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Abstract

Continuous phase transitions exhibit richer critical phenomena on the surface than in
the bulk, because distinct surface universality classes can be realized at the same bulk crit-
ical point by tuning the surface interactions. The exploration of surface critical behavior
provides a window looking into higher-dimensional boundary conformal field theories. In
this work, we study the surface critical behavior of a two-dimensional (2D) quantum criti-
cal Heisenberg model by tuning the surface coupling strength, and discover a direct special
transition on the surface from the ordinary phase into an extraordinary phase. The extraor-
dinary phase has a long-range antiferromagnetic order on the surface, in sharp contrast
to the logarithmically decaying spin correlations in the 3D classical O(3) model. The spe-
cial transition point has a new set of critical exponents, ys = 0.86(4) and η∥ = −0.33(1),
which are distinct from the special transition of the classical O(3) model and indicate a
new surface universality class of the 3D O(3) Wilson-Fisher theory.

1 Introduction

Exotic states of matter and unconventional phase transitions are the central topics of con-
densed matter and statistical physics. As the system undergoes a continuous phase transition
in the bulk, its boundary also exhibits critical behavior [1, 2]. The surface critical behav-
ior falls into different universality classes, which are controlled by the surface interactions
and are richer than the corresponding bulk criticality. They correspond to the fixed points
of the renormalization group (RG) transformation of the surface coupling parameters, and
are captured by the conformally invariant boundary conditions of the boundary conformal
field theory (BCFT) [3–5]. Therefore, the investigation of possible surface critical universality
provides a window looking into the BCFT in complement to the bootstrap and holographic
approaches [6–9].

The surface criticality has attracted renewed interest recently, which was partly motivated
by the study of the gapless edge states of topological phases. A new surface universality class
of the (2+1)-dimensional O(3) Wilson-Fisher quantum critical point (QCP) was observed in
quantum antiferromagnetic (AF) Heisenberg models with gapless edge states composed of
dangling spin-1/2 sites [10–13], but the necessity of the edge states was also questioned by
the observation of similar surface critical exponents in spin-1 models [14], which do not have
gapless edge states.

The surface critical behavior of the classical O(N)models was believed to be well-documented
in the literature [1,2,15,16]. In the three-dimensional (3D) Ising model (N = 1), the surface
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criticality is controlled by the ratio of the surface and the bulk coupling parameters, κ= Js/J .
For κ smaller than a critical value κc , the surface criticality is only induced by the bulk phase
transition at Tc,b and belongs to the ordinary class. When κ > κc , the surface forms a long-
range order below a critical temperature Tc,s > Tc,b. In this case, the surface is already ordered
at Tc,b but shows extra weak singularities, which is dubbed the extraordinary transition. At
κ = κc , Tc,s merges with Tc,b, leading to a special transition on the surface. These surface
universality classes are characterized by a set of critical exponents.

The surface criticality of the 3D O(N) models with N ≥ 2 are more subtle, because the
2D surface itself cannot have long-range order for T > Tc,b due to the celebrated Mermin-
Wagner-Hohenberg theorem. In the 3D O(2) model, the surface undergoes a Berezinskii-
Kosterlitz-Thouless transition at Tc,s > Tc,b for κ > κc and develops a quasi-long-range order
for T < Tc,s, but the nature of the surface extraordinary phase at Tc,b remained elusive [15].
In the 3D O(3) model, there is not any phase transition on the surface above Tc,b, thus it
was not expected to show any special or extraordinary transitions, even though there was
preliminary numerical evidence of a possible special transition in the strong coupling regime
on the surface [15].

Motivated by the numerical evidence of a nonordinary transition in the (2+1)D O(3) mod-
els, a recent theoretical work [17, 18] proposed that the spin fluctuations on the surface is
marginally irrelevant for 2 ≤ N ≤ Nc <∞ due to its coupling to the bulk critical state. The
spin correlation on the surface is predicted to decay logarithmically, C∥(r)∝ [log(r/r0)]−q∥ .
Therefore, such surface critical behavior is dubbed the extraordinary-log phase.

Guided by this proposal, the surface criticality of the 3D classical O(2) and O(3) models
have been numerically revisited recently [19–21]. It is found that increasing the surface cou-
pling strength leads to a special transition from the ordinary phase to an extraordinary phase
in both models, and the spin correlation in the extraordinary phase decays logarithmically,
which is consistent with the postulated extraordinary-log phase. The anomalous dimension of
the magnetic order at the special transition of the O(3) model is numerically close to that in
the (2+1)D quantum Heisenberg models with dangling spins [19].

In a different theoretical approach [22], a spin-1/2 Heisenberg chain coupled to the ordi-
nary surface of a (2+1)D O(3) QCP was studied with the non-Abelian bosonization and the
RG analysis. It is shown that the Luttinger liquid phase of the spin chain is destabilized by
its coupling to the bulk and gives way to either an AF order or a valence bond solid (VBS)
order, and there is a direct surface transition in between. The nonordinary surface critical
state found in numerical simulations [10–13] was argued to correspond to the AF phase with
a vanishingly small order parameter.

In this work, we reexamine the spin-1/2 quantum Heisenberg model on a dimerized square
lattice, which is shown in Fig. 1 (a). At the bulk QCP, it was found to show the nonordinary
critical behavior on the surface formed by cutting the strong bonds and exposing dangling
spins, and show the ordinary critical behavior otherwise [11]. Starting from the ordinary phase
of the nondangling surface, we show that increasing the surface coupling leads to a special
transition into an extraordinary phase, which is illustrated in the surface phase diagram in Fig.
1 (b). The extraordinary phase has a long-range AF order on the surface, in sharp contrast to
the extraordinary-log phase of the 3D classical O(2) and O(3) models. Moreover, we find that
the critical exponents at the special transition are distinct from those at the special transition
of the 3D classical O(3) model [19], thus indicate a new surface universality class of the 3D
O(3) Wilson-Fisher theory.
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Figure 1: (a) The dimerized square lattice Heisenberg model with two open bound-
aries. J ′ and J are the coupling parameters of the strong (blue) and the weak (black)
bonds in the bulk, repectively. Js is the coupling in the surface layer (red bonds). (b)
Schematic phase diagram of the surface critical behavior at the bulk quantum critical
point. A special transition is found at Js,c = 6.395(30) from the ordinary phase for
Js < Js,c to the extraordinary phase with a long-range antiferromagnetic order for
Js > Js,c .

2 Model and method

We study the spin-1/2 quantum Heisenberg model on the dimerized square lattice shown
in Fig. 1 (a) with the open boundary condition in one direction and the periodic boundary
condition in the other direction. The Hamiltonian is given by

H = J
∑

〈i j〉

Si · S j + J ′
∑

〈i j〉′
Si · S j + Js

∑

〈i j〉s

Si · S j , (1)

where J ′ and J correspond to the strong (blue) and the weak (black) bonds in the bulk, and
Js is the coupling parameter in the surface layer (red bonds). We set J = 1 as the unit of
energy. This model undergoes a quantum phase transition in the bulk at J ′c = 1.90951(1),
which belongs to the 3D O(3) universality class [23–25]. For Js ≃ 1, the surface shows the
ordinary critical behavior [11]. On the other hand, for Js≫ 1, the surface layer may be treated
as a spin-1/2 Heisenberg chain with relatively weak coupling to the critical bulk state. We shall
study the phase diagram of the surface critical behavior controlled by Js in this work.

We adopt the projective quantum Monte Carlo algorithm in the valence bond basis [26,27].
All simulations are performed at the bulk QCP. The largest system size in the simulations is
L = 160. 107 times of Monte Carlo sampling are taken for each data point.

The surface spin correlation function C∥(r), the surface-bulk spin correlation C⊥(r), the
static spin structure factors S(q), the correlation length ξs and the Binder ratio Qs are calcu-
lated to characterize the surface critical behavior. Here,

C∥(r) =
1
L

∑

x

〈S(x ,1) · S(x+r,1)〉, (2)

C⊥(r) =
1
L

∑

x

〈S(x ,1) · S(x ,1+r)〉. (3)

The surface spin structure factor is defined as

S(q) = 〈S̃(q)〉, (4)

where

S̃(q) = 1
L

∑

x ,x ′
eiq(x−x ′)S(x ,1) · S(x ′,1), (5)
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Figure 2: (a) The surface correlation ratio Rs = ξs/L versus Js for different lattice
sizes; (b) The Binder ratio Qs versus Js for different lattice sizes.
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Figure 3: (a) The surface correlation ratio Rs = ξs/L versus Js close to the special
transition point Js,c for different lattice sizes. Solid lines are guide to the eye. (b)
Log-log plot of C∥(L/2), C⊥(L/2) and S(π)/L versus L at the special transition Js,c .
Solid lines are fitting according to Eqs. (9), (10) and (11).

in which q = π or π+δq (δq = 2π/L). The surface correlation length ξs is defined by

ξs =
1

2 sin(π/L)

√

√ S(π)
S(π+δq)

− 1. (6)

The Binder ratio Qs is defined by

Qs =
〈S̃4(π)〉
〈S̃2(π)〉2

(7)

The special transition, the ordianry phase, and the nature of the extraordinary phase are de-
rived from the finite-size scaling analysis of these quantities, which will be presented in detail
in the following sections.

3 Results

3.1 Special transition

We first show that increasing the surface coupling strength Js induces a special transition on
the surface by examining the surface correlation ratio Rs = ξs/L and the Binder ratio Qs, which
are plotted in Fig. 2. In the ordinary phase, Rs decreases with increasing system size L, which
is consistent with previous numerical results [10]. In contrast, Rs is found to increase with L
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Figure 4: The scattered fitting parameters Js,c and ys extracted from 1000 sets of
randomly generated Rs data for Lmin = 64. The standard deviations (indicated by
the black lines) serve as estimates of the statistical errors.

in the large Js regime, which indicates stronger spin correlations on the surface. Therefore,
the Rs lines for different lattice sizes cross with each other, which indicates a critical point on
the surface. The crossing of the Binder ratio lines also reveals such a special point. However,
the data quality of the Binder ratio is not as good as Rs in the vicinity of the critical point, and
the correction to scaling is much stronger. Hence we use the crossing of Rs to locate the critical
point. This is shown in Fig. 3 (a). If the transition is continuous with a scale-invariant critical
point, the dimensionless ratio Rs should take the following finite-size scaling form [28,29],

Rs = R̃
�

(Js − Js,c)L
ys
�

+
∑

i

bi L
−ωi

= R0 +
kmax
∑

k=1

ak(Js − Js,c)
k Lk ys +
∑

i

bi L
−ωi ,

(8)

in which ys > 0 is the scaling dimension of the relevant perturbation at the special transition,
and ωi ’s are the correction-to-scaling exponents. We set ω1 = 0.759 [30] and ω2 = 2 [31] in
the following analysis. R̃ is the universal scaling function. In the second line of Eq. (8), R̃ is
expanded as a power series truncated at the kmax-th order near the critical point. The critical
point Js,c and the exponent ys, together with the coefficients R0, ak ’s, b1 and b2 are fitting
parameters in the data collapse analysis. The finite-size scaling correction is found to be quite
strong, thus we gradually increase the smallest system size Lmin in the analysis and achieve
stable fitting for Lmin ≥ 64. The results are listed in Table 1. The statistical errors of the
fitting parameters are estimated with the following resampling method. A number of artificial
data of Rs are randomly generated from the original data and error bars assuming a normal
distribution and fitted with the same data collapse scaling procedure. The extracted fitting
parameters are scattered around those from the original data (see Fig. 4 for Lmin = 64), and
the standard deviations are taken as the estimate of statistical errors of these fitting parameters.
Our final estimates are Js,c = 6.395(30), ys = 0.86(4), and R0 = 0.154(1).

The spin correlation functions C∥(L/2), C⊥(L/2), and the spin structure factor S(π)/L at
the special transition Js,c are shown in Fig. 3 (b). They are fitted according to the following
finite-size scaling formulas,

C∥(L/2) = L−1−η∥(a+ bL−ω), (9)

C⊥(L/2) = L−1−η⊥(a+ bL−ω), (10)

S(π) = c + L2yh1−3(a+ bL−ω), (11)

5
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Table 1: Details of the finite-size scaling analysis of the surface correlation ratio
Rs = ξs/L in the vicinity of the special transition according to Eq. (8) with kmax = 2.
The correction-to-scaling exponents are set to be ω1 = 0.759 and ω2 = 2. The stan-
dard errors of the fitting parameters are obtained from the fitting procedure.

Lmin Js,c ys R0 χ2/d.o.f
48 6.387(10) 0.859(24) 0.1532(4) 0.60
56 6.394(18) 0.859(27) 0.1535(7) 0.63
64 6.395(19) 0.858(27) 0.1536(8) 0.65

Table 2: Finite-size scaling analysis of C∥(L/2), C⊥(L/2), and S(π)/L at the surface
special transition according to Eqs. (9), (10), and (11) respectively.

C∥(L/2) Lmin η∥ χ2/d.o.f
48 -0.340(4) 1.27
64 -0.327(9) 0.90

C⊥(L/2) Lmin η⊥ χ2/d.o.f
48 -0.186(2) 0.17
64 -0.184(2) 0.17

S(π) Lmin yh1 χ2/d.o.f
48 1.662(3) 0.71
64 1.658(3) 0.46

in which η∥, η⊥ and yh1 are the critical exponents. In (11), c is the nonsingular part of S(π),
which comes from the contribution of short-range correlations. The results are listed in Table
2. Our final estimates of the exponents are η∥ = −0.33(1), η⊥ = −0.18(1), yh1 = 1.66(1).
The estimates of η∥ and yh1 satisfy the scaling relation

η∥ = 3− 2yh1. (12)

With the estimates of η∥ and η⊥, there is a slight deviation from the scaling relation

2η⊥ = η∥ +η, (13)

where η = 0.036 is the bulk anomalous dimension [32]. This might be attributed to the
inaccuracy of the estimated critical point Js,c and other systematic errors in the scaling analysis.

In summary, the universality class of the special transition of the dimerized quantum
Heisenberg model is described by the critical exponents

ys = 0.86(4), (14)

η∥ = −0.33(1), (15)

η⊥ = −0.18(1), (16)

yh1 = 1.66(1). (17)

These exponents are drastically different from those obtained at the special transition of the 3D
classical O(3) model [19], ys = 0.36(1) and η∥ = −0.473(2), and previous numerical results
with a dangling spin chain η∥ ≃ −0.45 [10, 11] and η∥ ≃ −0.5 [14]. Moreover, the critical
exponents of (4− ε)-dimensional O(n) models at the special transition were calculated with

6
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Figure 5: Log-log plot of the correlation functions in the ordinary phase: (a) C∥(L/2)
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the ε-expansion [2,33]:

η∥ = −
n+ 2
n+ 8

ε+
5(n+ 2)(4− n)

2(n+ 8)3
ε2 +O(ε3), (18)

φs =
1
2
−

n+ 2
4(n+ 8)

ε+
n+ 2

8(n+ 8)3
[8π2(n+ 8)− (n2 + 35n+ 156)]ε2 +O(ε3). (19)

Here, φs is the crossover exponent at the special transition, which is related to ys and the bulk
correlation-length exponent ν by ys = φs/ν. The ε-expansion result of ν is given by [2,34]

ν=
1
2
+

n+ 2
4(n+ 8)

ε+
(n+ 2)(n2 + 23n+ 60)

8(n+ 8)3
ε2 +O(ε3). (20)

Setting n = 3 and ε = 1, we find η∥ = −0.445 and ys = 0.984, and both are substantially dif-
ferent from our numerical results, which cannot be attributed to numerical errors. Therefore,
the special transition found in this work belongs to a new surface universality class of the 3D
O(3) Wilson-Fisher theory.

3.2 Ordinary phase

The surface is expected to be in the ordinary phase for Js < Js,c . The Js = 1 case has been
confirmed with the scaling behavior of S(π), C∥ and C⊥ in Ref. [11]. Here, we focus on the
Js = 2 and Js = 3 cases, the results of which are shown in Fig. 5.

The data of C∥(L/2) and C⊥(L/2) at Js = 2 are fitted according to

C∥(L/2) = L−1−η∥(a+ bL−ω), (21)

C⊥(L/2) = L−1−η⊥(a+ bL−ω), (22)

7
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with ω = 0.759 [30]. This gives η∥ = 1.35(2) and η⊥ = 0.67(2). These results satisfy the
scalig law (13) and are consistent with the ordinary phase of the 3D O(3) universality class.
For the Js = 3 case, the correction-to-scaling effect is much stronger as it is closer to the special
transition; Nevertheless, we find the data of C∥(L/2) and C⊥(L/2) approach to be parallel to
those at Js = 2 in the log-log plot for large lattice sizes (see Fig. 5), which indicates the same
critical exponents.

The scaling behavior of S(π)/L is shown in Fig. 6 (a), which turns out to be dominated by
the nonsingular constant c in Eq. (11) contributed by the short-range correlations as the critical
exponent yh1 < 1.5 in the case of ordinary transition. Fitting the data at Js = 2 according to
Eq. (11) withω= 0.759 [30], we find the critical exponent from the subleading singular term,
yh1 = 0.81(2), which is consistent with the ordinary transition as the Js = 1 case in Ref. [11]
and satisfies the scaling formula (12). This is shown in Fig. 6 (b), which also includes the
Js = 3 case. Therefore, we conclude that the surface critical behavior is consistent with the
ordinary universality class for Js < Js,c .

3.3 Extraordinary phase

We then study the nature of the extraordinary phase for Js > Js,c . In light of the proposals that
the surface spin correlation in the extraordinary phase may either decay logarithmically [17]
or have long-range AF order [22], we examine both possibilities in the following analysis.

The data of Cs(L/2) and S(π)/L at Js = 10 and 16 are shown in Fig. 7, both of which are
deep in the extraordinary phase. We first consider the extraordinary-log scaling form proposed
in Ref. [17]. Suppose that the surface spin correlation decays logarithmically,

Cs(r)∝ [ln(r/r0)]
−q∥ , (23)

in which r0 is a nonuniversal constant, then the structure factor S(π)/L would decay logarith-
mically as a function of the lattice size L with the same exponent q∥,

S(π)/L∝ [ln(L/L0)]
−q∥ , (24)

with another nonuniversal constant L0. We find that Cs(L/2) and S(π)/L can be fitted pretty
well with the logarithmic form as shown in Figs. 7 (a) and (b) and Table 3. However, the
extracted exponents q∥ from Cs(L/2) and S(π)/L are different from each other and vary sig-
nificantly with Js. We note that Js determines the bare value of the surface velocity vs, and
it has been shown with the RG analysis [17] that vs flows logarithmically slow towards the
bulk velocity vb and can affect the apparent exponent q∥ extracted from numerical results at
finite length scales. While the variation of q∥ with Js might be attributed to the disparity of the
surface and the bulk velocities due to the above arguments, it does not explain the difference
of q∥ extracted from C∥ and S(π). Therefore, such inconsistency and non-universality indicate
that the surface spin correlations cannot be captured by the extraordinary-log scaling.

We thus turn to the possibility of a true long-range AF order on the surface. Suppose Cs(r)
can be captured by a polynomial of 1/r as r →∞,

Cs(r) = m2
s + c1r−1 + c2r−2 + c3r−3, (25)

then S(π)/L is given by

S(π)/L = m2
s + c′1 L−1 + c′′1 L−1 ln L + c′2 L−2, (26)

in which the L−1 ln L term comes from summing over the r−1 term in Cs(r). The order param-
eter squared m2

s can estimated by extrapolating Cs(L/2) and S(π)/L to the thermodynamic
limit, m2

s = limL→∞ Cs(L/2) = limL→∞ S(π)/L. The orders of expansion in Eqs. (25) and (26)

8
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Table 3: Extraordinary-log fitting of Cs(L/2) and S(π)/L at Js = 10 and 16 according
to Eqs. (23) and (24).

Cs(L/2) Lmin q∥ r0 χ2/d.o.f
Js = 10 48 1.80(6) 0.57(8) 1.62

64 1.85(13) 0.51(16) 1.88
72 1.85(20) 0.51(26) 2.26

Js = 16 48 0.824(23) 3.64(25) 3.04
64 0.942(27) 2.50(22) 0.58
72 0.95(5) 2.4(4) 0.68

S(π)/L Lmin q∥ L0 χ2/d.o.f
Js = 10 48 4.09(9) 0.074(11) 3.46

64 3.83(13) 0.116(27) 2.61
72 3.73(19) 0.14(5) 2.83

Js = 16 48 2.63(4) 0.77(6) 4.82
64 2.47(6) 1.03(11) 2.58
72 2.36(5) 1.27(13) 1.27

are restricted to keep the same number of fitting parameters. Fitting to the data of Cs(L/2)
and S(π)/L, the results are shown in Figs. 7 (c) and (d). The two quantities yield consistent
estimate of m2

s within one standard deviation, which justifies the above fitting procedure and
indicates a long-range AF order.

More data for 6 ≤ Js ≤ 16 are presented in Fig. 8, and the extrapolated m2
s are shown

in Fig. 9. The value of m2
s decreases with decreasing Js and becomes vanishingly small with

large relative error bars near the special transition point Js,c . A simple power-law fitting

m2
s ∝ (Js − Js,c)

2β∥ (27)

gives an estimate of the critical point Js,c = 6.42(4), which is consistent with the previous
estimate from the correlation ratio Rs. Therefore, we conclude that the surface has long-range
AF order throughout the extraordinary phase Js > Js,c . In principle, β∥ can also be extracted
from fitting Eq. (27). However, our data of m2

s in the close vicinity of Js,c are not precise enough
for a reliable estimate of β∥. Instead, according to the scaling relation, β∥ = (1+η∥)/2ys, we
should have β∥ = 0.40(3).

The scaling of (ξs/L)2 with the system size L for several Js in the extraordinary phase is
shown in Fig. 10. In the extraordinary-log phase, one should find (ξs/L)2∝ ln(L) [19]. In
contrast, in the long-range ordered phase, we expect (ξs/L)2∝ L. As shown in Fig. 10, we
find that (ξs/L)2 indeed exhibits very good linear behavior in the large-L limit. This further
demonstrates that there is a long-range AF order in the extraordinary phase Js > Js,c .

4 Conclusion and Discussions

In summary, we have found a special transition on the surface of a 2D quantum critical Heisen-
berg model between the ordinary phase and an extraordinary phase by tuning the coupling
strength in the surface layer. The extraordinary phase has a long-range AF order, in sharp
contrast to the extraordinary-log phase found in the 3D classical O(3) model. The critical
exponents at the special transition are drastically different from those at the special transi-
tion of the classical O(3) model, thus indicate a new surface universality class of the 3D O(3)
Wilson-Fisher theory.
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Figure 7: Finite-size scaling of Cs(L/2) and S(π)/L at (a,c) Js = 10 and (b,d) Js = 16,
both of which are deep in the extraordinary phase. (a,b) Cs(L/2) and S(π)/L (in
logarithmic scale) versus ln[ln(L/2r0)] and ln[ln(L/L0)], respectively. The nonuni-
versal constants r0 and L0 are presented in Table 3. Dashed lines are fitting with
the logarithmic form in Eqs. (23) and (24). Their slopes indicate that the exponent
q∥ extracted from the two quantities are significantly different. (c,d) Cs(L/2) and
S(π)/L versus 1/L. Lines are fitting according to Eqs. (25) and (26).

The surface AF order observed in the extraordinary phase may be attributed to the long-
range effective interactions induced by the critical fluctuations in the bulk, in the same spirit as
the AF order proposed for a dangling spin chain coupled to the bulk in Ref. [22]. The AF order
in the dangling-chain model is also confirmed numerically recently, which will be reported
elsewhere 1.

In Ref. [17], the extraordinary-log phase was proposed based on the perturbative RG
analysis near the normal surface fixed point. This has been confirmed in the 3D classical
O(3) [19, 20] and O(2) [21] models, and the 3D AF three-state Potts model with emergent
O(2) symmetry [35, 36]. However, the long-range AF order observed in the extraordinary
phase of our current model and the distinct critical exponents at the special transition suggest
that it might belong to a different regime of the 3D O(3) surface critical behavior, which is not
captured by the perturbation from the normal surface fixed point. Instead, we may start from
a possible gapless phase of the dangling ladder at the surface and treat its coupling to the bulk
as perturbations following the similar method as Ref. [22]. However, the model studied in this
work is different from the dangling-chain model. Here, the first two layers at the surface may
be treated as a dangling ladder, which is weakly coupled to the bulk. The ladder in itself has a
spin gap due to the interchain coupling, and the weak coupling to the bulk leads to the ordinary
surface critical behavior. When the AF interaction in the surface layer is strong, we may start
from the Luttinger liquid phase of two decoupled chains and treat the interchain coupling and
the coupling to the bulk as perturbations. With the bosonization and the RG analysis, we find
that there is a phase with long-range AF order on the surface, and an ordinary-AF transition.

1C. Ding and L. Zhang, in preparation.
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Figure 8: Finite-size scaling of Cs(L/2) and S(π)/L for various surface coupling pa-
rameter Js. Lines are fitting according to Eqs. (25) and (26).

The details will be presented elsewhere 2.
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versus Js. The solid line is the power-law fitting with Eq. (27).
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Figure 10: The scaling behaviors of (ξs/L)2 in the extraordinary phase for several
values of Js.
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