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Abstract

We study transport in a one-dimensional lattice system with two conserved
quantities – ‘volume’ and energy. Considering a slowly evolving local equi-
librium state that is slightly deviated from an underlying global equilibrium,
we estimate the correction to the local equilibrium distribution. This correc-
tion arises mainly through the space-time correlations of the local currents.
In the continuum limit, we show that the local equilibrium distribution along
with the correction yields drift-diffusion equation for the ‘volume’ and super-
diffusion equation for the energy in the linear response regime as macroscopic
hydrodynamics. We find explicit expression of the super-diffusion equation.
Further, we find diffusive correction to the super-diffusive evolution. Such a
correction allows us to study a crossover from diffusive to anomalous trans-
port. We demonstrate this crossover numerically through the spreading of an
initially localized heat pulse in equilibrium as well as through the system size
scaling of the stationary current in non-equilibrium steady state.
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1 Introduction

In low dimensional systems, the transport of energy on macroscopic scale is often anoma-
lous as manifested by emergence of super-diffusion [1–14]. According to the Green-Kubo
formula the average current in a non-equilibrium system is related to the time integral
of the equilibrium total current-current correlation in the linear response regime. Several
numerical studies as well as theoretical arguments reveal that super-diffusion of energy
is associated to the power-law tail of the current-current correlation at long time. The
non-linear fluctuating hydrodynamic (NFHD) theory provides a general framework (appli-
cable to a wide class of systems both Hamiltonian as well as stochastic) to understand this
super-diffusion [4,5,15]. This theory describes the evolution of conserved fields on a meso-
scopic scale in terms of hydrodynamic (HD) equations in which corresponding currents are
expanded to non-linear order in the deviation from their values in a underlying global equi-
librium (GE). For this, one assumes a slowly varying and slowly evolving local-equilibrium
picture that is slightly deviated from a global equilibrium state of the system. Further the
dissipation and the noise terms, obeying fluctuation-dissipation relation, are added phe-
nomenologically to the currents in order to describe fluctuations. By decomposing the hy-
drodynamic evolution of the conserved fields into evolution of sound and heat modes (also
known as normal modes), this theory reveals the connection between the super-diffusion
(or anomalous transport) in translationally invariant Hamiltonian systems having short
range interaction with the Kardar-Parisi-Zhang (KPZ) universality class [4,5,15,16]. This
connection brought out by identifying the structural similarity between the stochastic HD
equation of the sound mode fields with (coupled) noisy Burgers equations. However for
the heat mode, which is non-propagating, one requires to study the sub-leading correction
which is achieved through a mode-coupling approximation. The NFHD theory successfully
applies to a wider class of Hamiltonian systems with short range interactions and the pre-
dictions of this theory classifies Hamiltonians into different universality classes depending
on their transport behaviours.

In this paper, we study anomalous transport in a simple model defined on a one
dimensional lattice of size N . Each lattice site contains a ‘volume’ variable ηi, that evolves
according to

η̇i = V
′
(ηi+1) − V

′
(ηi−1)

+ stochastic exchange η between neighbouring sites at rate γ
(1)

for i = 1,2, ...,N , where V (η) = ko
2 η

2 with ko > 0. We consider periodic as well as open
boundary conditions in different situations, details of which will be provided in the par-
ticular sections. The stochastic exchange terms represent exchanging the variables across
a bond at random with rate γ. This model was first introduced in [17] and was called
“harmonic chain with volume exchange” (HCVE) system in [18]. The stochastic exchange
terms are added to the dynamics to make the system posses good ergodic properties such
that the system reach a thermal equilibrium state by itself. It is easy to see that this model
has two globally conserved quantities, namely the total ‘volume’ ∑i ηi and total energy

∑i V (ηi) which yields two conservation equations for the corresponding locally conserved
fields, again namely ‘volume’ density field and energy density field. Previously this model

2



SciPost Physics CONTENTS

was shown to exhibit anomalous energy transport in the non-equilibrium steady state
(NESS) [15,17,18] and super-diffusion of space-time correlation in close system set-up (i.e.
not connected to reservoirs) [10,15].

Following different microscopic approaches it was shown in [17] and [18], that the en-
ergy field (with the convective part subtracted) follows a super-diffusive evolution equation
on the macroscopic scale. In the first part of the paper we provide a simpler alternative
derivation of the macroscopic hydrodynamic equations corresponding to the conserved
fields of the system in a close system set-up. We show that the non-convective part of the
energy field evolves according to a super-diffusion equation and the ‘volume’ density field
evolves diffusively in the linear response (LR) regime. We find explicit expressions of these
equations. Additionally we find the diffusive correction to the super-diffusion equation ex-
plicitly. Our derivation is based on estimating the correction to the local-equilibrium
distribution. Such a correction includes the contribution of current-current correlation to
the computation of the average current which would appear in the macroscopic hydrody-
namics. To compute these correlations, we invoke fluctuating hydrodynamics (FHD) on a
mesoscopic scale. Our derivation is intuitive and reveals the importance and significance
of the various approximations that goes into deriving the hydrodynamics on a macroscopic
scale.

In the second part of the paper we demonstrate a crossover from diffusive transport
to anomalous transport as one goes from mesoscopic length scale Λ (s.t. 1 ≪ Λ ≪ N) to
macroscopic length scale. In NFHD, one can expect such a crossover from the structure of
the the HD currents which have two parts: the Euler part that comes from the deviation
from the global equilibrium and the second part constituting of dissipation (in the form
of diffusion) and noise. The later part generically originates while coarse graining the
conserved quantities, both in space and time. In the coarse graining procedure one usually
replaces the values of the locally conserved fields by values averaged with respect to a local
(canonical) thermal equilibrium distribution, which is different from the actual distribution
of the microscopic degrees of freedom. The actual distribution involves correlations of the
locally conserved fields among themselves as well as across space and time. The NFHD
theory, in fact, computes contribution of these correlation to the steady state currents
which could be anomalous in the leading order (of system size).

Although the actual values of the diffusion and noise terms in NFHD do not affect the
leading anomalous behaviour of the energy current and similarly the super-diffusion, their
presence is crucial for deriving the anomalous transport or super-diffusive behaviour. For
a given Hamiltonian, deriving the fluctuating HD equations, especially the dissipation and
the noise terms, is a difficult problem and until recently only a few attempts have been
made. Using the projection operator technique and Markovian approximation, the study
in [19] derives the diffusion and noise terms for a class of Hamiltonian systems defined
on a one-dimensional lattice, although the expressions are not explicit. Another study
that derives these terms involves one dimensional ideal gas of identical point particles
undergoing stochastic collisions (both momentum and energy conserving) among three
consecutive particles in addition to their Newtonian dynamics [20]. In the current study,
we also provide a heuristic derivation of the dissipation and noise terms for the ‘volume’
field of the HCVE model in the LR regime. The presence of the stochastic exchange terms
in Eq. (1) makes it possible to derive the noise terms explicitly.

While the diffusion terms do not affect the leading anomalous system size scaling of
the steady state current in the LR regime, they can provide the sub-leading correction
which has normal scaling as one finds in the Fourier’s Law i.e. inversely proportional to
the system size [20]. This suggests a crossover from diffusive to anomalous transport as
one increases the system size from a mesoscopic scale to macroscopic scale in comparison
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· · · · · ·

Lattice with (stochastic) exchange of volume 
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Exchange

Figure 1: A schematic diagram of the HCVE model. Each site contains some
variable ηi which are called ‘’volume’. These variables are subjected to harmonic

potential V (η) = k0η
2

2 at each lattice site. In addition to the deterministic evolu-
tion, ’volume’ variables on successive sites are exchanged with rate γ.

to the microscopic scale (e.g. lattice spacing, interaction core or mean free path). In this
paper we demonstrate such a crossover, both analytically and numerically through the
system size scaling of the stationary current of the system in the non-equilibrium steady
state (NESS) in the open system set-up.

The paper is organized as follows. In sec. 2, we describe the system and define the
conserved quantities and, write the corresponding continuity equations. In the next section
3, we provide the derivation of the linearized hydrodynamic equations. This section starts
with the Fokker-Planck equation and the solution of it. This solution is used to derive
the hydrodynamic equations in two stages which are presented in sections 3.1 and 3.2.
To complete the derivation of the linearized hydrodynamics as will be shown one requires
to compute space-time correlation of the local currents, which is done in sec. 3.2.1. This
section is followed by a demonstration of crossover from diffusive to anomalous transport
in open system set-up in sec. 4. Finally in section 5, we provide a summary of our results
along with possible future directions of study.

2 Conservation Laws and the equilibrium state

We first consider the HCVE model on a circular lattice of size N with periodic boundary
condition ηi+N = ηi with i = 1,2, ...,N . A schematic of the system is given in fig. 1. It is easy
to see that the dynamics in Eq. (1) keeps the total volume and the total energy invariant
i.e. d

dt ∑i ηi = 0 and d
dt ∑i V (ηi) = 0. The sum structure of these global conservations

suggests the following two local conserved quantities, namely

local ‘volume’: ĥi(η⃗) = ηi,

local ‘energy’: êi(η⃗) = V (ηi) =
ko
2
η2i ,

(2)

where η⃗ = (η1, η2, ..., ηN). One can write the following conservation laws for these local
quantities

∂tĥi = ĵ
(h)
i−1,i − ĵ

(h)
i,i+1, (3)

∂têi = ĵ
(e)
i−1,i − ĵ

(e)
i,i+1, (4)

where ĵ
(h)
i,i+1 and ĵ

(e)
i+1,i are the local currents corresponding to the ‘volume’ field and the

energy field, respectively. From the explicit form the dynamics given in Eq. (1) one finds
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that the local currents have the following form

ĵ
(h)
i,i+1(η⃗, t) = −ko(ĥi + ĥi+1) + (ĥi − ĥi+1)(γ − ξi+1/2(t))

ĵ
(e)
i,i+1(η⃗, t) = −k

2
o(ĥiĥi+1) + (êi − êi+1)(γ − ξi+1/2(t)),

(5)

with ξi+1/2(t) =
dNi+1/2(t)

dt −γ where Ni+1/2(t) represents the Poisson process describing the
exchanges happening at the bond (i, i + 1) [represented by the subscript (i + 1/2)] with
rate γ. It was shown in [17] that, for large N , the evolution given in Eq. (1) makes the
system ergodic. Hence, using ensemble equivalence, one can describe the system by the
following canonical ensemble distribution

PGE({ηi}) =
N

∏
i=1

√
ko

2πT0
e
−
ko
2T0
(ηi+

τ0
ko
)
2

, (6)

where T0 is the temperature and τ0 is the ‘pressure’ of the system. We have set the
Boltzmann constant kB = 1 throughout the paper. The quantities T0 and τ0 are determined
from the micro-canonical constraints for the total energy and total volume

N

∑
j=1

⟨ĥi(η⃗)⟩PGE = Nh0,
N

∑
j=1

⟨êi(η⃗)⟩PGE = Ne0, (7)

with h0 and e0 being the ‘volume’ and the energy per particle, respectively which are
constants both over space and time. In this paper ⟨....⟩P denotes average with respect to
a joint distribution P . In particular one finds the following equations for the equilibrium
state

h0 = −
τ0
ko
, e0 =

T0
2
+
τ20
2ko

. (8)

3 Derivation of the hydrodynamic equations

Since the dynamics of the system is ergodic (in our case evolves to a homogeneous equi-
librium state given by Eq. (6) at t→∞) and the microscopic currents in Eqs. (5) depend
only on local variables, one may expect hydrodynamic evolutions to emerge for the lo-
cally conserved quantities, namely the ‘volume’ density and the energy density over coarse
grained length and time scales. We assume a slowly evolving local equilibrium state for
the system which is characterized by slowly varying conserved density fields at each time.

We start with the Fokker-Planck (FP) equation corresponding to the dynamics given in
Eq. (1) which describes the evolution of the joint probability density P (η⃗, t) of η⃗ = (η1, η2, ...,
ηN) at time t. The FP equation is given by

∂tP (η⃗) = LP (η⃗), with L = L` +Lex. (9)

Here L` is the Liouvillian part and Lex represents the contribution from the stochastic
exchange events. Explicit expressions of these operators are given by

L`P (η⃗, t) =
N

∑
i=1

[V ′
(ηi−1) − V

′
(ηi+1)]∂ηiP (η⃗, t), (10)

LexP (η⃗, t) =
N

∑
i=1

[P (η⃗i,i+1, t) − P (η⃗, t)] , (11)
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where η⃗i,i+1 represents the configuration after exchanging the η variables at sites i and
i+1 and we impose periodic boundary condition. Note, for other boundary conditions the
expressions of the FP operators will change. For these cases we will provide the expressions
of the corresponding FP operators in the relevant sections later.

To solve the FP equation we follow a method similar to the one described in [21].
Starting from a LE state that is slightly deviated from the GE state, the solution of the
FP equation (9) at a later time t can be formally written as sum of the local equilibrium
distribution PLE(η⃗) plus a deviation Pd(η⃗, t) from it

P (η⃗, t) = PLE(η⃗, t) + Pd(η⃗, t). (12)

The LE distribution PLE(η⃗, t), characterised by the local temperature field Ti(t) and the
‘pressure’ field τi(t), is given by

PLE(η⃗, t) =
N

∏
i=1

√
ko

2πTi(t)
e
−

ko
2Ti(t)(ηi+

τi(t)
ko
)
2

, (13)

which implies the following local equations of state

hi = ⟨ĥi⟩PLE = ⟨ηi⟩PLE = −
τi
ko
,

ei = ⟨êi⟩PLE = ⟨V (ηi)⟩PLE =
Ti
2
+
τ2i
2ko

.

(14)

The deviation Pd(η⃗, t) from the LE distribution satisfies

∂tPd(η⃗, t) −LPd(η⃗, t) = LPLE(η⃗, t) − ∂tPLE(η⃗, t). (15)

A formal solution of this equation is given by

Pd(η⃗, t) = ∫
t

t0
dt′eL(t−t

′)
[Φ(η⃗, t′) −ΦLE(η⃗, t

′
)]PLE(η⃗, t

′
), (16)

with Pd(η⃗, t0) = 0 and

Φ(η⃗, t) = PLE(η⃗, t)
−1LPLE(η⃗, t) =

N

∑
i=1

[−β20∇iTiŶ
(e)
i,i+1 +∇i (

τi
Ti

) Ŷ
(h)
i,i+1] ,

ΦLE(η⃗, t) = PLE(η⃗, t)
−1∂tPLE(η⃗, t) =

N

∑
i=1

[−β20(∂tTi)LE Ẑ
(e)
i − β0(∂tτi)LE Ẑ

(h)
i ] ,

(17)

where ∇ifi = fi+1 − fi represents the discrete forward difference and β0 = 1/T0 . The

expressions of Y
(h)
i,i+1, Y

(e)
i,i+1, Z

(h)
i and Z

(e)
i are given explicitly as

Ŷ
(h)
i,i+1(η⃗) = −ko(ĥi + ĥi+1) − γ(ĥi − ĥi+1), (18)

Ŷ
(e)
i,i+1(η⃗) = −k

2
o(ĥiĥi+1) − γ(êi − êi+1), (19)

Ẑ
(h)
i (η⃗) = (ĥi +

τi
ko

) , (20)

Ẑ
(e)
i (η⃗) =

T0
2
−
ko
2

(ĥi +
τi
ko

)
2

, (21)

where the functions ĥi(η⃗) and êi(η⃗) are provided in Eq. (2). To arrive at the expressions
in Eq. (17) to Eq. (21), we have used the explicit form of PLE(η⃗, t) given in Eq. (13).
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Moreover, while writing the explicit form of ΦLE(η⃗, t) we have assumed the local deviation
of the temperature and ‘pressure’ from their global equilibrium values T0 and τ0 [see
Eq. (8)] given, respectively, by ∣Ti(t) − T0∣ ≪ T0 and ∣τi(t) − τ0∣ ≪ ∣τ0∣ are small. The
subscript (...)LE in the expression of ΦLE indicates the rate of change of the Ti(t) and
τi(t) in local equilibrium state [shown later in Eq. (28)].

Note, the currents Ŷ
(h)
i,i+1 and Ŷ

(e)
i,i+1 are generated due to spatial inhomogeneity of the

local temperature and ‘pressure’ fields in the LE state, whereas the the quantities Ẑ
(h)
i

and Ẑ
(e)
i appearing due the time variations of these local fields. We will later see that the

deviation from the LE, characterized by Pd(η⃗, t) would incorporate the contributions from
the space-time correlations of the local currents in the system.

The ansatz for the form of the joint distribution P (η⃗, t) in Eq. (12) is sensible as a
solution of the FP equation (9), when the deviations from the global equilibrium charac-
terized by T̃i(t) = Ti(t) − T0 and τ̃i(t) = τi(t) − τ0 are small i.e. the LE state is slightly
deviated from the GE state. In this ansatz, we have introduced the space-time varying
local temperature field Ti(t) and the local ‘pressure’ field τi(t). Question is how should
these fields evolve so that the ansatz for the P (η⃗, t) in Eq. (12) holds to be a valid so-
lution of the FP equation (9). The space-time evolution of these fields are determined
by evaluating the continuity equations in (3) and (4) for the average ‘volume’ and energy
fields. Performing average over the state η⃗ at time t with respect to the joint distribution
P (η⃗, t) and average over the noises at the bonds (i− 1, i) and (i, i+ 1) appearing from the
exchange events, one finds

∂thi(t) = j
(h)
i−1,i(t) − j

(h)
i,i+1(t),

∂tei(t) = j
(e)
i−1,i(t) − j

(e)
i,i+1(t),

(22)

where the average currents are

j
(h)
i,i+1(t) = ⟨ĵ

(h)
i,i+1(η⃗, t)⟩P

j
(e)
i,i+1(t) = ⟨ĵ

(e)
i,i+1(η⃗, t)⟩P .

(23)

Our aim is to express these average currents in terms of the average fields hi(t) = ⟨ĥi(η⃗)⟩P ,
ei(t) = ⟨êi(η⃗)⟩P . Assuming the distribution P in ⟨...⟩P is given by Eq. (12) along with
Eqs. (13) and (16), one can get evolution equations for the average conserved fields hi(t)
and ei(t),— hence for the fields βi(t) and τi(t) through the equations of state in Eq. (14).
We emphasize that we are interested to obtain linearized hydrodynamic evolutions of these
fields. Our strategy consists of two steps. In the first step, we find the equations for the
fields averaged only over the LE distribution in the LR regime. In this computation we
will get a linearized HD equation which are diffusive in the form because one ignores the
space-time correlations of the currents in this step (since the LE distribution in Eq. (13)
is product in structure). Such correlations can provide extra contributions to the average
currents at linear order in deviations from the GE state. To incorporate the effects of
such correlations, we, in the second step, incorporate the contribution from the deviation
Pd(η⃗, t) from the LE distribution.

In order to get the proper space-time continuous hydrodynamic equations one uses the
fact that the conserved fields vary slowly over space, i.e. their values change appreciably
only over large number of lattice sites and the system size is very large i.e. N → ∞.
Equivalently, one can say that the temperature and ‘pressure’ fields vary slowly over the
lattice as

Ti(t) = T (εi, ε̄t) and τi(t) = τ(εi, ε̄t), (24)
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where ε−1 and ε̄−1 are macroscopic space and time scales measured in lattice (micro-
scopic) units. In such situations one can formally replace the fields ei(t) and hi(t) by
density functions e(x, s) and h(x, s), respectively where x = iε and s = tε̄. Similarly,
the differences would get replaced by derivatives such as ∇ifi = fi+1 − fi = ε∂xf(x),
∆ifi = fi+1 − 2fi + fi−1 = ε2∂2xf(x) and the sums by integrals such as ∑i → ∫ dx. Also
time derivative gets changed as ∂tf = ε̄∂sf . We will use these continuum limits. How-
ever, we continue with the discrete notation for now and take the the continuum limits at
appropriate stages.

Next we compute the average fields hi(t) = ⟨ĥi(η⃗)⟩P , ei(t) = ⟨êi(η⃗)⟩P using the ansatz

for P (η⃗, t) in Eq. (12) and also evaluate the average currents j
(h)
i,i+1(t) and j

(e)
i,i+1(t) following

the two steps mentioned above.

3.1 Contribution to the Linearized hydrodynamics from LE distribution

In order to compute the average fields hi(t) = ⟨ĥi(η⃗)⟩P , ei(t) = ⟨êi(η⃗)⟩P , we first make the
approximation P (η⃗, t) ≈ PLE(η⃗, t) assuming the deviations from the global equilibrium
characterized by T̃i(t) = Ti(t) − T0 and τ̃i(t) = τi(t) − τ0 are small. Keeping terms up to
linear order in deviations, we get [from Eq. (14)]

hi(t) ≈ h0 + h̃i(t), ei(t) ≈ e0 + ẽi(t), with

h̃i(t) = −
τ̃i(t)

ko
, and ẽi(t) =

T̃i(t)

2
+
τoτ̃i(t)

ko
,

(25)

for the average values of the conserved fields and for the corresponding average currents,
we get

j
(h)
i,i+1(t)∣LE ≈ 2τ0 − ko(h̃i + h̃i+1) + γ(h̃i − h̃i+1)

j
(e)
i,i+1(t)∣LE ≈ −τ20 − k

2
oh0(h̃i + h̃i+1) + γ(ẽi − ẽi+1).

(26)

where h0 and τ0 are given in Eq. (8). Inserting these equations, on both sides of Eq. (22),
and simplifying we get

∂th̃i(t) = ko∇i(h̃i + h̃i−1) + γ∆ih̃i,

∂tẽi(t) = k
2
oh0∇i(h̃i + h̃i−1) + γ∆iẽi.

(27)

Using the equations (25), one can rewrite these equations in terms of T̃i(t) and τ̃i(t) as

∂tτ̃i = ko∇i(τ̃i + τ̃i−1) + γ∆iτ̃i

∂tT̃i = γ∆iT̃i
(28)

The Eqs. (27) represent the linearized hydrodynamic equations when the space-time cor-
relations among the currents are ignored. These equations can be improved by incorpo-
rating such correlations. In systems exhibiting normal transport, such correlations decay
fast enough both in space and time that they effectively lead to (on macroscospic scale)
diffusion of the locally conserved quantities. However, such correlations in our problem,
as we will see, decay as power law (in time) in the leading order of (macroscopic) coarse
graining scale leading to anomalous transport. In the next section we will see how these
correlations appear to modify the equations (27).
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3.2 Adding contribution to the linearized HD from the correction Pd to
PLE

Recall that the equations (27) were obtained by computing averages of the locally con-
served quantities with respect to PLE . In this section we include the contribution from Pd
also to compute the average currents appearing in Eq. (22). The average currents for the
conserved fields u = (h, e), are computed as follows

j
(u)
i,i+1(t) = ⟨ĵ

(u)
i,i+1(t)⟩P=PLE+Pd

= ⟨ĵ
(u)
i,i+1(t)⟩PLE + ∫

t

t0
dt′ĵ

(u)
i,i+1(η) {e

L(t−t′)
[Φ(η⃗, t′) −ΦLE(η⃗, t

′
)]PLE(η⃗, t

′
)} ,

= ⟨ĵ
(u)
i,i+1(t)⟩PLE + ∫

t

t0
dt′ ⟨ĵ

(u)
i,i+1(t)[Φ(t′) −ΦLE(t

′
)]⟩

PLE
,

= j
(u)
i,i+1(t)∣LE + ∫

t

t0
dt′ ⟨ĵ

(u)
i,i+1(t)[Φ(t′) −ΦLE(t

′
)]⟩

PGE
+O(T̃ 2, τ̃2, T̃ τ̃). (29)

While going from the third to fourth line we have changed the average ⟨...⟩PLE inside
the integral to ⟨...⟩PGE because [Φ −ΦLE] is already in the linear order of the deviations
from the GE characterised by T̃i and τ̃i. To see this more clearly, let us write [Φ −ΦLE]

explicitly. First we recall Ti(t) = T0 + T̃i(t) and τi(t) = τ0 + τ̃i(t). Using the forms of
(∂tT̃i)LE and (∂tτ̃i)LE from Eq. (28) in Eq. (17) and performing some manipulations one
gets

Φ(η⃗, t) −ΦLE(η⃗, t) =
N

∑
i=1

[−β20∇iTi(t) {Ŷ
(e)
i,i+1 + τ0Ŷ

(h)
i,i+1}

+β0 {∇iτi(t)Ŷ
(h)
i,i+1 + ko∇i(τi + τi−1)Ẑ

(h)
i }]

+ β0γ
N

∑
i=1

[β0∆iTi Ẑ
(e)
i +∆iτi Ẑ

(h)
i ] .

(30)

Now using the definitions of the currents Ŷ(u) and the quantities Ẑ(u) from Eqs. (18) -
(21) for u = (h, e) we get

Φ(η⃗, t) −ΦLE(η⃗, t) = −
N

∑
i=1

[β20∇iTi(t) (k2oh
2
0 + T̂

(e)
i,i+1) + β0∇iτi(t)(2koh0 + T̂

(h)
i,i+1)]

+O(∆iT,∆iτ,∆iĥ,∆iê), where,

T̂
(e)
i,i+1 = −k

2
o
ˆ̃
hi

ˆ̃
hi+1, T̂

(h)
i,i+1 = −ko(

ˆ̃
hi+1 −

ˆ̃
hi),

(31)

with,
ˆ̃
hi = ĥi − h0. (32)

Note T̂
(e)
i,i+1 depends non-linearly on the deviations

ˆ̃
hi. The ΦLE term cancels the non-

gradient type convective terms that depend linearly on the deviations. Hence, as will see
later [see Eq. (36)], the additional contribution to the average currents arising from the
deviation Pd appears through the space-time correlations of the non-linear (in deviations
of the fields from GE) parts of the currents.

Further note that T̂
(h)
i,i+1 is of the form ∇i

ˆ̃
hi and is accompanied with ∇iτi. It will not

contribute at the leading order to the average current in Eq. (29). Similarly, other terms
of the same form in Eq. (31) can also be neglected. Moreover the, constant parts of the
currents, like k2oh

2
0 and −2koh0 in Eq. (31) will also not survive after averaging over the GE

in Eq. (29). Hence the right hand side of the expression for the average current j
(u)
i,i+1(t)

9
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in Eq. (29) simplifies a lot and we finally get

⟨ĵ
(u)
i,i+1(t)⟩P ≈ ⟨ĵ

(u)
i,i+1(t)⟩PLE − β

2
0 ∫

t−t0

0
dt′

N

∑
`=1

∇`T`(t) ⟨ĵ
(u)
i,i+1(t

′
)T̂
(e)
`,`+1(0)⟩PGE , (33)

with u = (h, e), where we have used time translational invariance in global equilibrium.
Since we are interested in the evolution at macroscopic time scale, we assume t − t0 is
very large and approximate the time integral by performing integration over (0,∞). As a
consequence we get

⟨ĵ
(u)
i,i+1(t)⟩P ≈ ⟨ĵ

(u)
i,i+1(t)⟩PLE − β

2
0 ∫

∞

0
dt′

N

∑
`=1

∇`T`(t) ⟨ĵ
(u)
i,i+1(t

′
)T̂
(e)
`,`+1(0)⟩PGE . (34)

In the next section we will see that
ˆ̃
hi(t) [see difinition in Eq. (32)] satisfies a linear fluc-

tuating equation with white Gaussian noise. Additionally, in global equilibrium the fields
ˆ̃
hi are independent and distributed according to Gaussian with zero mean. Hence average

over any odd power of
ˆ̃
hi, even at different times are zero. Since ⟨ĵ

(h)
i,i+1(t

′)T̂
(e)
`,`+1(0)⟩PGE

involves odd powers of
ˆ̃
hi, as can be seen the from the expressions of the currents in

Eq. (5) and Eq. (31), it is zero. Once again ignoring contributions involving higher order
derivatives of the fields, we get

⟨ĵ
(h)
i,i+1(t)⟩P = ⟨ĵ

(h)
i,i+1(t)⟩PLE +O(ũ2,∆iũ)

⟨ĵ
(e)
i,i+1(t)⟩P = ⟨ĵ

(e)
i,i+1(t)⟩PLE − β

2
0

N

∑
`=1

∇`T`(t) Mi,` +O(ũ2,∆iũ) (35)

where Mi,` = lim
τ→∞
∫

τ

0
dt′⟨T̂

(e)
i,i+1(t

′
)T̂
(e)
`,`+1(0)⟩PGE ,

with T̂
(e)
i,i+1(t) = −k

2
o
ˆ̃
hi(t)

ˆ̃
hi+1(t).

(36)

Note Mi,` is similar to a transport coefficient. In order to compute this coefficient one

needs to solve for the stochastic field
ˆ̃
hi(η⃗) = ĥi(η⃗) − h0 which is evolving according to

Eq. (1). We proceed to do that in the next section.

3.2.1 Fluctuating hydrodynamics of the ‘volume’ field:

We first note that the coefficient Mi,` should be independent of i, ` for a finite size N of
the system. This quantity is i, ` dependent only when N → ∞ limit is taken before the
τ →∞ limit is taken. Hence, it is more appropriate to rewrite this coefficient as

Mi,` = k
4
o lim
τ→∞

lim
N→∞

∫

τ

0
dt′⟨T̂

(e)
i,i+1(t

′
)T̂
(e)
`,`+1(0)⟩PGE ,

where recall, T̂
(e)
i,i+1(t) = −k

2
o
ˆ̃
hi(t)

ˆ̃
hi+1(t).

(37)

The NFHD theory provides a general method to compute the space-time current-current
correlation [22]. For the HCVE model it was shown in [15] that there is a sound mode
and a heat mode corresponding to the two conserved quantities. For the particular choice

of the harmonic potential V (η) =
koη2

2 , one finds that the sound mode satisfies a drift-
diffusion equation whereas the heat mode depends nonlinearly on the sound mode. It
was argued that the traveling peak of the space-time correlations of sound mode satisfies
diffusive scaling whereas the same for the heat mode is described by a 3

2 -Lévy scaling
function. Such a scaling suggests super-diffusive contribution to the evolution from the

10
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current-current correlation ⟨T̂
(e)
i,i+1(t

′)T̂
(e)
`,`+1(0)⟩PGE in Eq. (37). A brief discussion on the

NFHD theory for the HCVE model is provided in Appendix A. In the next we provide a

detail computation of the ⟨T̂
(e)
i,i+1(t

′)T̂
(e)
`,`+1(0)⟩PGE .

Since we are interested to compute Mi,` in N → ∞ limit, one convenient way is to
start with the dynamics in Eq. (1) on infinite line. Furthermore, we are interested on the
evolution of the local fields on coarse grained length and time scales for which one may

consider the following effective dynamics for
ˆ̃
hi = ĥi − h0 as

∂t
ˆ̃
hi = ko∇i(

ˆ̃
hi +

ˆ̃
hi−1) + γ∆i

ˆ̃
hi +∇i[

√
Bξi+1/2(t)] (38)

for i = ...,−2,−1,0,1,2, ... with the boundary conditions
ˆ̃
hi(t) → 0 for i → ±∞ at any

t. The noise ξi+1/2(t) appearing from the exchange events at the (i, i + 1) bond, is a
white Gaussian noise of zero mean and unit variance. The strength of the noise is given

by B = 2γ (T0ko
+ h20). A hueristic derivation of the above stochastic equation is given in

Appendix B.
The formal solution of Eq. (38) can be written as

ˆ̃
hi(t) = ∑

j

Gi,j(t)ĥj(0) +
√
B∫

t

0
dt′∑

j

Gi,j(t − t
′
)∇jξj+1/2(t

′
), (39)

where Gi,j(t) is the Green’s function. Inserting this solution in Eq. (37) and using the

fact ⟨
ˆ̃
hi(0)

ˆ̃
hj(0)⟩PGE =

δi,j
β0ko

[proved using Eq. (6) along with Eq. (2)], one gets

Mi,` =
k2o
β20
∫

∞

0
dt′[Gi,`(t

′
)Gi+1,`+1(t

′
) +Gi,`+1(t

′
)Gi+1,`(t

′
)], (40)

where δi,j is the Kronecker delta. The Green’s function Gi,j(t) satisfies the following
equation

∂tGi,j = ko∇i(Gi,j +Gi−1,j) + γ∆iGi,j + δi,jδ(t). (41)

Note that the above equation can be interpreted as the FP equation of a drifted random
walker moving on an infinite lattice with velocity µ = −2ko and diffusion constant D = γ.
For large ∣i − j∣ and t, the Green’s function has the following scaling form

Gi,j(t) ≃
1
√
t
G (

i − j + 2kot
√
t

) , where G(z) = 1
√

4πγ
e
− z

2

4γ . (42)

Using this form for the Green’s function in Eq. (40) and simplifying one gets

Mi,` =
k2o

2πγβ20
∫

∞

0
dt′

1

t′
G (

i − ` + 2kot
′

√
t′

)G (
i − ` + 2kot

′

√
t′

) . (43)

=
k2o
πγβ20

e
−

2(i−`)ko
γ K0 [

2∣i − `∣ko
γ

] , (44)

where K0(z) is modified Bessel function of second kind of zeroth order. Inserting the
expressions of the current in LE from Eq. (26) in Eq. (35), we get the following expressions
of the average currents

j
(h)
i,i+1(t) ≈ 2τ0 − ko(h̃i + h̃i+1) − γ∇ih̃i,

j
(e)
i,i+1(t) ≈ −τ

2
0 − k

2
oh0(h̃i + h̃i+1) − γ∇iẽi − β

2
0∑
`

Mi,`∇`T`(t).
(45)

11
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Further inserting these expressions of the average currents in the continuity equations (22)
we get

∂th̃i(t) = ko∇i(h̃i + h̃i−1) + γ∆ih̃i,

∂tẽi(t) = k
2
oh0∇i(h̃i + h̃i−1) + γ∆iẽi + 2β20∇i∑

`

Mi,` (τ0∇`h̃` +∇`ẽ`) ,
(46)

where we have used the relation between T̃` with ẽ` and h̃` from Eq. (25) and neglected
terms involving higher order in deviations. Comparing these equations with Eqs. (27), we
observe that the evolution equation for the ‘pressure’ field did not get modified while the
equation for the energy field got modified after incorporating the contribution from the
deviation Pd from the local equilibrium distribution [see Eq. (12)]. In terms of the local
‘pressure’ deviation field τ̃i = τi − τ0 and the local temperature deviation field T̃i = Ti − T0,
these equations read

∂tτ̃i(t) = ko∇i(τ̃i + τ̃i−1) + γ∆iτ̃i, (47)

∂tT̃i(t) = γ∆iT̃i + 2β20∇i∑
`

Mi,`∇`T̃`(t). (48)

where we have used the equations of state in Eq. (25).

3.3 Continuum limit

We take continuum limit as discussed around Eq. (24) by making the transformation
i → x = iε and t → s = ε̄t. Let us first focus on the ‘pressure’ field equation (47). Observe
that the field τ̃i(t) has a ballistic propagation with velocity µ = −2ko. This suggests us
to expect the following scaling form τ̃i(t) → T̃ ((i + 2kot)ε, ε̄t) for the pressure field. This
scaling density function evolves according to

∂sT̃ (z, s) =
ε2

ε̄
γ∂2xT̃ (z, s), with z = (i + 2kot)ε. (49)

Choosing diffusive space-time scaling ε̄ ∼ ε2, we find that the ‘pressure’ field moves ballis-
tically and spreads diffusively at the ballistic front.

For the temperature field, we consider the scaling form T̃i(t) → T̃ (iε, ε̄t) and get,

∂sT̃ (x, s) =
ε2

ε̄
γ∂2xT̃ (x, s) +

ε3/2

ε̄

k
3/2
o

√
πγ
∂x∫ dy

Θ(y − x)
√
y − x

∂yT̃ (y, s). (50)

To arrive at the above equation we have used the below limit

lim
ε→0

ε−1/22β20Mi=x/ε,`=y/ε →
k
3/2
o

√
πγ

Θ(y − x)
√
y − x

, (51)

where Θ(x) is Heaviside theta function. From this equation one can get different hy-
drodynamic evolutions, depending on the choice of the space-time scaling for the coarse
graining.

• Ballistic space-time scaling i.e. ε̄ = ε: In this case one finds

∂sT̃ (x, s) = εγ∂2xT̃ (x, s) +
√
ε
k
3/2
o

√
πγ
∂x∫ dy

Θ(y − x)
√
y − x

∂yT̃ (y, s) ≈ 0 (52)

which indicates that the temperature profile does not evolve.

12



SciPost Physics CONTENTS

• Super-diffusive scaling i.e. ε̄ = ε3/2: For this case one finds

∂sT̃ (x, s) =
k
3/2
o

√
πγ

[∂x∫ dy
Θ(y − x)
√
y − x

∂yT̃ (y, s) +

√
ε

εc
∂2xT̃ (x, s)] , (53)

with εc = π (
ko
γ

)

3

. (54)

This equation implies that the local temperature field (equivalently the energy den-
sity field) performs super-diffusion at large length and time scales. The diffusive
correction suggests a crossover from diffusive evolution at shorter space-time scale
(x

√
s) to super-diffusive evolution on larger space-time scale (x ∼ s2/3). The crossover

occurs at a length scale Nc ∼ ε
−1
c . This means, if one observes the evolution of an

initially localized pulse, then at shorter time scale the pulse will spread diffusively
as long as the spread is smaller than Nc. But at larger times when the amount of
spread becomes larger than Nc, the spreading happens super-diffusively. It seems
harder to see this crossover numerically with time. Instead we study the spreading
of an initially localized pulse in two cases, very large Nc and very small Nc, for
which we should observe diffusive and super-diffusive spreading respectively. We
demonstrate this in fig. 2 where we plot the space-time scaling of the spreading of
an initially localized temperature pulse. We consider a temperature pulse initially
localized around i = N/2 on a periodic ring by choosing the initial configuration η⃗(0)
from the distribution given in Eq. (13) with τi(0) = 0 and Ti(0) = 1.0+0.5 gi where gi
is a Gaussian function of i, centered at i = N/2 with variance 1.5. We consider two
values of the harmonic strength ko = 0.02 and ko = 1.0. The corresponding crossover
length scales are of order Nc ∼ 39788 and Nc ∼ 1, respectively. In fig. 2a we observe a
diffusive scaling whereas in fig. 2b we observe a super-diffusive scaling as expected.
The different scaling behavior in the two cases imply a crossover with time for a
fixed set of parameters on a given size of ring that is quite large. Another way to
demonstrate this crossover is to look at the system size scaling of the stationary
current in NESS of the system in the open system set-up which we discuss in the
next section.

4 Study in open system set-up and crossover from diffusive
to anomalous transport

In this section we consider the open set-up in which we attach two Langevin reservoirs of
different temperatures TL and TR at the two ends of the system. The dynamics in Eq. (1)
is modified to

η̇i = V
′
(ηi+1) − V

′
(ηi−1)

+ stochastic exchange η between neighbouring sites at rate γ

+ δi,1 (−λV
′
(η1) +

√
2λTLζL(t))

+ δi,L (−λV ′
(ηL) +

√
2λTRζR(t))

(55)

with fixed boundary conditions η0 = ηN+1 = 0. Here ζL,R(t) are mean zero and unit variance
white Gaussian noises and λ is the strength of the dissipation into the bath (which we
assume to be a constant of O(1).). The FP equation now reads

∂tP (η⃗) = LP (η⃗), with L = L` +Lex +Lb. (56)
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Figure 2: Space-time scaling of a initially localized temperature field for two
cases (a) ko = 0.02 and (b) ko = 1.0. For the former case Nc ∼ 34888 and for
the later case Nc ∼ 1. We observe diffusive scaling in (a) and super-diffusive
scaling in (b) respectively.. The lines in the plot are obtained by numerically
integrating the Langevin equations (1) on a periodic ring of size N with time
steps dt = 0.005 and averaged over 107 realizations. Each curve corresponds to
the (scaled) temperature profile at time s chosen within a range after interval
ds = 0.5. The ranges for the two plots are given in the respective legends.

The Liouvillian part L` is given in Eq. (10) and for the stochastic exchange part Lex in
Eq. (11), the summation now runs from i = 1 to (N − 1). The boundary part Lb is given
by

LbP (η⃗, t) = λTL∂
2
η1P + λ∂η1V

′
(η1)P + λTR∂

2
ηN
P + λ∂ηNV

′
(ηN)P. (57)

For TL = TR = T0 the dynamics in Eq. (55) takes the system to the global equilibrium state
described by

PGE({ηi}) =
N

∏
i=1

√
ko

2πT0
e
−
ko
2T0

η2i , (58)

which implies e0 = ⟨êi⟩PGE = T0/2 and h0 = ⟨ĥi⟩PGE = 0, ∀i.
When TL ≠ TR, we write approximate solution of the FP equation as sum of local

equilibrium distribution PLE plus a deviation from it as in Eqs. (12) to (16). We further
assume δT = TL − TR is small, hence the local equilibrium is slightly deviated from an
underlying GE described by the distribution PGE in Eq. (58) with T0 =

TL+TR
2 . The

expression of ΦLE(η⃗, t) remains same as in Eq. (17). However, the expression of Φ(η⃗, t)
gets slightly modified due the presence of boundary currents from the baths and it now
reads as

Φ(η⃗, t) =
N−1

∑
i=1

[−β20∇iTiŶ
(e)
i,i+1 +∇i (

τi
Ti

) Ŷ
(h)
i,i+1]

+ λko [
β1 − βL
βL

(koβ1 (ĥ1 +
τ1
ko

)
2

− 1) + β1τ1 (ĥ1 +
τ1
ko

)] ,

+ λko [
βN − βR
βR

(koβN (ĥN +
τN
ko

)
2

− 1) + βNτN (ĥN +
τN
ko

)] ,

(59)

where βL = 1/TL and βR = 1/TR.
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Following the steps as done in sections 3.1, 3.2 and 3.2.1, one arrives at the same
equations as in Eq. (46):

∂th̃i(t) = ko∇i(h̃i + h̃i−1) + γ∆ih̃i, (60)

∂tẽi(t) = γ∆iẽi + 2β20∇i∑
`

Mi,` ∇`ẽ`, (61)

with the kernel Mi,` given in Eq. (40) and β0 = T
−1
0 = 2

TL+TR
except for different boundary

conditions. Note, unlike Eq. (46) there are no terms depending on the ‘volume’ field in
Eq. (61). This is because h0 = ⟨ĥ⟩GE = 0 (hence τ0 = 0) in the GE as can be seen from
the GE distribution in Eq. (58). The boundary currents in the expression of Φ(η⃗, t) in
Eq. (59) do not contribute at the leading order in system size while calculating the average
current. The main difference with the previous case is that the boundary conditions now
are

hi=0 = 0, hi=N+1 = 0, (62)

ei=0 = eL =
TL
2
, ei=N+1 =

TR
2
, (63)

which imply h̃i=0 = 0, h̃i=N+1 = 0 and ẽi=0 =
TL−TR

4 , ẽi=N+1 =
TR−TL

4 . To evaluate the
kernel Mi,` given in Eq. (40), one needs to solve the Green’s function equation (41) with
absorbing boundary conditions Gi,j = 0 for i or j equal to 0 and N +1. In the scaling limit
(as in Eq. (42), the Green’s function is given by

Gi,j(t) =
e
−
ko(i−j)

2γt e
−

2k2ot

2γ

√
4πγt

∞

∑
p=−∞

[e
−
(i−j+2pN)2

4γt − e
−
(i+j+2pN)2

4γt ] , (64)

using which in Eq. (40) one can show

lim
N→∞

√
N2β20 Mi=xN,`=yN →

k
3/2
o

√
πγ

Θ(y − x)
√
y − x

. (65)

Note in the continuum limit, we get the same position space representation of the kernel
as in the infinite chain case studied in the previous section, however with different bound-
ary conditions. A similar kernel was obtained for the harmonic chain with momentum
exchange model for different boundary conditions [8, 23].

To take continuum limit as discussed in sec. 3.3 once again we make the transformation
i → x = iε and t → s = ε̄t. For the ‘pressure’ field we choose ε = N−1 and ε̄ = N−2 since
one expects diffusive behavior for τ̃i(t) → T̃ ((i + 2kot)ε, ε̄t). We get drift-diffusion for
T̃ (z, s) as given in Eqs. (49). For the evolution of the temperature field, we again expect
super-diffusive evolution for T̃i(t) → T̃ (iε, ε̄t) with ε = N−1, ε̄ = N−3/2 and we get same
super-diffusive evolution as given in Eq. (53).

The boundary conditions in Eq. (62) implies that the ‘volume’ profile decays to zero ev-
erywhere in the non-equilibrium steady state (NESS). On the other hand, the temperature
profile Tss(x) = T0 + δTΨ(x) in the steady state satisfies

k
3/2
o

√
πγ
∂x∫

1

0
dy

Θ(y − x)
√
y − x

∂yΨ(y) +

√
1

N
γ∂2xΨ(x) = 0, for 0 ≤ x ≤ 1, (66)

with Ψ(0) = 1/2 and Ψ(1) = −1/2. The energy current in the steady state can be
read off from Eq. (45) with h0 = 0 and is given by Jss = −γ∇iei + 2β20 ∑`Mi,`∇`e`
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which in the continuum limit can be expressed in terms of the temperature profile us-
ing 2e(x) = Tss(x) = T0 + δTΨ(x). It reads as

Jss = −
1

N

γ

2
∂xΨss(x) −

1
√
N

k
3/2
o

2
√
πγ
∫

1

0
dy

Θ(y − x)
√
y − x

∂yΨss(y). (67)

The equation (66) ensures that the stationary current Jss is x independent. Hence inte-
grating both sides of Eq. (68) with respect to x over [0,1], one gets

Jss =
δT

2

⎡
⎢
⎢
⎢
⎢
⎣

1
√
N

k
3/2
o C
√
πγ

+
1

N
γ

⎤
⎥
⎥
⎥
⎥
⎦

, with C = ∫

1

0
dx∫

1

0
dy

Θ(y − x)
√
y − x

∂yΨ(y). (68)

At this stage, few comments are in order.

– Anomalous scaling: From Eq. (68) we see that the stationary current decays anoma-
lously with as ∼ 1√

N
at the leading order in N . This anomalous scaling was obtained

previously in [17] and [18] using methods different from the one presented here. The
O(1/N) term provides a diffusive correction to the anomalous scaling.

– Non-local Fourier’s law: The expression of the current in Eq. (68) is a non-local
linear response relation, which is drastically different from the usual Fourier’s law.
In local Fourier’s law, the current at any point x in the system is directly proportional
to the local derivative of the temperature profile. On the other hand, in the non-
local version, the current at any point x gets contribution from the derivative of the
temperature profile at other points also. Such non-local generalisation of Fourier’s
law was also obtained in few other systems [7–9, 23–25] and it implies a non-local
generalization of the heat diffusion equation as we have obtained in Eq. (53). Such
a generalization of the heat diffusion equation was obtained for the HCVE model
in [18] by computing the microscopic two-point correlations ⟨ηiηj⟩Pss in the steady
state described by a stationary distribution Pss(η⃗). In this paper we have re-derived
the same equation using a different method along with a diffusive correction.

– Nonlinear temperature profile Ψ(x): Neglecting the diffusive part one can solve the
non-local part of Eq. (66) and the solution is given by Ψ(x) =

√
1 − x − 1/2 [18].

Using this solution in Eq. (68) one finds C = π
2 . Unlike the (purely) diffusive case,

the temperature profile Ψ(x) is non-linear and singular (has diverging derivative at
the right boundary). Similar non-linear and singular temperature profiles were also
obtained in different contexts, such as in momentum exchange model [8, 23, 24], in
hard-point gas [26, 27], in non-linear chains [28], in graphene layers [29, 30] and in
nanotubes [31].

– Diffusive to anomalous crossover: Putting the value C = π/2 in the expression of Jss
in Eq. (68) one rewrites

Jss =
TL − TR

4

1
√
N

k
3/2
o

√
π

√
2γ

⎡
⎢
⎢
⎢
⎢
⎣

1 +

√
Nc

N

⎤
⎥
⎥
⎥
⎥
⎦

, with Nc =
4

π
(
γ

ko
)
3

. (69)

For fixed ko and γ this expression suggests a crossover from diffusive scaling ∼ 1
N for

N ≪ Nc to anomalous scaling ∼ 1√
N

for N ≫ Nc as the system size N is increased.

We have numerically verified this crossover in fig. 3 where we plot Jss versus N for
three choices of the parameters ko and γ such that we have three scenarios ofNc being
very small, very large and intermediate. For very large Nc we observe only diffusive
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Figure 3: Plot of Jss vs. N for γ = 1 and different values of ko i.e. for different
values of Nc as given by Eq. (69). The symbols are obtained by solving the
equations of the two-point correlations ⟨ηiηj⟩Pss in NESS numerically for different
N . In (a) we observe diffusive scaling as one has N ≪ Nc = 159155. In (b), the
value of Nc = 218. We observe a change in the exponent of the system size scaling
from 0.75 to 0.62. In principle, one should observe a crossover from diffusive
(exponent 1) to anomalous (exponent 0.5) behaviour. For that one needs to
have a sufficiently large Nc so that one has sufficiently large N even for N < Nc

to observe the true diffusive scaling and then one should be able to evaluate
stationary currents Jss for N much large than Nc to observe the true anomalous
scaling. Numerically this is very hard to achieve. Instead, in (c) we choose
ko = 1.0 so that one observes only the anomalous scaling because Nc = 1.

scaling in fig. 3(a) within the system sizes that were possible to study numerically.
Whereas in fig. 3(c) we observe purely anomalous scaling ∼ 1√

N
because Nc is very

small. In fig. 3(b), we observe a sort of crossover as manifested by the change
in the exponent of the system-size scaling of Jss though not from pure diffusive
scaling exponent to the correct anomalous scaling exponent. For that one requires
to compute Jss for very large N along with large Nc.

– Anomalous to diffusive crossover: We end this section by making the following
remark: If one considers ko to be system size dependent as ko = N−α, then for
0 < α < 1

3 , one finds, as can be shown following the procedure described in this
paper, that the anomalous scaling for the stationary current Jss ∼

1
N(1+3α)/2 and for

α ≥ 1
3 the transport becomes diffusive with Jss ∼

1
N . This crossover by tuning the

strength ko of the interaction was predicted previously in [32].

5 Conclusion

In this paper we have derived macroscopic linearized hydrodynamics for the two conserved
quantities present in the HCVE model. Assuming a slowly varying (both in space and
time) LE state that is slightly deviated from a underlying GE state, we study the evolution
of the average conserved field densities. This is achieved by asking what equations the
temperature and the ‘pressure’ fields (characterizing the LE state) should satisfy to linear
order in deviations from their GE values. Approximating the solution of the FP equation
by the LE distribution yields linear diffusive hydrodynamics in which one neglects the
space-time correlations of the currents corresponding to the conserved fields. In order to
include the contributions from such correlations in the linear response regime, we estimate
the correction to the local equilibrium distribution in the solution of the relevant FP
equation. Such correction naturally produce contributions to the average currents as
space-time integrals of the certain current-current correlations. Interestingly, we find that
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these current-current correlations involves mainly the non-linear parts of the currents when
written in terms of the deviations of the conserved fields from their GE values. To compute
such correlations, we invoke fluctuating hydrodynamics equations for the ‘volume’ field
written at a mesoscopic scale. We finally obtain drift-diffusion equation for the ‘volume’
field and super-diffusion equation for the non-convective part of the energy field to linear
order in deviations i.e. in the LR regime.

Our calculation, in addition, also provides the diffusive correction to the super-diffusion
equation which allows us to study a crossover from diffusive to super-diffusive transport.
In particular, our analysis allows us to identify a length scale Nc which depends on the
microscopic parameters. Below this length scale, one would observe a diffusive transport
and above this length scale the super-diffusive transport sets in. The physical picture is
the following: as smaller length scale the conserved quantities dissipate through diffusion.
However at larger length scales the correlations among the hydrodynamic currents starts
providing dominant channels for transport and as a result one observes a crossover from a
diffusive transport to anomalous transport. We have demonstrated this crossover through
the system size scaling of the NESS current in the system when connected to two reservoirs
of different temperatures at the two ends. Since the HCVE model dynamics is linear (due
to harmonic potential), we believe the linearized macroscopic hydrodynamics is exact in the
sense there will be no non-linear corrections. However, one can expect to get non-linear
corrections both local and non-local in other models such as Fermi-Past-Ulam-Tsingou
model. It would be interesting to see how super-diffusion and higher order corrections
appear following the formalism presented in this paper. Applying this formalism to non-
linear hamiltonian models in open set-up requires to solve NFHD equations in bounded
domain with appropriate boundary conditions which, to our knowledge, are not known. It
would be interesting to investigate such cases. Often an interesting problem that people
consider in systems permitting hydrodynamics description is to observe the evolution from
a domain wall initial condition. In systems exhibiting anomalous transport, one should
solve the super-diffusion equation for such problems. We believe our result will be useful
in such contexts.
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A NFHD for the HCVE model

In this appendix we discuss the NFHD theory for the HCVE model as given in [15]. We
start with the conservation equations (22), which in the hydrodynamic limit can be written
as

∂thi(t) = −2ko∇ihi(t) + γ∆2
ihi(t),

∂tei(t) = −k
2
o∇ihi(t)

2
+ γ∆2

i ei(t).
(70)
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Writing hi(t) = h0 + h̃i(t) and ei(t) = e0 + ẽi(t) and expanding the currents up to second
order in the deviations h̃i and ẽi from the global equilibrium values, one gets

∂tũi +∇i [Aũi +
1

2
(
ũTi H

(h) ũi
ũTi H

(e)ũi
)] = 0, with, ũi = (

h̃i
ẽi

) (71)

where for the Harmonic potential V (η) = koη
2/2,

A = (
−2ko 0
−k2oh0 0

) , H(h) = (
0 0
0 0

) , and H(e) = (
−2k2o 0

0 0
) . (72)

Adding diffusion and noise terms phenomenologicaslly, one gets the non-linear fluctuating
hydrodynamic equations

∂t ˆ̃ui+∇i (A ˆ̃ui +
1

2
(

ˆ̃uTi H
(h) ˆ̃ui

ˆ̃uTi H
(e) ˆ̃ui

) −∇iD̃ ˆ̃ui + B̃ξ̃i) = 0, (73)

where D̃ = D̃T > 0 is the diffusion matrix, and ξ
(α)
i (t) for α = 1,2 are white Gaussian

noises with zero mean and covariance

⟨ξ
(α)
i (t)ξ

(α′)
i′ (t′)⟩ = δαα′δi,i′δ(t − t

′
). (74)

The strength of the noise B̃B̃T is related to the diffusion matrix as D̃C̃ + C̃D̃ = B̃B̃T ,
where C̃ is the susceptibility matrix given by

⟨ˆ̃uα(i,0)ˆ̃uα′(i
′,0)⟩PGE = C̃α,α′δi,i′ . (75)

Following [4, 5, 15], one next decomposes the fields ũ into normal modes φ using the
transformation

φ̂ = R ˆ̃u, (76)

where the matrix R has the properties

RAR−1
= (

−2ko 0
0 0

) , and RCRT = 1. (77)

For our case R is explicitly given by

R = (
−
√
koβ0 0

√
2β0τ0

√
2β0

) , (78)

which implies

φ̂i = R ˆ̃ui =
⎛

⎝

−
√
koβ0

ˆ̃
hi

√
2β0 (ˆ̃ei + τ0

ˆ̃
hi)

⎞

⎠
=
⎛

⎝

−
√
koβ0

ˆ̃
hi

√
2β0

ˆ̃
θi

⎞

⎠
, (79)

where we have written
ˆ̃
θi = (ˆ̃ei + τ0

ˆ̃
hi). Note, ⟨

ˆ̃
θi⟩PLE = T̃i/2 according to Eq. (25). The

HD equations (73) can now be written in terms of φ
(1)
i (t) and φ

(2)
i (t) as

∂tφ̂
(1)
i (t) + ∇i (−2k0φ̂

(1)
i (t) − ∇i(D11φ̂

(1)
i (t) +D12φ̂

(2)
i (t)) + (Bξ)(1)) = 0, (80)

∂tφ̂
(2)
i (t) + ∇i (−

√
2k0φ̂

(1)
i (t)2 −∇i(D21φ̂

(1)
i (t) +D22φ̂

(2)
i (t)) + (Bξ)(2)) = 0, (81)
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where D = RD̃R−1 > 0 and B = RB̃. The matrices D and B now satisfies

D +DT
= BBT . (82)

Using Eq. (79), one can express these equations in terms of
ˆ̃
h and

ˆ̃
θ as

∂t
ˆ̃
hi(t) + ∇i [−2ko

ˆ̃
hi(t) − ∇i (D11

ˆ̃
hi(t) −

√
2β0D12
√
ko

ˆ̃
θi(t)) −

(Bξ)(1)
√
koβ0

] = 0, (83)

∂t
ˆ̃
θi +∇i [−k

2
o
ˆ̃
hi(t)

2
−∇i (−

D21
√

2koβ0

ˆ̃
hi(t) +D22

ˆ̃
θi(t)) +

(Bξ)(2)
√

2β0
] = 0, (84)

Note, in order for the above equations to be stable one is required to choose D12 =D21 = 0.
Hence, the matrix D is a diagonal matrix and consequently by Eq. (82) the matrix B is
also diagonal. The fluctuating hydrodynamic equations now look like

∂t
ˆ̃
hi(t) + ∇i [−2ko

ˆ̃
hi(t) − ∇i (D11

ˆ̃
hi(t)) +

B11ξ
(1)

√
koβ0

] = 0, (85)

∂t
ˆ̃
θi +∇i [−k

2
o
ˆ̃
hi(t)

2
−∇i (D22

ˆ̃
θi(t)) +

B22ξ
(2)

√
2β0

] = 0, (86)

Note Eq. (85) is of the same form as the Eq. (38), except the diffusion and the noise
terms are introduced phenomenologically and not explicitly known. In the next section,
we provide a heuristic derivation of Eq. (38) with explicit dissipation and noise terms.

One of the main prediction of the NFHD theory is the space-time dependence of the
correlations

Sα,α′(i, t) = ⟨ĝα(i, t)ĝα′(0,0)⟩ − ⟨ĝα(i, t)⟩⟨ĝα′(0,0)⟩ (87)

where ĝ1(i, t) = ĥi(η⃗(t)) and ĝ2(i, t) = êi(η⃗(t)). The space-time correlation of the normal
mode fields can be obtained by transforming the matrix S(i, t) as S(φ)(i, t) = RS(i, t)RT .

Since the mode φ
(1)
i (t) gets linearly separated from the non-moving mode φ

(1)
i (t) with

time, on sufficiently large space-time scales, the matrix S(φ)(i, t) is approximately di-

agonal i..e. S
(φ)
α,α′(i, t) ≃ δα,α′Fα(i/N, t). In [15] it was argued that for V (η) = koη

2/2,
the sound peak F1(i/N, t) asymptotically possess diffusive scaling and is described by a
Gaussian whereas the heat peak possess anomalous scaling and is described by a 3

2−Lévy
distribution. For other choices of potentials one may get KPZ scaling for the sound mode
and 5

3−Lévy heat mode. A complete classification of the scaling behaviors of the modes
for general potential V (η) is given in [15].

B Heuristic derivation of Eq. (38)

From Eq. (3) and Eq. (5) we rewrite the equation for the ‘volume’ field explicitly as

∂tĥi = ko∇i(ĥi + h̃i−1) + γ∆iĥi +∇i (
dZi+1/2
dt

) , (88)

with Zi+1/2(t) = ∫
t

0
dt′ [ĥi+1(t

′
) − ĥi(t

′
)] (

dNi+1/2(t
′)

dt′
− γ) , (89)

whereNi+1/2(t) represents the Poisson process describing the exchanges that are happening
at the bond (i, i + 1) with rate γ. More precisely, Ni+1/2 counts the number of exchange
events happened till time t on the bond (i, i + 1).
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Since we are interested in a slowly evolving LE picture in which the conserved fields
are slowly varying both over space and time, one can imagine appreciable evolution to
occur over time scale that is much larger than the microscopic time scales of the system.
Over δt time, there are many independent exchange events whose cumulative effect can
be obtained following the idea of central limit theorem. Hence we can write

δZi+1/2 = Zi+1/2(t + δt) −Zi+1/2(t), (90)

=

Ni+1/2(t+δt)

∑
k=Ni+1/2(t)

[ĥi+1(tk) − ĥi(tk)] − γ ∫
t+δt

t
dt′[ĥi+1(t

′
) − ĥi(t

′
)] (91)

where the set of times {tk} represent the times at which exchanges have occurred in the
time interval t to t + δt. Assuming the field ĥi(t) is changing slowly, for small δt one can
approximate the above expression as

δZi+1/2 ≃ [ĥi+1(t) − ĥi(t)] (Ni+1/2(δt) − γδt) , (92)

It can be shown that

⟨δZi+1/2⟩ = 0 (93)

⟨δZ2
i+1/2⟩c = γδt⟨(ĥi+1(t) − ĥi(t))

2
⟩c,P , (94)

≃ γδt⟨(ĥi+1(t) − ĥi(t))
2
⟩c,PGE +O(∇iũi), (95)

= 2γδt(
T0
ko

+ h20) +O(∇iũi), (96)

⟨δZm
i+1/2⟩c ≃ O(∇iũi), for m > 2, (97)

where ⟨ô⟩c,P represents cumulants of ô evaluated with respect to the distribution P . Hence,

for δt→ 0, one can write
dZi+1/2
dt =

√
B ξi+1/2(t) with B = 2γ (T0ko

+ h20) at the leading order

in deviations. Using this in Eq. (88) gives rise to Eq. (38).
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