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Abstract

We develop an algorithm to construct mass-spring networks differing in the correlation
length of their local elastic properties. These networks reproduce Boson peak and quasi-
localized vibrational modes observed in glasses and their relationship. The sound atten-
uation rate also behaves as in glasses, varying from a Rayleigh scattering to a disorder-
broadening regime on increasing the frequency. We find that networks modelling glasses
with increased stability have a reduced elastic correlation length. Our results support a
deep connection between the various vibrational features of disordered solids and clarify
their relationship with the correlation length of the local elastic properties.
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1 Introduction

The density of vibrational states (vDOS) controls solids’ specific heat and transport proper-
ties [1,2]. The vDOS of amorphous solids differs qualitatively from that of crystals. In crystals,
the low frequency vibrational excitations are plane waves (phonons) distributed in frequency
according to Debye’s law, Dp(ω)∝ωd−1 in d spatial dimensions. On the contrary, amorphous
materials have an excess of low-frequency modes over Debye’s prediction that induces a peak
in the reduced density of states D(ω)/ωd−1 at the Boson peak frequency, ωbp, in the terahertz
regime for molecular solids. Previous works have attributed the Boson peak to elastic disor-
der [3–5], localized harmonic/anharmonic vibrations [6–9], broadening of van Hove singu-
larities [10,11] (but see [12]). In addition, in amorphous solids the low-frequency excitations
comprises both phononic-like modes and additional quasi-localized vibrational modes (QLMs)
that appears to be universally distributed in frequency as Dloc(ω) = A4ω

4 [13–16], with A4
decreasing as the stability of the material increases [17]. The low-frequency ω4 scaling of the
density of soft-localised modes may originate from general considerations on the properties of
localised excitations in disordered systems [18] (see, however [19]). The universality of the
scaling law [14,15] and its dimensionality independence suggest that this scaling has a mean-
field origin. Yet, mean-field replica theory recovers this scaling only upon incorporating finite
dimensional fluctuations [20]. Finally, in amorphous materials the extended low-frequency
modes are not phonons: even in the absence of temperature induced anharmonic effects [21],
phonons of wave vector κ attenuate with a rate Γ (κ) exhibiting a crossover from a Rayleigh
scattering [22] regime, Γ ∝ κd+1, to a disordered-broadening regime, Γ ∝ κ2 [23–27], as κ
increases.

The squared vibrational eigenfrequencies ω2 are the eigenvalues of the matrix of the sec-
ond derivatives of the energy with respect to the particle positions or Hessian matrix. As such,
the vibrational anomalies of amorphous materials may possibly be rationalized within random
matrices [28–33]. Previous works primarily focused on the eigenvalues of Wishart matrices,
which are positively defined and hence may model stable systems. A mean field [34] random-
matrix approach suggests that the Boson peak may originate from the reduction in coordi-
nation number driving the system toward isostaticity [29, 35] and from hierarchical energy
landscape. These two scenarios are possibly relevant in colloidal hard-sphere-like glasses and
highly connected molecular systems. The random matrix approach may also be used to inves-
tigate QLMs. In this case, the issue is determining the random matrix ensemble reproducing
the Dloc(ω) distribution characterizing amorphous solids or, equivalently, the correlations to be
enforced on the matrix. Research in this direction [36] succeeded in reproducing a pseudogap,
D(ω)∝ ωα, with an exponent α < 4. In this random-matrix research direction, the issue is
integrating the two approaches to reproduce at the same time Boson peak and quasi-localized
modes, as well as their correlations.

Other approaches recovered the ω4 distribution by describing an amorphous material as
an elastic continuum punctuated by defects, possibly anharmonic or interacting [37–40]. Lo-
calized vibrations may thus cause all vibrational anomalies of glasses, considering that they
may induce the Boson peak [6–9] and control sound attenuation in Rayleigh’s theory [22]. Re-
cent numerical results supported this scenario by demonstrating a relation between QLMs’ fre-
quency distribution and Boson peak frequency [41,42], A4∝ω−5

bp , and by showing that vibra-
tions with frequencies close to the Boson peak consist of phonons hybridized with QLMs [43].

In this manuscript, we investigate the physical origin of the vibrational anomalies of amor-
phous solids by creating mass-spring networks, or equivalently Hessian matrices, that repro-
duce them and their relationships. Rather than looking for the ensemble of random matrices
exhibiting the anomalies of interest, we study how to vary an amorphous solid’s mass-spring
network to modulate them. Similar approaches have been introduced to induce a Boson peak
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in unstressed networks [44] or suppress A4 by artificially reducing the prestress in stressed
ones [45]. Here, we introduce an algorithm to decrease the spatial correlation length ξe of
the local shear modulus of stressed networks without sensibly affecting the prestress. We show
that both ωbp and A4 decrease with ξe and that they satisfy the relation A4∝ ω−5

bp observed
in model stable glasses. Our networks also reproduce sound’s attenuation crossover from a
Rayleigh scattering to a disordered broadening regime observed in amorphous solids. In the
Rayleigh scattering regime, the attenuation rate relates to the material properties as predicted
by fluctuating elasticity theory [3,4], which assumes no correlations in the elastic properties,
despite our networks having correlated elastic properties. Our results support a deep con-
nection between the vibrational anomalies and glasses and clarify their relationship with the
spatial correlation of the local elastic properties.

The paper is organised as follows. We introduce our approach to construct mass-spring
networks in Sec. 2, and verify in Sec. 4 that our methodology allows tuning the correlation of
the elastic disorder. In Sec. 5, we demonstrate that the vibrational spectrum of our networks
reproduces the vibrational anomalies of amorphous materials and their correlations [42].
Sec. 6 shows that sound attenuation in our synthetic elastic networks behaves as in amor-
phous materials. Finally, Sec. 6 shows that sound attenuation in our networks crossovers from
Rayleigh scattering regime Γ ∼ ω3 to disorder-broadening regime Γ ∼ ω2, as expected for
two-dimensional solids. We summarise our results and discuss future research directions in
the conclusions.

2 Numerical model and protocols

Our mass-spring network generating algorithm takes as input the disordered mass-spring net-
work associated with the linear response regime of an amorphous solid, which generally has
bond-depending elastic constants and rest lengths. We transform this original network by
swapping the attributes of randomly selected bond pairs, i.e., by exchanging their spring con-
stants and rest lengths, as schematically illustrated in Fig. 1. We define the fraction of swapped
bonds as f = 2Nswap/Nb, where Nswap is the number of swap moves, Nb the number of bonds
in the network, and the factor 2 accounts for the fact that each swapping event involves two
bonds. Hence, for f = 0 we retain our original network, while for f = 1 each bond has been
swapped once on average. After the bond swapping, we minimize the energy of the new net-
work bringing it into a mechanically stable configuration and study its vibrational properties.

We remark that, on increasing f , the bond randomization procedure destroys the correla-
tions in the local elastic properties of the initial network more effectively. However, regardless
of the f value, the elastic properties of the final network may exhibit correlations that build
up during the final minimization procedure. The exact relation between f and correlation in
the elastic properties needs to be determined a posteriori.

We have implemented our bond-swapping procedure in two dimensions. To generate our
initial network, we consider systems of particles interacting via the Weeks-Chandler Andersen
(WCA) potential

Ui j(ri j) = 4ε

�

�

σi j

ri j

�12

−
�

σi j

ri j

�6�

+ ε; ri j ≤ 21/6ri j , (1)

with ri j the distance between interacting particles, σi j = (σi +σ j)/2.0 where σi is a particle
diameter drawn from a uniform random distribution in the range [0.8:1.2]. We equilibrate
systems at fixed number densityρ = 1.2 at high temperature T = 4ε, and then instantaneously
quench them into amorphous solid configurations by minimizing the energy via the conjugate-
gradient algorithm [46].
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Figure 1: Schematic of the bond-swapping algorithm we use to tune the elastic prop-
erties of a disordered mass-spring network. In each bond swapping event, we ran-
domly select two elastic springs and swap the values of their elastic constants and
rest lengths. We obtain different network by varying the fraction of swapped bonds
f = 2Nswap/Nb, where Nswap is the number of swap moves and Nb the number of
bonds in the network, and then minimizing the energy of the resulting network.

We generated initial mass-spring networks with N = 1024 to 360000 particles. Each net-
work is fed to our algorithm to create different networks by swapping a fraction f of the bonds.
For each N and f , we average our data over 200 independent initial networks unless otherwise
specified.

3 f dependence of mechanical and geometrical properties

We investigate the influence of the bond-swapping procedure on the geometrical and mechan-
ical properties of the elastic network in Fig. 2. Panel a shows that bond swapping does not
affect two-point correlations as the radial distribution function is de-facto f -independent. In
panel b, we study the f dependence of the distribution of the interparticle forces F. We obtain
our initial f = 0 network by minimising the energy of a system of particles interacting via a
repulsive potential. Consequently, for f = 0 all interparticle forces are positive, i.e., repulsive.
The swapping protocol changes the interparticle forces’ distribution by inducing tensile forces.
These changes influence the network’s mechanical properties by increasing the shear modulus,
as in Fig. 2c. These results suggest that bond-swapping leads to networks resembling those
associated with very stable glasses.

Our swapping protocol has a minor effect on the prestress of the system, which we eval-
uate [47, 48] as e = (d − 1)〈(−U ′(ri j)/ri jU

′′(ri j)〉i j . Fig. 2d shows that the prestress mono-
tonically decreases on increasing the swapping fraction. The prestress change is small, about
5%. A large fraction of this change occurs on moving from f = 0 to f > 0, i.e., as tensile
forces appear in the system. The small prestress variation suggests that our approach to tune
the mechanical properties of the network differs from previous ones [45] that directly affect
the prestress.

The results of Fig. 2b and d further clarify that the f -induced changes in the vibrational
properties we discuss in the following do not relate to variation in the connectivity occurring
close to the jamming point [49], or analogous, to the emergence of many weak contacts leading
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Figure 2: Panel (a) illustrates the radial distribution function of N = 40000 parti-
cle systems. Panel (b) shows the distribution of the magnitude of the spring forces F
normalized by their average value. Data are averaged over 200 configurations. Panel
(c) illustrates the dependence of shear modulus µ0 on the swapping fraction f . Panel
(d) shows the variation of pre-stress e with f . Data (b)-(d) are for N = 1024. Dif-
ferent symbols refer to different f values, e.g., as in (b).

to a small effective connectivity [50].

4 Disorder Parameter and Fluctuations of Elastic Properties

We quantify how the swapping probability f influences elastic disorder via the dimensionless
disorder parameter γ introduced in Schirmacher’s fluctuating elasticity [3,51]. If local elastic
properties are short-range correlated, the fluctuations σw of an elastic property coarse-grained
over a large length scale w are inversely proportional to the number of particles in that region,
Nw∝ wd in d spatial dimensions. The disorder parameter γ fixes the scaling of the normalized
shear modulus’ fluctuations,

σ2
w

µ2
0

=
γ

Nw
, (2)

with µ0 is the macroscopic shear modulus. As such, γ measures the number of close particles
with correlated elastic properties, or equivalently, a correlation length ξe∝ γ1/2 in two spatial
dimensions. The study [42,45] of the fluctuations of the elastic properties on the system size
N , rather than on Nw, similarly allows estimating the disorder parameter.

Here, we adopt the local elasticity approach. Henceforth, we define a per-particle stress
tensor and investigate its variation under imposed external deformations to evaluate per-
particle elastic constants [42]. which we average of square observation window of side length
w. We provide details in Appendix A. Fig. 3a illustrates the scaled fluctuations of local shear
modulus as a function of coarse-graining length scale w. These scaled fluctuations approach a
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Figure 3: (a) Dependence of fluctuations of the local shear modulus on the coarse-
graining length scale w. (b) Data of panel (a) collapse when their magnitude is scaled
by γ, and w is scaled by ξe∝ γ1/2. The inset of (b) illustrate the dependence of the
elastic length scale ξe and disorder parameter γ on the swapping fraction f .

f -dependent asymptotic value with increasing w, demonstrating that they are asymptotically
governed by the central limit theorem. The asymptotic value thus corresponds to the disorder
parameter γ, which we found to decrease on increasing the swapping fraction f .

If ξe ∝ γ1/2 is the only length scale influencing the fluctuations of the shear modulus,
then these fluctuations must vary with the coarse-graining length scale as

σ2
µ

µ2
0

=
�

ξe

w

�2

g
�

w
ξe

�

=
γ

N
g
�

w
ξe

�

, (3)

with g(x) a universal function asymptotically approaching. We verify this scaling in Fig. 3(b),
and fix the constant of proportionality between ξe and γ1/2 enforcing g(x) to be constant for
x = w/ξe ≳ 1.

The inset of Fig. 3(b) shows that the correlation length decreases and approaches a con-
stant value as the fraction of swapped bonds increases. This observation suggests that by in-
creasing the swapping fraction f , we suppress correlations and obtain mass-spring networks
of glasses with increased stability.
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Figure 4: Panel (a) illustrates the density of states of system with N = 160000 as a
function of ω/ω0 for different swapping fractions f . Panel (b) shows the reduced
D(ω), normalized by its maximum value, as a function of ω/ωbp. In the inset, we
show that ωbp ≃ 0.84cs/ξe.

5 Vibrational Spectra

We now show that the bond-swapping algorithm leads to elastic networks whose vibrational
properties exhibit a Boson peak and QLMs and investigate how these vibrational anomalies
relate to the elastic length scale ξe.

5.1 Boson Peak

We investigate the f dependence of the Boson peak by determining the vibrational density
of states of large N = 160000 systems by Fourier transforming the velocity auto-correlation
function. Fig. 4(a) illustrates the vDOS for different f values, upon scaling the frequency
by ω0 = cs/a0, with cs =

p

µ0/ρ the shear-wave speed and a0 = ρ−1/2 the interparticle
spacing. The reduced vDOS D(ω)/ω exhibits a boson peak at characteristic f dependent fre-
quencyωbp which we have extracted from the data collapse of Fig. 4(b). The inset shows that
the Boson peak frequency scales as cs/ξe, suggesting that the excess vibrational modes stem
from vibration occurring over the elastic length scale, as observed in model three-dimensional
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Figure 5: (a) Dloc = A4ω
4 scaling of low-frequency density of states. Different sym-

bols indicate different swapping fraction f . The inset illustrates the f dependence of
the prefactor A4. (b) A plot of Dlocω

5
bp/n vs ω, with n a number density that weakly

depends on f as in the inset, leads to a data collapse. For each f , data are averaged
over 50,000 configurations of N = 1024 particles.

glasses [42].
We remark that according to correlated fluctuating elasticity theory [51] (corr-FET) the

Boson peak frequency depends both on the ratio cs/ξe and on the disorder parameter γ.
Yet, the analysis of the solutions of corr-FET equations reported in Ref. [51] indicates that
ωbp ∼

cs
ξe
(γ− γc)q, with q ≃ 0.4 and γc the critical value of the disorder parameter at which

the system becomes unstable. For highly connected stable molecular glasses as the ones we are
considering, γ ≪ γc , and corr-FET thus predicts ωbp ∝ cs/ξe. These considerations further
indicate that increasing the fraction of swapping bonds or equivalently reducing the correla-
tion of the local elastic properties leads to elastic networks resembling those associated with
stable glasses.

5.2 Quasi-Localized Modes

We investigate the vibrational spectrum’ low-frequency end via the direct diagonalization of
the Hessian matrix. We focus on small N = 1024 systems to shift the lowest phonon frequency
(ωmin∝ cs/L) upwards and expose the QLMs, and perform average over 50000 realizations
for each f value. For all swapping probabilities, f , QLMs are distributed in frequency as
A4ω

4, as illustrated in Fig. 5a. This result supports the speculated universality of the scaling
exponent. The amplitude A4 decreases on increasing f , as in the inset, again suggesting that
networks with larger f mimic those of glasses with increased stability.

The amplitude A4 has the units of a density of modes over a frequency to the power 5.
If ωbp is the QLMs’ characteristic frequency, then A4 = ω5

bp/n with n the number density. In

Fig. 5 we find that if D(ω)ω5
bp/n is plotted versus ω4 data for different f collapse on a master

curve, A4ω
5
bp having a week f dependence, particularly for f > 0, as in the inset. This result

establishes a close correspondence between Boson peak and QLMs. A similar result holds in
three-dimensional glasses [41, 42]. In that case, however, the density of modes n resulted
smaller by a factor of ten.

While in the system considered here and in two model stable glasses of Refs. [41, 42] n
results essentially constant, the universality of this result deserves further investigations and, if
validated, a theoretical explanation. In this respect, we note that using as QLM’s characteristic
frequency one related to the bulk-averaged response of amorphous solids to force dipoles,
Ref. [16] found more stable glasses to have a smaller n. Hence, either is some systems n vary
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Figure 6: Dependence of the phonons’ attenuation rate on the frequency normalized
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damped cosine wave fit, for N = 160000, f = 0.0, and κ2 = 9.

on increasing the degree of supercooling, or the characteristic frequency extracted in Ref. [16]
does not scale as the Boson peak frequency.

6 Phonon Attenuation

We now discuss how swapping influences phonon attenuation. To evaluate the phonon atten-
uation rate, Γ , we excite [52,53] a transverse acoustic wave by giving each particle a velocity
v0

i = AT cos(κr0
i ), where ATκ = 0, considering κ in which one among κx and κy is zero, and

evaluate the velocity auto-correlation function:

C(t) =

∑N
i=1 vi(0).vi(t)
∑N

i=1 vi(0).vi(0)
. (4)

We remind we work by definition in the linear response regime as we are considering the
response of a system of masses and springs. For each κ = |κ|, we average this correlation
function over 30 phonons from independent samples for N ≤ 360000. Finally, we extract
attenuation rate Γ and frequency ω as a function of wave-vector κ by fitting the velocity auto-
correlation function to a damped oscillation, cos(ωt)e−Γ t/2. As an example of this procedure,
we show in the inset of Fig 6 the velocity autocorrelation function for κ= 3 in a N = 160000
system and its damped exponential fit.

Fig 6 illustrates the dependence of the attenuation parameter onω/ω0. At all f values, we
observe the crossover from strong Rayleigh scattering Γ ∼ ω3 to disorder-broadening regime
Γ ∼ ω2 with increasing frequency ω as found in glasses. At fixed ω/ω0, the attenuation
parameter Γ reduces with increasing f . We remark that these results do not suffer from size
effects, as we explicitly show combining data for different N values.

Rayleigh’s original model [22] explains theω4 scaling of the attenuation rate by describing
the elastic medium as an elastic continuum punctuated by isolated defects. Specifically, it
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relates the attenuation rate to the number density of defects, their size, and the deviation
of their shear elastic properties from the background. In terms of the disorder parameter γ,
Rayleigh’s prediction results [42] Γω2

0/ω
d+1 = aγ2 with a a constant, and coincides with corr-

FET predictions [51]. We have found Rayleigh’s to work in three-dimensional model stable
glasses by identifying the scattering defects with the QLMs [42].

We do not expect the same scenario to hold in the systems considered here. Indeed, from
the typical QLMs’ number density, n, and size ξe, we estimate these occupy an area fraction
of order nξ2

e ≃ 5. This high value implies that the assumption of isolated defects at the heart
of Rayleigh’s model does not hold. In Fig. 7 we illustrate the dependence of Γω2

0/ω
d+1 on

ω/ω0, and compare the low frequency plateau with the corr-FET prediction, with the constant
a chosen to capture the f = 1 data (orange). Corr-FET prediction does not work for the other
f values, in agreement with our expectation.

In Fig. 7 we also compare the attenuation rate with FET’s prediction, Γω2
0/ω

d+1 = aγ.
This prediction is obtained under the assumption that the elastic disorder is δ correlated [3],
or equivalently, that the disorder correlation length is fixed, and has been also recovered by
studying the disordered induced broadening of the width of phonon bands [54]. We find
that FET well describes our data. Ref. [45] reported a similar result in a two-dimensional
model systems. We find puzzling that FET correctly describes sound attenuation in our system
and a matter deserving further investigations. Indeed, FET’s assumption of δ correlated elastic
properties does not hold in our systems, as ξe varies with f as illustrated in the inset of Fig. 3b.

7 Conclusions

We have introduced an algorithm that modulates the correlation length of the local elastic
properties of a mass-spring network without affecting the network’s connectivity and prestress.
For all values of the correlation length of the local shear modulus ξe, the vibrational density of
states exhibits a boson peak at a frequency ωbp, which scales as ωbp∝ cs/ξe. The vibrational
density of states also features quasi-localized vibrational modes distributed in frequency as
Dloc = nω4/ω5

bp, with n a number density weakly dependent on the elastic length ξe. As such,
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the generated networks exhibit the typical vibrational anomalies of stable molecular glasses,
and these anomalies are related as recently observed in model stable glasses [42].

The generated networks also recover the sound wave attenuation rate’s crossover from
a low-frequency Rayleigh scattering to a disordered broadening regime characterizing amor-
phous solids in the harmonic approximation. While the frequency scaling of the attenuation
rate scales as predicted by Rayleigh’s theory for the scattering of plane waves by isolated de-
fects, Γ = Cω3 in two spatial dimensions, the proportionality factor C does not depend on the
local elastic properties as predicted by this theory. We rationalize this result considering that
the QLMs cannot be considered isolated defects as their number density n and size ≃ ξe are
too large. We find the proportionality factor C to depend on material properties as predicted
by fluctuating elasticity theory, which assumes uncorrelated local elastic properties. This find-
ing is surprising as the local shear modulus of our networks is spatially correlated and poses a
question deserving further investigation.

Our algorithm influences the correlation length of the elastic properties by affecting the
elastic correlation length ξe while keeping constant the number density n of localized de-
fects. It would be interesting to devise other algorithms to tune n, mainly to suppress it, if
possible. In this respect, plans include using the algorithm to tune the elastic properties of
three-dimensional networks, as in three dimensions glasses [42], n is smaller than the one we
reported here by a factor of ≃ 10.

Overall, our results support the existence of a strong correlation between QLMs and Boson
peak and show that both vibrational anomalies relate to the correlation length of the local
shear elasticity.
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A Local elasticity

Within two-dimensional linear elasticity the macroscopic stress and the macroscopic strain
are related by σα = cαβεβ , with α,β ∈ {x x , y y, x y} and cαβ the stiffness tensor. Here, we

define the local stiffness matrix ccg
αβ
= dσcg

α

dεβ
as the ratio between a locally defined stress and

the macroscopic strain [42,55]. We define the coarse grained stress as σcg
α (w) = 〈σ(i)α 〉, where

the average is over all particles i in the coarse-graining volume, and σ(i)α is a per-particle
stress [56].

We note that other approaches could be used to define local elastic properties [57, 58],
e.g., by introducing a locally defined stresses and strains. These diverse definitions converge
for large coarse-gaining lengths but differ at finite w. The definition we have adopted here
recover self-averaging. In addition, with this definition the statistics of the elastic properties
coarse grained over a sub-region containing N0 particles of a N ≫ N0 system match those of a
N0 particle system [42].

Practically, we evaluate cαβ by monitoring the change in the stresses of the particles in
response to small deformation followed by energy minimization, to capture the non-affine
contribution to the elasticity, making sure we work in the linear response regime. We coarse
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grain the single-particle elastic properties over square regions of side length w.
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