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Abstract

One of the final goals in quantum information science is to achieve large-scale quantum
computing. Circuit QED (quantum electrodynamics) provides one of the best platforms
for quantum computing. However, previous research focuses on implementing discrete-
time quantum walks (DTQWs) on one-dimensional simple graphs based on circuit QED,
which can only be used to realize quantum computing with a small size. To implement
large-scale quantum computing, it becomes necessary and urgent to realize DTQWs on
multi-dimensional graphs with arbitrary structures. We here propose a general proto-
col for realizing DTQWs on multi-dimensional arbitrary graphs based on circuit QED,
where each graph node can have a different number of connected neighbor nodes. As
an application, we numerically simulate a Grover walk search algorithm in a cubic graph.
With decoherence considered, our simulation results fit well with the theoretical results.
The protocol is universal and can be extended to accomplish the same task in a wide
range of physical systems, which consist of natural or artificial atoms and optical or
microwave cavities. This work paves an avenue to realize DTQWs on multi-dimensional
arbitrary graphs, which could have broad applications in large-scale quantum computing
and quantum simulation.
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1 Introduction

Circuit quantum electrodynamics (QED), composed of superconducting (SC) qubits and mi-
crowave resonators or cavities, has attracted substantial attention because of its controllabil-
ity, integrability, ready fabrication and potential scalability [1–11]. The level spacings of SC
devices can be rapidly adjusted (1∼ 3 ns) [12–15], and their coherence time has been signif-
icantly improved [16–22]. The circuit QED has been considered as one of the best platforms
for quantum computation and quantum simulation [1–3,6–8,23–25].

As the extension of classical random walks, discrete-time quantum walks (DTQWs) have
important applications in universal quantum computation [26–31], quantum algorithm [32–
36], quantum simulation [37–41], quantum state engineering [42], etc. In a standard DTQW,
a walker moves in a graph consisting of nodes and edges, depending on the state of the coin.
Each edge acts as a bridge connecting adjacent nodes. It is commonly recognized that the
implementation of DTQWs in circuit QED is not easy. Unlike photons [43] or atoms [44], SC
qubits can not move because their positions are fixed in space. Thus it is difficult to encode
states of the coin and positions of the walker by SC qubits.

Up to today, there exist only a few schemes for realizing DTQWs on one-dimensional (1D)
graphs based on circuit QED [45–49]. Let us here give a brief introduction to Refs. [45–49].
In [45, 46], the phase space of superposition Fock states in a cavity was used to encode the
walker’s position space and a qubit (coupled with the cavity) was used as the coin. Due to
the use of non-orthogonal states and the limitation of the phase space, the generality and the
scalability of [45, 46] pose inevitable problems. In [47], a 1D DTQW scheme was proposed,
where a pair of SC qubits were used as a node and the nearest-neighbor qubits were coupled
via tunable couplers. The walker moved among nodes in a 1D line and the coin was encoded
using excited energy levels of the qubit in each node. In [48], qutrits (i.e., three level quantum
systems) were used to realize a 1D DTQW in circuit QED, where a 2D coin was encoded by
two higher energy levels of the qutrits. In [49], quantum walks of a single particle in a 1D
periodically kicked circuit QED lattice were investigated.

Note that the previous works on 1D DTQWs [45–49] can only be used to realize quantum
computing with a small size. As is well known, one of final goals of quantum computing is
the implementation of large-scale quantum computation. For quantum computation based
on DTQW, large-scale quantum computation would require implementing DTQWs on a multi-
dimensional graph. However, after a careful review of the literature, we find that how to
realize a DTQW on a multiple-dimensional (MD) or complex graph based on circuit QED has
not been reported to date.

We stress that it is much more difficult to realize a MD DTQW than a 1D DTQW, because
a MD DTQW requires much more nodes to encode the positions of the walker and a higher
dimensional space to encode the coin. Thus, implementing a MD DTQW is challenging in most
physical systems, especially in a circuit QED system because SC qubits can not hop in space.

In this paper, we propose a general protocol for implementing DTQWs on MD arbitrary
graphs (i.e., MD DTQWs) based on circuit QED, where each graph node can have a different
number of connected neighbor nodes. In this proposal, graph nodes are constructed by SC
qudits (i.e., quantum systems with more than two energy levels) while graph edges are con-
structed by cavities. Positions of the walker are encoded by sites of qudits in a graph, while
states of the coin are encoded by excited states of the qudits. Specifically, an N -dimensional
coin should be used when the walker is located at a site connecting to N neighbouring sites,
i.e., the walker at this site can move in N directions. In this case, with the ground energy level
included, a qudit with (N + 1) energy levels is required at this site. Note that the N excited
energy levels of this qudit are used to encode the coin at this site. Cavities or resonantors
are used as graph edges to control the coupling or decoupling between the neighbor qudits.
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As an application of this protocol, based on circuit QED, we numerically simulate a Grover
walk search algorithm in a cubic graph. With decoherences considered in the simulations, we
study the effect of the systematical parameters on the optimal probability, i.e., the probability
for successfully finding the target state in the final state after a two-step DTQW. The results
indicate that this protocol is feasible within the current circuit QED technology.

2 General Protocol for Implementing DTQWs on MD arbitrary graphs

For a standard DTQW on a MD arbitrary graph, a walker moves among graph nodes with
respect to the state of a coin. The joint evolution of the walker and the coin in each step is
characterized by a unitary operator U = S ·C , where C is the operator describing the operation
on the coin while S is the operator for the walker. Note that the coin can have different
dimensions when the walker is located at different nodes. In each step of a standard DTQW,
the coin is first tossed by the operator

C =
n
∑

k=1

Ck ⊗ |k〉w〈k|, (1)

where Ck is the Nk-dimensional unitary operator at node k, given by

Ck =

 

Nk
∑

ik=1

Nk
∑

jk=1

αik jk |ik〉c〈 jk|

!

. (2)

Here and above, n is the number of graph nodes, Nk is the dimension of the coin at node k
(i.e., the number of directions in which the walker at node k can move), |ik〉c represents the
ik

th basic state of the coin at node k, and the subscript “c” (“w”) stands for the coin (walker).
In addition, the walker is shifted by the operator

S =
n
∑

k=1

Sk, (3)

where Sk is the shift operator for the walker at node k, which is associated with the coin state,
and given by

Sk =
Nk
∑

ik=1

|ik〉c〈ik| ⊗ |ik〉w〈k|. (4)

Here |ik〉w represents the position of the ik
th neighbor node of node k, as shown in Fig. 1. Note

that the position of the walker is represented by the node occupied by the walker.
Based on circuit QED, we now propose a general protocol for implementing DTQWs on a

MD arbitrary graph, described by the above. In this proposal, graphs for DTQW are constructed
by circuit QED devices. Namely, SC qudits serve as graph nodes while cavities play a role as
the graph edges to connect the nodes.

We first introduce how to implement Ck and Sk on a subgraph composed by node k and
its Nk neighbor nodes (Nk can be an arbitrary positive integer), with the walker initially at the
position of node k (see Fig. 1). Note that in each step of a standard DTQW, a walker shifts from
its located node to its neighboring nodes only. In addition, arbitrary graphs can be decomposed
as nodes and their edges connecting the neighbors. Therefore, if the subgraph (shown in
Fig. 1) can be constructed in circuit QED and the one-step DTQW operator Uk = Sk · Ck can
be successfully implemented in this subgraph, a complete graph with arbitrary structure can
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Figure 1: Diagram of a qudit at node k and its Nk neighbor qudits (1k, 2k, ..., Nk). The
qudit at node k and its neighbor qudit jk are coupled via cavity C jk ( jk = 1k, 2k, ..., Nk).
Each qudit has an identical energy level structure, while frequencies of the Nk cavities
are different from each other.

be constructed in the same manner and a multi-step DTQW can be realized by repeating the
one-step DTQW in each subgraph (consisting of a node and its neighbor nodes).

The construction of the subgraph is shown in Fig. 1, where qudit k (at node k) interacts
with its neighboring qudits 1k, 2k, ..., Nk via cavities C1k

, C2k
, ..., CNk

, respectively. Assume that
the walker is initially located at node k. In this case, one needs to adopt Nk + 1 energy levels
of qudit k, which are labeled as |0〉k, |1〉k, ..., and |Nk〉k. The Nk excited energy levels of qudit
k are used to encode an Nk-dimensional coin, which is required when the walker is at position
k. A coin with an Nk dimensional size is needed to have the walker move in Nk different
directions. For simplicity, we assume that the Nk neighboring qudits 1k, 2k, ..., Nk of qudit k
have the same energy level structure as qudit k (Fig. 1). In general, one can set the number
of energy levels of each qudit to be equal to the number of its neighbors plus 1, or just set the
number of energy levels of all qudits to be equal to the maximal number of neighbors of nodes
plus 1.

In Fig. 1, the position of the walker is encoded by the location of a qudit, which is not in
the ground state. For instance, if qudit k or jk ( jk = 1k, 2k, ..., Nk) is not in the ground state,
then the walker is at position k or jk. Let us suppose that the walker is initially at position k
(the location of qudit k in Fig. 1). In this case, all qudits are initially in the ground state except
qudit k. In addition, assume that all cavities are initially in the ground state (i.e., the vacuum
state).

We now introduce how to implement a one-step DTQW on the subgraph shown in Fig. 1,
which is described by the operator Uk = Sk · Ck. Here, Ck characterizes the tossing of the coin
at walker’s position k while Sk describes the moving of the walker into Nk neighbor positions
1k, 2k, ..., Nk according to the coin states |1〉c , |2〉c , ..., |Nk〉c . For the expressions of Ck and Sk,
please see Eqs. (2) and (4). This one-step DTQW on the subgraph can be implemented by the
following two processes.

Process I - Tossing the coin with classical pulses. First, adjust the level spacings of each
qudit to have all qudits decouple from the cavities. Then, apply classical pulses to each qudit
to realize the coin operator Ck. More explanations are given below.

According to the CS (Chandler and Stewart) decomposition [50], a SU(Nk) operation on
the Nk-dimensional coin, described by the coin operator Ck, can be decomposed into SU(2)
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Figure 2: Illustration of cavity C jk ( jk = 1k, 2k, ..., Nk) being coupled to the |0〉↔ | j〉
transition of qudit k ( jk) with coupling strength g j (µ j) and detuning ∆ j . (a) The
couplings of the Nk cavities (C1k

,C2k
,...,CNk

) with qudit k. (b) The couplings of cavity
C jk with qudit jk.

and SU(3) operations. Moreover, an arbitrary SU(3) operation can be decomposed into SU(2)
operations and U(1) operations. Here, each U(1) operation only adds a phase eiφ0 to one
basis state of the coin. In this way, a SU(Nk) operation on the Nk-dimensional coin can be
implemented through SU(2) and U(1) operations, which can be realized by applying classical
pulses. An arbitrary SU(2) operation can be expressed as a 2D matrix of form

�

cosθ −ie−iφ sinθ
−ieiφ sinθ cosθ

�

. (5)

A SU(2) unitary operation, acting on the two excited states of | j〉 and |l〉 of a qudit, can be
realized by applying a classical pulse resonant with the | j〉 ↔ |l〉 transition of the qudit. The
qudit-pulse resonant interaction results in the following state rotations [51]

| j〉 → cos(Ωt)| j〉 − ie−iφ sin(Ωt)|l〉,

|l〉 → −ieiφ sin(Ωt)| j〉+ cos(Ωt)|l〉, (6)

where Ω is the pulse Rabi frequency and φ is the initial phase of the pulse. By setting the
operational time t = θ/Ω, one can see that the state transformation (6) can be described by
the SU(2) operation given in Eq. (5). In this sense, the SU(2) operation (5) is implemented.
In general, the U(1) operation on an energy level |h〉 is rarely used, which can be realized by
applying a classical pulse off-resonant with the |0〉↔ |h〉 transition of the qudit.

After the above process, the unitary operator Ck of the coin (i.e., the SU(Nk) operator) is
realized, which prepares the qudit k and its Nk neighbor qudits in the following state

 

Nk
∑

j=1

α j| j〉k

!

Nk
∏

mk=1k

|0〉mk
, (7)

where the subscript k represents qudit k while the subscript mk represents its neighbor qudit
mk (mk = 1k, 2k, ..., Nk).

Process II - Shifting the walker from position k to its neighbor positions according to
the coin state. This process can be realized by two different methods.

5



SciPost Physics Submission

Figure 3: Three types of 2D graphs. Each dot represents a qudit while each line
represents a cavity. The lines with the same color represent the cavities with the same
frequency. Every qudit couples to its adjacent cavities with different frequencies.

Method (i) Let us return to the subfigure shown in Fig. 1. Adjust the level spacings of
qudits k and jk or adjust the frequency of cavity C jk , such that cavity C jk is coupled to the
|0〉 ↔ | j〉 transition of qudit jk (qudit k) with the coupling strength g j and the detuning
∆ j = ω0 j −ωc j

, as shown in Fig. 2. Here, ω0 j is the |0〉 ↔ | j〉 transition frequency of qudit
jk (k) while ωc j is the frequency of cavity C jk . The Hamiltonian of the Nk + 1 qudits (k, 1k,
2k,...,Nk) and the Nk cavities (C1k

, C2k
,...,CNk

) in the interaction picture is given by

HI =
Nk
∑

j=1

(g ja
+
jk
· |0〉k〈 j|+ g ja

+
jk
· |0〉 jk〈 j|)e

−i∆ j t +H.C. , (8)

where the subscript k ( jk) in |0〉k〈 j| (|0〉 jk〈 j|) represents qudit k ( jk), and a jk is the photon
annihilation operator of cavity C jk , which is located between qudit k and qudit jk (Fig. 1).
Here H.C. represents Hermitian conjugate.

When∆ j � g j (large detuning condition) and the cavities are initially in the vacuum state,
the Hamiltonian HI becomes [52–54]

He = H0 +H ′I , (9)
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Figure 4: Search probability versus the coupling strength g and the Rabi frequency
Ω. Parameters of ∆/2π= 1 GHz and T = 5 µs are used in the simulation.

with

H0 =
Nk
∑

j=1

λ j

�

| j〉k〈 j|+ | j〉 jk〈 j|
�

, (10)

H ′I =
Nk
∑

j=1

λ j|0〉k〈 j| · | j〉 jk〈0|+H.C. , (11)

where λ j = g2
j /∆ j . In a new interaction picture with respect to the Hamiltonian H0, the

Hamiltonian becomes
eHe = eiH0 t H ′I e

−iH0 t = H ′I , (12)

where we have used the commutation relation [H0, H ′I] = 0.
By setting λ j = λ ( j = 1, 2, ..., N), under the Hamiltonian eHe and after an evolution time

t = π/2λ, the state (7) becomes

−
Nk
∑

j=1

 

α j|0〉k| j〉 jk
∏

mk 6= jk

|0〉mk

!

, (13)

in which the continued product is taken for mk = 1k, 2k, ..., Nk (without jk). Note that the state
(13) has been transformed back to the original interaction picture by performing the unitary
transformation e−iH0 t . Equation (13) indicates that the walker, which is initially at position k,
has moved onto position jk (occuppied by qudit jk not in the ground state) according to the
state | j〉k of the coin.

The main advantages of this method are: The dissipation of the cavities and the crosstalk
between the cavities can be ignored since all cavities remain in the vacuum state due to the
virtual photon process. We should mention that the condition λ j = λ (i.e., g2

j /∆ j = g2
l /∆l ,

independent of j and l) can be met by carefully selecting the detuning ∆ j (∆ j = ω0 j −ωc j
)
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Figure 5: Search probability P versus T for g/2π= 100 MHz, Ω/2π= 100 MHz, and
∆/2π = 1.0 GHz. Three lines correspond to the errors 0% (blue square), 5% (red
circle) and 10% (green diamond) of the operational time in process II, respectively.

via designing the suitable frequency ωc j
of cavity C jk ( j = 1, 2, ..., Nk). Hence, the method

introduced above can be realized in most circuit QED labs.
Method (ii) Suppose that cavity C jk is resonant with the |0〉 ↔ | j〉 transition of qudit jk

and qudit k. In this sense, one has∆ j = 0. The above Hamiltonian HI in Eq. (8) thus becomes

HI =
Nk
∑

j=1

(g ja
+
jk
· |0〉k〈 j|+ g ja

+
jk
· |0〉 jk〈 j|) +H.C . . (14)

With a choice of g j = g, one can easily find that after an evolution time t = π/(
p

2g), the
initial state (7) will also evolve to the state (13) [48]. The main advantage of this method
is: The operation can be performed at a fast speed due to the use of the qudit-cavity resonant
interaction.

So far, we have implemented a one-step DTQW, described by the operator Uk = Sk · Ck,
on the subgraph shown in Fig. 1. This one-step DTQW is realized through the two processes
I and II. For an arbitrary graph, an N -step MD DTQW can be realized by repeating the two
processes I and II N times in each nodes. By using SC qudits and cavities, graphs with different
structures can be constructed for the DTQW implementation. For instance, three types of 2D
graphs can be constructed, as shown in Fig. 3. Figures 3(a) and 3(b) present two graphs with
large scale structures, where each node has four and three neighbors, respectively. Figure 3(c)
gives a compact cubic graph, which can be constructed by a 2D SC circuit [Fig. 3(d)].

3 An Application of DTQW on a cubic graph

As an application of this protocol, we implement an eight-element Grover walk search algo-
rithm [32] on a cubic graph [Fig. 3(c)]. A significant advantage of this DTQW-based search al-
gorithm is that it only requires interactions between neighboring qubits (i.e., two-qubit gates),
whereas Grover’s search algorithm requires multi-qubit controlled gates. Here we numerically
simulate this algorithm based on DTQW in a circuit QED system consisting of SC flux qudits

8
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Figure 6: Search probability P versus δg/g. From up to down, the three lines rep-
resent upper bound, lower bound and mean for search probability in 500 random
simulations.

and cavities. For details of implementing this search algorithm in circuit QED and its numerical
simulation, please refer to appendixes.

The search probability for the target state after two steps, versus the coupling strength g
and the Rabi frequency Ω, is plotted in Fig. 4, where the detuning ∆/2π = 1 GHz and the
decoherence time T = 5 µs are used. Figure 4 indicates that the probability oscillates with g
and is not sensitive to Ω. In most of the range of g and Ω shown in Fig. 4, the probability is
close to the ideal probability 0.347. For example, the probability for g/2π = 100 MHz and
Ω/2π= 100 MHz is ∼ 0.332.

In Fig. 5, the search probability P versus T is plotted for g/2π= 100 MHz andΩ/2π= 100 MHz.
To estimate the effect of imperfect operational time, three lines in Fig. 5 are plotted with a re-
spect to the errors 0%, 5% and 10% of the operational time in process II, respectively. As
expected, one can see from Fig. 5 that the probability increases with T (i.e., the decoherence
time of the qudits) and is sensitive to the error of the operational time.

To estimate the effect of the possible error in adjusting g (∆), random errors of g (∆) in a
range δg (δ∆) are assumed and simulated by 500 times. Lines for upper bound, lower bound
and mean of search probability are plotted in Fig. 6 (Fig. 7), by 500 random simulations each
for a different error within δg (δ∆). As δg (or δ∆) increases, the successful search probability
decreases. Moreover, Figs. 6 and 7 show that the effect of the error δ∆ is greater than that of
the error δg.

4 Conclusion

We have presented an general protocol for implementing DTQWs on multi-dimensional ar-
bitrary (including 1D) graphs based on circuit QED. As an application of this protocol, we
have simulated a Grover walk search algorithm with eight elements in a cubic graph. Nu-
merical simulations show that a high probability (close to the ideal probability) for finding a
target element can be achieved with the current circuit QED technology. This protocol is quite
general and can be extended to accomplish the same task in other quantum systems, which
consists of natural or artificial atoms and optical or microwave cavities. The protocol can in
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Figure 7: Search probability P versus δ∆. From up to down, the three lines rep-
resent upper bound, lower bound and mean for search probability in 500 random
simulations.

principle be used to realize multi-dimensional arbitrary DTQWs, which could have broad ap-
plications especially in large-scale quantum computing and quantum simulation. To the best
of our knowledge, our protocol is the first for implementing DTQWs on multi-dimensional
graphs with arbitrary structures based on circuit QED. We hope that this work could stimulate
experimental activities in the near future.
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dation of China (NSFC) (11074062, 11374083, 11774076, 11974096, U21A20436) and the
Key-Area Research and Development Program of GuangDong province (2018B030326001).

A Implementation of a Grover walk search in circuit QED

The cubic graph consists of eight SC flux qudits (each with four energy levels |0〉, |1〉, |2〉 and |3〉)
and twelve cavities, as shown in Fig. 3(c). In this graph, each qudit has three neighbor qu-
dits, i.e., the dimension of the coin is three. The coin is encoded through three excited states
|1〉, |2〉 and |3〉 of a qudit. Suppose all cavities are initially in the vacuum state and qudits are
initially prepared in the state

|ψ〉0 =
1

2
p

6

8
∑

j=1



(|1〉 j + |2〉 j + |3〉 j)
∏

l 6= j

|0〉l



 , (15)

where the continued product is taken for l = 1,2, ..., 8 (without j). Here and below, the
subscript j represents qudit j ( j = 1, 2, ..., 8). Using the protocol introduced in section II, this
search algorithm can be realized by the following two DTQW processes.

Process I: Implementing a coin operator

C = G ⊗ In − (G + I3)⊗ |τ〉w〈τ|, (16)

where In (with n= 8) is the identity matrix in the walker’s space, I3 is the identity matrix in the
3D coin space (i.e., the subspace formed by energy levels |1〉, |2〉 and |3〉 of the qudits), |τ〉w

10
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represents the marked qudit (the element to be searched for), and G is Grover’s “diffusion”
operator in the coin space

G =





−1
3

2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3



 . (17)

From Eq. (16), one can see that the operator C can be realized by applying G to the subspace
of the unmarked qudits and applying a minus identity operator −I3 to the subspace of the
marked qudit. Without loss of generality, we assume that the marked element corresponds to
qudit 1, i.e., setting |τ〉w = |1〉w.

The operator G can be decomposed as

G =





cosα − sinα 0
sinα cosα 0

0 0 1



 ·





1 0 0
0 cosβ − sinβ
0 sinβ cosβ



 ·





cosγ − sinγ 0
sinγ cosγ 0

0 0 1



 , (18)

where α = 3π/4, β = arccos(−1/3), and γ = π/4. So, the operation of G can be realized by
applying three suitable classical pulses.

The operator −I3 can be achieved by applying four pulses to the marked qudit 1. Suppose
qudit 1 is in the state

∑3
j=1α j| j〉1. Apply a pulse (with an arbitrary initial phase φ1) to qudit

1. The pulse is resonant with the |1〉 ↔ |4〉 transition of qudit 1, where |4〉 is an auxiliary
energy level of qudit 1. After a pulse duration t = π/(2Ω), the state

∑3
j=1α j| j〉1 becomes

α2|2〉1 +α3|3〉1 − ie−iφ1α1|4〉1. (19)

Then, apply a second pulse (with the initial phase φ1) to qudit 1. The pulse is resonant with
the |1〉↔ |4〉 transition of qudit 1. After a pulse duration t = π/(2Ω), the state (19) becomes

−α1|1〉1 +α2|2〉1 +α3|3〉1. (20)

Similarly, apply two pulses to qudit 1 successively. Each pulse is resonant with the |2〉 ↔ |3〉
transition of qudit 1, has an initial phase φ1, and a duration t = π/(2Ω). After the first pulse,
the state (20) becomes

−α1|1〉1 − ieiφ1α3|2〉1 − ie−iφ1α2|3〉1. (21)

After the second pulse, the state becomes

−α1|1〉1 −α2|2〉1 −α3|3〉1, (22)

i.e., the operator −I3 on the marked qudit 1 is realized. Note that a pulse resonant with the
|1〉↔ |4〉 transition and a pulse resonant with the |2〉↔ |3〉 transition can be simultaneously
applied onto qudit 1.

In short, the tossing operation of the coin in process I, described by the operator C of
Eq. (16), can be implemented by applying three classical pulses to all unmarked qudits and
four pulses to the marked qudit.

Process II: Implementing the shift operator of the walker [see Fig. 3(c)]

S = (|2〉w〈1|+ |4〉w〈3|+ |6〉w〈5|+ |8〉w〈7|) · |1〉c〈1|
+ (|4〉w〈1|+ |3〉w〈2|+ |8〉w〈5|+ |7〉w〈6|) · |2〉c〈2|
+ (|5〉w〈1|+ |6〉w〈2|+ |7〉w〈3|+ |8〉w〈4|) · |3〉c〈3|+H.C . . (23)

Here the cavities can be divided into three types according to their frequencies, which are
denoted by different color lines [Fig. 3(c)]. This operator S can be realized by applying one of
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the two methods introduced in Section II. For example, if one adopts the Method (i) introduced
above, each term |i〉w〈 j| · |k〉c〈k| (k = 1,2, 3) and its hermitian conjugate term in Eq. (23) can
be realized by the interaction between qudit Q i and qudit Q j via the kth type of cavity, with
frequency ωck =ω0k +∆k. The corresponding Hamiltonian is

Hi j = (gka+i j · |0〉i〈i|+ gka+i j · |0〉 j〈 j|)e
−i∆k t +H.C . , (24)

where ai j is the photon annihilation operator of the cavity between qudit Q i and qudit Q j and
gk is the coupling strength between the cavity and qudit Q i (Q j). Under the large detuning
condition, the Hamiltonian (24) reduces to the following effective Hamiltonian [52–54]

eHi j,e = λk|0〉i〈 j| · | j〉 j〈0|+H.C . , (25)

where λk = g2
k/∆k. Under this Hamiltonian, the moving of the walker from position i ( j) to

position j (i) is realized after an operational time t = π/2λk, only if the coin is in the state
|k〉c .

The full Hamiltonian corresponding to S is

HS =
∑

i j

Hi j , (26)

in which the summation is over all terms of S in Eq. (23). By setting all λk = g2
k/∆k = λ (i.e.,

λ1 = λ3 = λ3 = λ), the shift operator S is achieved after an operational time t = π/2λ.
By repeating process I and process II twice, the walker can be searched at the marked

position 1 with a relatively high probability. Our calculations show that the ideal search prob-
ability is∼ 0.347 by applying the operators C and S given above. The search probability of the
marked element can be increased by repeating the algorithm [32]. In general, the probability
increases with the number of repeating times.

B Numerical simulation of the Grover walk search

By considering the finite qudit relaxation, dephasing and photon lifetime, we numerically
simulate the Grover walk search algorithm by applying a two-step DTQW. Our simulation is
performed by numerically solving the master equation. We adopt SC flux qudits with four
energy levels. The energy relaxation time and the dephasing time are assumed as T1 = T and
T2 = T/2. In most simulations, we set T = 5 µs, which is a rather conservative consideration
since decoherence times ranging from 70 µs to 1 ms have been reported for a SC flux qudit
[55,56].

The two processes in each step are simulated by the master equation

dρ
d t

= −i [H,ρ] +
12
∑

j=1

κa j
L
�

a j

�

+
8
∑

k=1

3
∑

l=1

l
∑

m=1

γlm,kL [ |m〉k〈l| ] (27)

where L [Λ] = ΛρΛ+ − Λ+Λρ/2 − ρΛ+Λ/2 (with Λ = a j , |m〉k〈l|); κa j
is the decay rate of

cavity j, which is chosen as κ−1
a j
= 1 µs; γlm,k (m< l) is the energy relaxation rate for the level

|l〉 associated with the decay path |l〉 → |m〉 of qudit k, which is set as γ−1
ml,k = T1; and γl l,k (i.e.,

m = l) is the dephasing rate of the level |l〉 of qudit k, which is set as γ−1
l l,k = T2. In process

12
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I, the Hamiltonian H in the master equation is the Hamiltonian describing the interaction
between classical pulses and qudits in process I. While in process II, the Hamiltonian H is the
HS given in Eq. (26). Each process is simulated by the master equation, and the density matrix
obtained from the previous process is used as the initial density matrix of the next process. For
simplicity, in the simulations, we set all coupling strengths between cavities and qudits as g,
set all detunings as ∆, and set all Rabi frequencies as Ω.
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