TT , TE, EE+low-ℓEE+low-ℓTT ), LiteBIRD, CMB-S4, and the consistent com-
bination of LiteBIRD and CMB-S4.

including

M

MP
= 1.103 · 10−5 and c = 4.135 · 10−5 , (27)

and create likelihoods for LiteBIRD and CMB-S4, also discussed in the Appendix. Even
though LiteBIRD and CMB-S4 are both CMB-experiments, their different focus on angu-
lar scales and polarisation renders them sensitive to cosmological parameters in different
ways, as we see in Fig. 2. The baryon density ωb is extracted from alternating peak heights
of the acoustic peaks, so the large number of multipoles probed by CMB-S4 yields a better
measurement of ωb. A similar argument applies to the matter density ωcdm, reflected in
the sequence of higher order peaks, where again CMB-S4 has an advantage. For inflation
parameters M and c, the much larger ℓ-values probed by CMB-S4 can also be seen to
make a difference. In contrast, measuring the optical depth τreio requires excellent polar-
isation sensitivity on large scales, giving LiteBIRD a clear advantage. Still, the results
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Data Parameters Best-fit Mean±σ 95% lower 95% upper

100 ωb 2.228 2.232+0.015
−0.015 2.203 2.26

ωcdm 0.1206 0.1208+0.0012
−0.0012 0.1185 0.1232

h 0.6696 0.6703+0.0053
−0.0053 0.6600 0.6808

Planck τreio 0.04781 0.05315+0.0074
−0.0077 0.03764 0.0687

(TT , TE,EE+low-ℓEE 105M/MP 1.103 1.119+0.117
−0.0987 0.9005 1.329

+low-ℓTT ) 105c 4.315 6.069+2.840
−5.402 — < 15.96

N⋆ 58.24 57.17+3.73
−4.47 49.65 65.24

100 ωb 2.229 2.223+0.018
−0.017 2.190 2.256

ωcdm 0.1204 0.1209+0.001
−0.0011 0.1188 0.1231

h 0.6705 0.6679+0.0057
−0.0055 0.657 0.6785

LiteBIRD τreio 0.04735 0.04775+0.002
−0.002 0.04391 0.05171

105M/MP 1.144 1.121+0.077
−0.077 0.9676 1.273

105c 2.633 6.345+2.996
−4.801 — < 14.62

N∗ 57.79 57.08+3.18
−3.19 51.04 63.27

100 ωb 2.227 2.228+0.004
−0.004 2.221 2.235

ωcdm 0.121 0.1208+0.0007
−0.0007 0.1192 0.1223

h 0.6681 0.669+0.0027
−0.0027 0.6634 0.6749

CMB-S4 τreio 0.04478 0.04634+0.0064
−0.0058 0.03258 0.05963

105M/MP 1.098 1.105+0.021
−0.021 1.065 1.145

105c 5.166 4.794+1.923
−2.461 0.7769 9.543

N∗ 58.44 58.45+1.45
−1.35 55.66 61.26

100 ωb 2.227 2.228+0.004
−0.004 2.221 2.235

ωcdm 0.1206 0.1207+0.0005
−0.0005 0.1197 0.1216

LiteBIRD low-ℓ h 0.6696 0.6695+0.0018
−0.0018 0.6659 0.673

+ τreio 0.04829 0.04779+0.0017
−0.0019 0.04425 0.05148

CMB-S4 high-ℓ 105M/MP 1.108 1.106+0.022
−0.021 1.064 1.147

105c 4.177 4.573+1.786
−1.944 1.015 8.300

N∗ 58.71 58.59+1.24
−1.25 56.15 61.08

Table 1: Best-fit values, mean, error bars, and 95%CL limits for the parameters shown in
Fig. 2.

and especially the control over the astrophysics nuisance parameters of the inflation mea-
surement improves significantly when we combined LiteBIRD low-ℓ with CMB-S4 high-ℓ
data, allowing us to measure the assumed value c = 4.135 · 10−5 to

c = (1.015 ... 8.3) · 10−5 (95%CL) . (28)

We briefly remark that adding lensing data to TT , TE, EE+low-ℓEE+low-ℓTT only
provides minor improvements, which we do not show. While gravitational lensing of
the CMB is included in our modelling, we do not carry out a lensing reconstruction,
which yields the deflection angle spectra and the cross-correlation between the lensing
potential and the temperature map [79]. Although CMB-lensing is a source of cosmological
information, it is a resource-intensive analysis with moderate improvements on inflationary
constraints. Controlling the lensing-induced mode conversion between EE and BB is well-
investigated in the literature, and these results also applies to the Starobinsky case with
running spectral indices [80].
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4 SKA data

As a second probe of inflationary dynamics we focus on fluctuations in the 21cm back-
ground generated by spin-flip transitions of neutral hydrogen. The 21cm background is
generated at much lower redshifts around z ≲ 10. This implies that, depending on the
redshift window considered, nonlinearities could become important on small scales. In-
tricacies of reionising radiation sources, radiative transport, and details of the reionising
process would then limit our analysis. We target z = 8 ... 10 and employ a simplified
model to compute fluctuations in the 21cm intensity from the statistics of the matter
distribution with weak non-linearities described by the halo-model.

4.1 SKA likelihood

As outlined in Sec. 3.1, we evolve the spectra of the scalar and tensor perturbations with
CLASS, and in parallel to the CMB-spectra we compute the density perturbation spectrum
Pδ(k) to model the 21cm-intensity spectrum. The 21cm-spectra depend on the wave
number k, the orientation of the modes relative to the line of sight µ, and the redshift z.
They are assembled into a tomographic, redshift-resolved measurement for maximising the
sensitivity. The likelihood is a χ2-functional, constructed assuming a Gaussian covariance
with the experimental characteristics of SKA. It can be combined with CMB-likelihoods,
assuming statistical independence. Here, a caveat are the integrated Sachs-Wolfe and the
gravitational lensing effects in the CMB, which are generated by foreground structures
that are directly mapped by their 21cm emission, introducing a weak correlation [81].

We incorporate details of the 21cm emission through a redshift-dependent bias param-
eter as well as a factor taking care of redshift space distortions induced by peculiar veloc-
ities. We model the reionisation history with a simple 2-parameter model that captures
the global properties of the reionisation process and is verified against 21cmFAST [82,83].

We follow closely Ref. [84] for the evaluation of 21cm power spectrum in our target
redshift range. Assuming a flat-sky approximation [85, 86], the Fourier mode k⃗ and the
line-of-sight r⃗ describe the power spectrum in terms of

k =
∣∣∣⃗k∣∣∣ and µ =

k⃗ · r⃗
kr

, (29)

with the k-components k⊥ = k
√

1− µ2 and k∥ = µk. This gives us

P21(k, µ, z) = fAP(z)× fres(k, µ, z)× fRSD(k̂, µ̂, z)× b221(z)× Pδ(k̂, z) . (30)

The wave-number k and the orientation of a mode relative to the line of sight µ are derived
quantities, as one needs for a given redshift the angular diameter distance and the Hubble-
function which themselves depend on cosmology. Therefore, it is necessary to differentiate
between the values k and µ in the cosmological model probed in our analysis from the
assumed-truth or fiducial parameters describing the assumed cosmology k̂ and µ̂. Pδ is
the matter power spectrum from CDM and baryons and

b21 = ∆Tb(z)bHI(z)

with ∆Tb ≃ 189

[
H0 (1 + z)2

H(z)

]
ΩHI(z) h mK , (31)

with the mean differential brightness temperature expressed in terms of the reduced Hubble
parameter h defined through H0 = h × 100 km/(s MPc). In addition, bHI(z) is an, in
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principle, redshift-dependent bias. For simplicity we neglect the redshift dependence in
bHI and treat it as a nuisance parameter. The mass density of neutral hydrogen with
respect to critical density is given by

ΩHI(z) =
ρHI

ρc
= Ωb(1− YP )

(
H0

H(z)

)2

(1 + z)3 xHI(z) , (32)

with Ωb = 0.0495. YP = 0.24672 [4] is the primordial helium fraction, and xHI(z) is the
neutral hydrogen fraction discussed in detail in Sec. 4.2.

Going back to Eq.(30), the so-called Alcock-Paczinsky effect, or the relative change
in the power spectrum between true and the assumed true (i.e. fiducial) cosmology, is
accounted for by

fAP(z) =
D2
AĤ

D̂2
AH

, (33)

where H and D are the Hubble parameter and angular diameter distance as a function of
z. The Fourier-modes are characterised by wave number k and orientation µ relative to
the line of sight, where the relation in these quantities between the true cosmology and
and assumed cosmological model is given by

k̂2 =

[
Ĥ

H

2

µ2 +
DA

D̂A

(1− µ2)

]
k2

µ̂2 =
Ĥ

H

2

µ2
[
Ĥ

H

2

µ2 +
DA

D̂A

(1− µ2)

]−1

. (34)

Next, fres(k, µ, z) describes the finite resolution of the instruments, which suppresses the
perturbations on small scales,

fres(k, µ, z) = exp
[
−k2

(
µ2(σ2∥ − σ2⊥) + σ2⊥

)]
, (35)

where σ∥ and σ⊥ are the Gaussian errors of the coordinates parallel and perpendicular to
the line of sight at redshift z. They are given by

σ∥ =
c

H
(1 + z)2

σν
ν0

and σ⊥ = (1 + z)DAσθ

with σθ =
1√
8 ln 2

λ0
Dbase

(1 + z) and σν =
δν√
8 ln 2

. (36)

The first quantity is the Gaussian suppression of the power spectrum defined as the ratio
between the root mean square and a FWHM of

√
8 ln 2. The latter corresponds to the

channel width due to the band separation into different channels with λ0 = 21.11 cm,
which translates to ν0 = 1420.405752 MHz. We use the SKA1-LOW specifications [40],
expected for observing in one band ν = 50 ... 350 MHz, where the 21cm line in our target
redshift z = 8 ... 10 lies. The core SKA1-LOW configuration is an array of 224 antennas
with diameter D = 40 m and with maximum baseline Dbase = 1 km [40]. Here, we use
64000 channels [87] with Dbase = 1 km, again for SKA1-LOW [40].

Finally, the classical cosmological redshift induces an apparent anisotropy in the power
spectrum, as described by the Kaiser formula [88] in the linear regime. Furthermore, the
random peculiar velocities of the galaxies lead to the so-called fingers-of-God effect [89] in
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the redshift. Both are included through the term fRSD Eq.(30) and described by [90]

fRSD(k̂, µ̂, z) =
(
1 + β(k̂, z)µ̂2

)2
e−k̂

2µ̂2σ2
NL

with β(k̂, z) = − 1 + z

2b21(z)

d logPδ(k̂, z)

dz
. (37)

This form of β is valid for k = 0.01 ... 0.2 Mpc−1 and z = 8 ... 10. The first term represents
the Kaiser formula, the exponential term the fingers of God. We take σNL = 1 Mpc as
our fiducial value.

The entire observed 21cm power spectrum is a combination of the signal and noise [91],

P obs
21 (k, µ, z) = P21(k, µ, z) + PN (z)

with PN (z) =
4πT 2

sysfskyλ
2yD2

A

AΩfcovertobs
. (38)

Here tobs is the total observation time which we take to be 10000 hrs, Ndish is the number
of antennas, fsky = 0.58. In our analysis we consider a field of view of Ω = (1.2λ/D)2, an
area A = Ndishπ(D/2)

2 per antenna, and the covering fraction fcover = Ndish(D/Dbase)
2.

Again, we follow the design specification of SKA1-LOW [40]. The system temperature is
the combination of the sky temperature and the receiver temperature [40]

Tsys = Tsky + Trx

with Tsky = 25 K

(
408 MHz

ν

)2.75

and Trx = 0.1Tsky + 40 K , (39)

and ν = ν0/(1 + z). Unlike Ref. [84], where the noise model treats SKA as a single-dish
experiment, our noise model is based on interferometry. Furthermore, y is defined as

y =
18.5MPc

1 MHz

(
1 + z

10

)1/2

. (40)

For the 21cm intensity mapping, we divide the mapping into bins of width ∆z with
mean redshift z̄. The volume of one redshift bin can then be approximated as

Vr(z̄) = 4πfsky

∫
∆r(z̄)

r2dr =
4π

3
fsky

[
r3

(
z̄ +

∆z

2

)
− r3

(
z̄ − ∆z

2

)]
. (41)

The Gaussian χ2 giving the likelihood is then defined as the integral over k and µ for each
redshift band as [84]

χ2 =
∑
bins n

∫ kmax

kmin

k2dk

∫ 1

−1
dµ

Vr(z̄n)

2(2π)2

[
(∆P21(k, µ, z̄n))

2

(P21(k, µ, z̄n) + PN )2 + σ2th(k, µ, z̄n)

]
, (42)

where ∆P21 is the difference between the fiducial and sampled power spectra, and

σth(k, µ, z) =

[
Vr(z)

2(2π)2
k2∆µ∆k

∆z

∆z̄

]1/2
α(k, µ, z) P21(k, µ, z) . (43)

This uncertainty depends on the correlation lengths (∆k,∆µ,∆z). For a given bin (ki, zj),
the choice of ∆µ depends on the number of independent nuisance parameters describing the
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errors for different µk. Following Ref. [84], for a given bin (ki, zj) the error on P21(k, µ, z)
for different µ values can be treated as fully correlated. Taking one parameter per bin is
then equivalent to ∆µ = µmax − µmin ≈ 2 for our redshift range, reducing Eq.(43) to

σth(k, µ, z) =

[
Vr(z)

(2π)2
k2∆k

∆z

∆z̄

]1/2
α(k, µ, z) P21(k, µ, z) . (44)

The correlation length ∆k is assumed to be 0.05 h/Mpc as a conservative choice, matching
the BAO scale. We also choose ∆z = 1, which is slightly lower than the whole redshift
range probed by the experiment zmax − zmin = 2.

The function α(k, µ, z) accounts for three uncertainties from different non-linear cor-
rections: The prediction of the matter power spectrum, the bias, and RSD. Even though
non-linear effects are small in our target redshift range, we include them in our analysis,
except for the RSD source which is negligible for z = 8 ... 10. The bias is usually assumed
to be linear up to scales k = 0.2 h/Mpc. The HALOFIT semi-analytic formula, which we
use, includes some of these effects, but not baryonic and AGN feedback. To account for
the corresponding uncertainties in the bias and RSD at small scales we increase the the-
oretical uncertainties for three reference points [84], to a 0.33% error at k = 0.01 h/Mpc,
a 1% error at k = 0.3 h/Mpc, and a 3% error at k = 10 h/Mpc. This translates into

α(k, z) =


a1 exp

(
c1 log10

k

k1(z)

)
for

k

k1(z)
< 0.3

a2 exp

(
c2 log10

k

k1(z)

)
for

k

k1(z)
> 0.3

k1(z) = 1
h

Mpc
(1 + z)

2
2+ns , (45)

with a1 = 1.4806%, a2 = 2.2047%, c1 = 0.75056, and c2 = 1.5120. As a conservative
implementation we apply a sharp cut-off at k = 0.2 h/Mpc following the z-dependent
scaling of Eq.(45).

The SKA likelihood is, again, implemented in MontePython, with a fiducial likelihood
based on the best-fit values Planck (TT , TE, EE+low-ℓEE+low-ℓTT ) shown in Tab. 1.
Our updated power spectrum includes effects which were not considered in our earlier
study [43], such as the linear biasing factor, the redshift dependence of neutral hydrogen
fraction, fAP(z), and fres. The noise model is also significantly improved by considering the
realistic specifications of SKA in the high redshift region [40]. As astrophysical inputs for
the 21cm power spectrum we focus on the reionisation history, modelled by the reionisation
redshift, and the velocity at which the Universe transitions from being neutral to being
ionised. Our modeling is tested against radiative transfer simulations in Gaussian random
fields with 21cmFAST, confirming that it captures the relevant physics.

4.2 Modeling the redshift dependence

To describe the z-dependence of xHI in Eq.(32) we use the empirical fitting formula

xHI(z) =
1

2

[
1 +

2

π
tan−1 (δ1(z − δ2))

]
, (46)

where δ1 and δ2 are again nuisance parameters. The functional shape of Eq.(46) is chosen
to fit simulated data from 21cmFAST [82, 83]. In our target redshift region z = 8 ... 10,
the neutral hydrogen fraction is extracted using the default parameters of 21cmFAST. For
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Figure 3: Evolution of the average neutral hydrogen fraction with redshift. The fitting
function in Eq.(46) yields a precision comparable to the Zel’Dovich approximation.

each of the 22 linearly spaced redshift bins a cube with side lengths 200 Mpc is simulated
in real space. The computation is carried out on a 300 × 300 × 300 grid, using the
default astrophysics settings of 21cmFAST. The initial power spectrum is chosen to match
CLASS, which corresponds to the cosmological parameters ωb = 0.02237, ωcdm = 0.120,
h = 0.6736, As = 2.100 · 10−9, ns = 0.9649, and zreio = 11.357. These parameters are
computed from the ones defined in Eq.(26).

For each of the simulated cubes we compute the average neutral hydrogen fraction
using a first-order perturbative approximation (Zel’dovich’s approximation) and a second-
order 2LPT approximation to the linear velocity field in 21cmFAST. We then perform a
one-dimensional fit of Eq.(46) to the 2LPT results, giving δ1 = 0.9755 and δ2 = 7.7664 as
fiducial values for our MCMC runs. Fig. 3 illustrates the quality of this approximation
and shows that the relative difference between Eq.(46) and the 2LPT result is at most 2%
in our redshift region of interest.

4.3 Combined SKA and CMB projections

We now turn our attention to the sensitivity of SKA to the extended Starobinsky model
parameters. Without any CMB information the SKA power spectrum is not sufficient
to constrain all parameters given in Eq.(26). However, a combination with the Planck
data is already sufficient to provide a convincing measurement [43]. Here we ask the more
challenging question, namely what does SKA add to the combination of LiteBIRD and
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Figure 4: Correlation between τreio and the remaining parameters of Eq.(26), based on
LiteBIRD, CMB-S4, and the combination of LiteBIRD low-ℓ and CMB-S4 high-ℓ with
SKA.
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Figure 5: Marginalized CMB and SKA posteriors for the extended Starobinsky model,
based on the combination of LiteBIRD and CMB-S4 with high-ℓ+SKA projections.

CMB-S4. In Fig. 4 we compare the combined sensitivity of SKA with LiteBIRD, CMB-S4
and their low-ℓ and high-ℓ combination, respectively. We only show the correlations of
τreio to the remaining parameters, where we see the excellent polarisation sensitivity on
large scales from LiteBIRD. For all other parameters there is no additional constraining
power from LiteBIRD and the contours are dominated by CMB-S4.

In Fig. 5 we compare the combined sensitivity of LiteBIRD low-ℓ, CMB-S4 high-ℓ, and
SKA with the CMB sensitivity alone. The corresponding best-fit, mean and corresponding
95%CL limits are given in Tab. 2. The astrophysical parameters benefiting significantly
from SKA are ωcdm and h. While we are mainly interested in the fundamental parameters
of the inflation potential, this kind of improvement leads to a big improvement in the global
analysis. While the combination with SKA still leaves a narrow correlation between the
astrophysical N∗ and the Starobinsky parameter M , it provides an improved reach in the
second Starobinsky parameter, as compared to the CMB projection of Eq.(28),

c = (2.89 ... 5.73) · 10−5 (95%CL) . (47)
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Data Parameters Best-fit Mean±σ 95% lower 95% upper

100 ωb 2.228 2.227+0.003
−0.003 2.222 2.232

LiteBIRD low-ℓ ωcdm 0.1206 0.1207+0.0001
−0.0001 0.1205 0.1209

+ h 0.6694 0.6692+0.0004
−0.0003 0.6685 0.670

CMB-S4 high-ℓ τreio 0.04792 0.04734+0.0014
−0.0016 0.04445 0.05033

+ 105M/MP 1.100 1.106+0.023
−0.023 1.064 1.148

SKA 105c 4.350 4.325+0.692
−0.690 2.891 5.734

N∗ 58.95 58.68+0.77
−0.75 57.20 60.18

Table 2: Best-fit values, mean, error bars, and 95%CL limits for the parameters shown in
Fig. 5.

The narrow correlations between N∗ and M and, to some extent, c trace back to how
Eq.(14) is solved. The initial conditions to solve Eq.(14) in CLASS require the number of
e-foldings before the end of inflation when the reference mode exited the horizon i.e. N∗
and the magnitude of M and c. This solution is then used to match the observables As
and ns, and leads to the strong correlation found above. Such a correlation can perhaps
be resolved with the better description of the (p)reheating process after inflation.

5 Outlook

We have estimated the sensitivity of future CMB and SKA measurements to the Starobin-
sky model for inflation, extended by a R3-term. Such a term may hint at physics beyond
general relativity, including quantum gravity. Planck data prefers a finite R2-terms and
constrains the coefficient of the R3-term to be c ≲ 1.6× 10−4 at 95%CL.

We performed a global Markov chain analysis, combining astrophysical and cosmo-
logical parameters with the two fundamental parameters describing Starobinsky inflation.
First, we found that future CMB data from LiteBIRD and CMB-S4 will constrain the
astrophysical parameters and also the inflationary parameters M and c. In particular, we
found that combining the two experiments in mutually exclusive ℓ ranges can probe the
coefficient of R3 at the level c = (1.01 ... 8.3)×10−5 at 95%CL. The assumed finite central
value is given by the best-fit value from our Planck analysis.

Next, we showed that 21cm intensity mapping by SKA will add to the constraints
from CMB data, focusing on the redshift region z = 8 ... 10. While the combination of
future CMB and SKA data still leaves us with a sizeable correlation between the number
of e-foldings N∗ and the scalaron mass M , it improves the measurement of the extended
Starobinsky parameters to c = (2.9 ... 5.7) × 10−5. If c is non-zero, SKA will allow for a
robust determination of this fundamental parameter pointing to physics beyond standard
GR.
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A HSR projections

Finally, we briefly revisit our previous results on the combination of Planck and SKA [43]
and determine the the sensitivity of future CMB data in terms of the so-called Hubble
slow-roll (HSR) parameters [5,64]. In this parametrization, the inflationary dynamics are
captured by reconstructing the Hubble function in the observable window, defined by the
range of observationally accessible spatial scales as

H(φ) =

N∑
n=0

1

n!

dnH

dφn

∣∣∣∣∣
φ̄∗

(φ̄− φ̄∗)
n . (48)

To avoid degeneracies it is convenient to use the logarithmic changes to the Hubble function
through the parameters [5, 64]

λ
(n)
H =

(
mPl

2

4π

)n(
(H ′)n−1

Hn

dn+1H

dφn+1

)
n ≥ 1 , (49)

with the correspondence ηH = λ(1), ξ2H = λ(2), and ω3
H = λ(3). As in before, we assume

spatially flat ΛCDM-cosmology with the baseline model, as described by {ωb, ωcdm, h,
τreio, ns, Ãs, ϵH , ηH , ξ

2
H , ω

3
H}, where we truncate the HSRs after ω3

H . The purpose of
this Appendix is to investigate the power of future CMB data in constraining HSRs, along
with a new SKA likelihood with an improved signal and noise modeling as compared to
Ref. [43].

To determine the projected constraints on the HSR parameters we rely on CLASS and
MontePython, as discussed in the main body of the paper. The expected constraints are
shown for Planck, LiteBIRD, CMB-S4, and Planck+SKA in Fig 6 while, for LiteBIRD low-
ℓ+CMB-S4 high-ℓ and LiteBIRD low-ℓ+CMB-S4 high-ℓ+SKA they are shown in Fig.7.
The respective best-fit and mean values are given in Tab. 3. As in the extended Starobinsky
model, both LiteBIRD+CMB-S4 and LiteBIRD+CMB-S4+SKA data will provide the
best constraints. We note that the fiducial likelihoods for the LiteBIRD, CMB-S4 and
SKA are generated with the best-fit values to the marginalized posterior of Planck TT ,
TE, EE+low-ℓ EE+low-ℓ TT data, also given in Tab. 3.
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Figure 6: Marginalized CMB posteriors for the HSR parameters based on Planck (TT ,
TE, EE+low-ℓEE+low-ℓTT ), Planck+SKA, LiteBIRD, CMB-S4.
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Data Parameters Best-fit Mean±σ 95% lower 95% upper
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Table 3: Best-fit values, mean, error bars, and 95%CL limits for the HSR parameters
shown in Figs. 6 and 7.
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