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Abstract1

The Ising critical exponents η, ν and ω are determined up to one-per-thousand rel-2

ative error in the whole range of dimensions 3 ≤ d < 4, using numerical conformal-3

bootstrap techniques. A detailed comparison is made with results by the resummed4

epsilon expansion in varying dimension, the analytic bootstrap, Monte Carlo and non-5

perturbative renormalization-group methods, finding very good overall agreement.6

Precise conformal field theory data of scaling dimensions and structure constants are7

obtained as functions of dimension, improving on earlier findings, and providing bench-8

marks in 3 ≤ d < 4.9
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1 Introduction29

Many approaches to critical phenomena obtain results in continuous space dimension, although30

physically relevant dimensions are integer. Most notable is the perturbative renormalization group31

in d = 4 − ε dimensions [1–4]. This is not merely a technical issue: quantities as functions of real32

d can clarify features that are harder to see at discrete values. E.g., one can follow the topology33

of the renormalization-group (RG) flow as a function of dimension and find instances where the34

universality class changes at non-integer values. This proved particularly useful for systems with35

long-range interactions [5–7] or disorder [8–13].36

The recent very precise numerical conformal bootstrap [14–16] has been formulated in continuous37

dimension [17, 18], in particular for the Ising model in its whole range 4 > d ≥ 2 [19, 20]. The38

interest lies in understanding how the strongly interacting Ising conformal field theory connects39

to a free scalar in d = 4 and to the integrable fully-solvable model in d = 2 [21, 22]. Analytic40

bootstrap approaches which use the dimension as a tunable parameter were also developed [23–31].41

Initially, the non-unitarity of the theory in non-integer dimensions [32] was thought to hamper the42

numerical methods involving positive quantities. These concerns have been overcome by de facto43

never observing problems for the quantities of interest, as explained later.44

In this paper, we extend the numerical approach of Ref. [19] using a single correlator, the45

SDPB [33] routine for determining the unitarity domain, and the Extremal Functional Method [34,46

35] for solving the bootstrap equations. We obtain improved results for the scaling dimensions in47

4 > d ≥ 3 by a denser scanning of the unitary region near the Ising point, i.e., the kink. The latter48

gets parametrically sharper as d approaches 4, allowing for its better identification.49

The improved precision allows us to perform a detailed comparison with state-of-the-art epsilon50

expansion in two regimes: for d close to 4, the series is directly compared to bootstrap data,51

using the necessary finer scale for the latter; for intermediate values between 4 and 3 (included),52

the divergent perturbative series is resummed using well-established methods involving the Borel53

transform [36–39].54

The analysis is done at the level of the precision of our bootstrap data, which is given by the d-55

independent value Err(γ)/γ = O(10−2, 10−3), namely the relative error of the anomalous dimensions56

γ for the conformal fields σ, ε, ε′, respectively corresponding to spin, energy and subleading energy,57

and determining the critical exponents η, ν, ω. As the anomalous dimensions are very small for58

d ≈ 4, the precision for the conformal dimensions ∆σ,∆ε is actually higher in this region, while for59

∆ε′ it stays at three digits, as explained later. Some of the structure constants are also found with60

very high precision.61
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We compare our data with recent results of the numerical [20] and analytic bootstrap [26–31],62

Monte Carlo simulations [40–42] and the non-perturbative RG [43,44]. We find that the data by all63

methods agree very well. This is rather rewarding given the achieved precision. Besides confirming64

the high quality of conformal-bootstrap results, our analysis provides a reference point for further65

analytic and numerical methods aiming at exploring critical phenomena in varying dimensions.66

The outline of this paper is the following. In Sec. 2 we summarize our bootstrap protocol [19]67

and present the results for the three main conformal dimensions mentioned above, together with68

their polynomial fits as a function of dimension and the estimation of errors. In Sec. 3 we briefly69

recall the properties of the epsilon expansion and resummation techniques. We then compare its70

predictions with our bootstrap data and the results by other methods, and authors. A detailed71

analysis of all issues is presented. In Sec. 4, we report the numerical bootstrap data for scaling72

dimensions of other conformal fields and structure constants, and compare them to the existing73

epsilon expansion. In the conclusions in Sec. 5 we discuss open questions.74

2 Conformal bootstrap in non-integer dimension75

The aim of this section is to summarize our procedure for deriving conformal data of scaling76

dimensions and structure constants, as a function of the space-time dimension 4 > d ≥ 2. We77

first discuss the conformal dimensions of three main fields O = σ, ε, ε′. Our goal is to provide a78

polynomial description of ∆O as a function of y = 4 − d, by performing a best fit of the data79

obtained at several values of d1. Our results are finally compared to those obtained from the80

resummed epsilon expansion in Section 3.81

2.1 Summary of numerical methods82

The conformal dimensions and structure constants of the critical Ising model as a function of d83

are computed in the setup of Ref. [19], which we shortly summarize for the reader’s convenience. We84

consider a single 4-point correlator 〈σ(x1)σ(x2)σ(x3)σ(x4)〉, where σ(x) is the primary scalar field85

with lowest dimension, denoted ∆σ. We truncate the functional bootstrap equation to 190 compo-86

nents. The unitarity condition for this equation is determined through the SDPB algorithm [33],87

leading to a bound in the (∆σ,∆ε) plane; next, the Extremal Functional Method (EFM) [34,35] is88

used to solve the equations on this boundary. We use the generalization of these numerical methods89

to non-integer dimensions developed in Ref. [19], and detailed in its Appendix A.90

Our numerical 1-correlator bootstrap approach has been surpassed by more recent implementa-91

tions in d = 3 [16, 45, 46], but we find it still convenient for determining the low-lying spectrum92

with modest computing resources. The complete determination of the conformal data for one value93

of d requires about 20 hours on 256 cores, corresponding to 5000 core hours. This simple setting94

allows us to evaluate the spectrum for several dimensions d.95

The first crucial step is to locate the Ising critical point in parameter space. To this end, we96

adopt the twofold strategy of Ref. [19], consisting in searching the kink on the unitarity boundary97

in the (∆σ,∆ε) plane and, at the same time, minimizing the central charge c [15]. This procedure98

allow us to determine for each value of d an interval of values for ∆σ,∆ε and c, that we take as the99

Ising conformal theory, accompanied by an estimate of the uncertainty.100

1Note that ε is the energy field, the next-to-lowest scalar primary field, not to be confused with the deviation from
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Figure 1: Determination of the Ising critical point for d = 3, 3.25, 3.5, 3.75 (d = 3 data
from Ref. [19]). Left plots: Identification of the kink; the blue points correspond to the
solutions of the bootstrap equations. Right plots: position of the c minimum. The grey
shaded areas represent the estimated errors on ∆σ, ∆ε and c.
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Figure 2: Determination of the Ising point for d = 3.875, as in Fig. 1. Note the
magnified scale on both axis with respect to those of Fig. 1.

This procedure is displayed in Fig. 1, where we show the identification of the Ising point for101

d = 3, 3.25, 3.5 and 3.75. The gray area in the plots indicates the chosen errors for ∆σ,∆ε and102

c, which are roughly determined by the mismatch between the positions of the minimum and the103

kink. As a conservative choice, we consider an interval of four data points for each value of d.104

The precision is greater than in Ref. [19], because we perform a finer scan of the ∆σ values105

around the kink. We observe that the kink and the minimum get sharper for d → 4, as shown by106

the four pairs of plots drawn on the same scale in Fig. 1; this is convenient in our approach, since107

it leads to an increased precision when anomalous dimensions are smaller. In Fig. 2, we show the108

point d = 3.875, not considered in the earlier work. It is necessary for studying the region of d→ 4.109

Here the curves are so steep that magnified scales are needed.110

Once the Ising point is determined, we obtain the rest of the conformal data as follows. The111

solution of the bootstrap equations gives a spectrum of conformal dimensions ∆O and structure112

constants fσσO as a function of ∆σ; they are divided into different sets characterized by the spin113

` = 0, 2, 4, . . . of the operator O. The estimation of ∆O and fσσO is obtained by taking the central114

value of such quantities for ∆σ varying in the interval previously identified as the Ising point (grey115

areas in Figs. 1 and 2). The error is obtained from their dispersion.116

It is interesting to point out that, although we largely improved the precision of our results for117

4 > d > 3 with respect to Ref. [19], we observe no signs of trouble associated to non-unitarity in118

our bootstrap spectrum. On general grounds, non-unitarity contributions are expected to appear119

for non-integer values of d due to the presence of negative-norm states [32]. However, these occur120

at very high order in the OPE expansion of the correlator 〈σσσσ〉, thus we may argue that they121

have numerically negligible structure constants. As a matter of fact, their presence does not seem122

to yield problems in solving the bootstrap equations with our method. This conclusion was also123

reached by recent 3-correlator bootstrap studies of the critical O(N) models [18] and the Ising124

model [20] in non-integer space dimensions using the navigator method [47].125

2.2 Analysis of conformal dimensions of the three leading fields for 4 > d ≥ 3126

In Tab. 1 we present our results for the conformal dimensions ∆O in 4 > d > 3 along with those127

of Ref. [19] for 3 ≥ d > 2, also employed in the following. Our implementation of the bootstrap128

four dimensions denoted by y.
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determines with high precision the conformal dimensions and structure constants for the first few129

low-lying operators with ` = 0, 2 and 4: O`=0 = σ, ε, ε′, O`=2 = T ′ and O`=4 = C [19].130

d ∆σ ∆ε ∆ε′ ∆ε′′ ∆T ′ ∆C ∆C′

4 1 2 4 6 6 6 8

3.875 0.9376625(5) 1.91831(3) 3.992(2) 7.0(3) 5.9307(6) 5.8752253(9) 7.903(3)
3.75 0.8757175(15) 1.83948(4) 3.9771(12) 6.8(2) 5.8616(12) 5.75111(13) 7.81(3)
3.5 0.753398(3) 1.68868(5) 3.9296(8) 6.82(7) 5.734(7) 5.5053(5) 7.55(6)
3.25 0.633883(8) 1.54639(9) 3.8776(11) 6.92(6) 5.59(2) 5.264(2) 7.25(10)

3 0.518155(15) 1.41270(15) 3.8305(15) 7.01(5) 5.505(10) 5.026(4) 6.7(2)
2.75 0.40747(4) 1.2887(2) 3.800(2) 7.12(8) 5.445(15) 4.790(5) 6.3(2)
2.5 0.30341(1) 1.17625(15) 3.7970(10) 7.32(2) 5.46(3) 4.574(9) 5.78(13)
2.25 0.20822(3) 1.0784(2) 3.847(1) 7.53(2) 5.58(5) 4.344(14) 5.36(6)
2.2 0.19053(8) 1.0610(5) 3.864(4) 7.64(3) 5.69(4) 4.325(15) 5.29(4)
2.15 0.17333(8) 1.0444(4) 3.891(6) 7.73(3) 5.64(13) 4.28(3) 5.19(1)
2.1 0.15663(8) 1.0286(5) 3.9215(5) 7.82(3) 5.820(10) 4.17(4) 5.12(4)
2.05 0.14048(8) 1.0134(7) 3.9565(5) 7.93(3) 5.9050(10) 4.13(6) 5.065(15)
2.01 0.12803(8) 1.001(2) 3.9900(10) 8.035(5) 5.9815(5) 4.01440(10) 5.0115(15)

2.00001 0.125000(10) 0.99989(14) 4.0002(2) 7.99(10) 6.0006(2) 4.000055(10) 5.00048(8)

2 0.125 1 4 8 6 4 5

Table 1: Conformal dimensions of the first few low-lying states for 4 > d > 2. Exact
values for d = 2, 4 are given in bold, results for 3 ≥ d > 2 are taken from Ref. [19].

The goal of this section is to determine the behavior of ∆O as a function of the variable y = 4− d,131

by finding the best fitting polynomial that describes the data in Tab. 1. We use all available values,132

but focus on the range of 4 > d ≥ 3 where results are more precise and allow for a comparison with133

other approaches. The points for 3 > d ≥ 2 are mainly used for stabilizing the higher powers of134

the fitting polynomials2.135

We employ an improved fit method for ∆O(y) that uses orthogonal polynomials [48]: the idea is136

to expresses the nth-order polynomial fit function fn(y) in terms of orthogonal polynomials Pk(y)137

of degree k = 0, 1, . . . , n, instead of a parameterization in terms of monomials, 1, y, y2, . . . , yn. To138

this aim we write139

fn(y) =
n∑
k=0

αkPk(y), 〈Pr(y)Ps(y)〉 ∝
14∑
i=1

Pr(yi)Ps(yi) ∝ δrs, (1)

where yi are the values in Tab. 1. This method is equivalent to the naive one, but is numerically140

more stable and the fit parameters αk can be determined with improved precision and less statistical141

noise.142

The optimal degree n for the fitting polynomial is not known a priori and is determined in the143

following way: The fit with weights proportional to the inverse square of errors is done for several144

values of n, and the least chi-square χ2
min is found as a function of n. At a given order n, adding145

a further term αn+1Pn+1 results in a negligible change of χ2
min and the best fit yields a result for146

2Note that the lower quality of 3 > d > 2 data is due to the coarse scanning of ∆σ values, not to an intrinsic
limitation of the numerical bootstrap approach [19].

6



SciPost Physics Submission

αn+1 which is compatible with zero within errors. This identifies n as the degree of the optimal147

polynomial. Finally, we use the results of our best fit for {αk} to assign an error to fn(y) in the148

whole range of 4 > d ≥ 3. Details on the fitting procedure and the computation of errors can be149

found in App. A.150

In this section we focus on the three leading operators σ, ε and ε′ (corresponding to φ, φ2 and151

φ4 in the φ4 field theory), which are determined with very good precision. The analysis of higher-152

dimensional operators is postponed to Sec. 4.2. Instead of working with conformal dimensions, we153

consider the anomalous dimensions154

γσ = ∆σ −
d− 2

2
, γε = ∆ε − (d− 2), γε′ = ∆ε′ − 2(d− 2). (2)

They are related to the Ising critical exponents η, ν and ω by155

η = 2γσ,
1

ν
= 2− γε, ω = d− 4 + γε′ . (3)

The vanishing of anomalous dimensions in the free theory (d = 4) is assumed in the following fits.156

Our analysis starts by comparing the old [19] and new data for 4 > d > 3. In Fig. 3 the new157

results (blue circles) show much smaller errors than the earlier findings (red crosses), due to a more158

accurate localization of the Ising point, as explained above. In these and later figures we report the159

differences (γO−fit) between data and fitting polynomial, because simpler plots would not capture160

the small errors involved. (Note that the abscissas of the three plots differ by factors of ten). The161

explicit form of the best fitting polynomials are provided in Sec. 3.162

The relative errors of our data, determined from Tab. 1 and the figures, can be summarized as163

follows:164

Err(γσ)

γσ
≈ Err(γε)

γε
≈ Err(∆ε′)

∆ε′
≈ 0.001, 3.875 ≥ d ≥ 3. (4)

Given the small size of anomalous dimensions for d→ 4, these correspond to extremely low absolute165

errors, Err(γσ) = O(10−6) and Err(γε) = O(10−5) in this range, as spelled out in the following166

sections. This is one of the main results of our work. It allows us to perform a precise comparison167

to other methods, and the determination of benchmark values for the Ising universality class in168

non-integer dimensions.169

It is interesting to compare our results with those recently reported in Ref. [20], obtained by170

solving a 3-correlator bootstrap with the navigator method. In Fig. 4 we plot our data in earlier171

figures (blue circles) on a finer scale together with the estimated error of the fit (cyan shaded area).172

The results of [20] are drawn as red triangles: although such determinations come with no error173

bar, the comparison in Fig. 4 clearly shows the very good agreement between the two different174

bootstrap approaches at our precision level. A qualitative indication of 3-correlator data errors is175

given by their known values at d = 3 with rigorous bounds [46, 49], that are plotted in Fig. 4 as176

black diamonds (γσ and γε) and grey rightward triangle (γε′) respectively: their size confirms the177

consistency between results.178
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Figure 3: Old [19] (red crosses) and new (blue circles) bootstrap data for γσ, γε, γε′ ,
minus the corresponding best fits. The plots use the same scales as in Ref. [19].
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Figure 4: Plot of bootstrap data for γσ, γε, γε′ minus the best fit values.The shaded
area represents the error obtained from the χ2 minimization of the fitting polynomial.
The red triangles are results from Ref. [20] using the navigator method in a 3-correlator
bootstrap setup; these points have no error bar. Black diamonds and grey rightward
triangle represent respectively results for d = 3 from Ref. [46] (γσ and γε) and Ref. [49]
(γε′); these data points are slightly displaced around d = 3 to improve readability.

3 Comparison with the epsilon expansion in 4 > d ≥ 3179

In this section, we recall some features of the epsilon expansion and the resummation methods180

employed for it. We compare unresummed and resummed series with the bootstrap results for γσ.181

Then, the analysis is extended to γε and γε′ .182

3.1 Warm-up analysis of the anomalous dimensions γσ183

We start with a brief summary of the properties of the perturbative expansion of the φ4 field184

theory in d = 4 − y, which describes the Ising universality class. This is a textbook subject [50]185

but we would like to single out a few aspects that are important in the following comparison with186

bootstrap results in varying dimensions3.187

The β-function β(g, y) and the anomalous dimensions γO(g), where O = φ, φ2, φ4, take the188

3An up-to-date discussion of epsilon expansion can be found in Refs. [36–39]. We refer to these works for a proof
of the following statements and appropriate referencing.
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following form, in the Minimal Subtraction (MS) [50,51] renormalization scheme,189

β(g, y) = −yg +
n+1∑
k=2

βk g
k, γO(g) =

n∑
k=1

γO,k g
k. (5)

The numerical coefficients βk, γO,k were computed up to order n = 6 in Ref. [38], and n = 7 in190

Ref. [52]. While results up to order n = 15 are known for a subclass of Feynman diagrams believed191

to give the dominant contribution, they are not used here [38,53].192

The coefficients of the β-function (5) grow exponentially with k, and their asymptotic behavior193

can be estimated from the contribution of instanton field configurations [50]194

βk ∼
k→∞

C (−a)k kb k! . (6)

Similar behaviors are found for the coefficients γO,k. The parameters a, b, C depend on the quantity195

considered. One finds that the known values of the coefficients up to order n = 7 grow very fast196

with n but have not yet reached their asymptotic values (6) [38,53].197

The behavior (6) can be understood as follows: The perturbative series has a vanishing radius198

of convergence in the complex g plane, because real negative values of g correspond to an upside-199

down potential and an action not bounded from below. This fact can be exemplified by the simple200

zero-dimension path integral (see App. B):201

I(g) =

∫ ∞
−∞

dx√
2π

e−
x2

2
−gx4 =

∞∑
k=0

ak(−g)k, ak =
(4k)!

22k(2k)!k!
∼

k→∞
24k√
2πk
× k! . (7)

This is the generating function counting the number of vacuum Feynman diagrams. The asymp-202

totic behavior of ak can be found by a saddle-point analysis of the integral. In field theory the203

corresponding saddle point is given by instantons [50]4.204

The solution of the fixed-point equation β(g, y) = 0 gives g = g(y) by perturbative inversion205

around g = y = 0; this is used to rewrite the anomalous dimensions as a series in y,206

γO(y) =

n∑
k=1

γO,k y
k. (8)

This is again a divergent series of asymptotic form (6), with suitable parameters a, b and C.207

The ratio of two consecutive terms in the series (8) can be estimated from (6) as, γO,k y/γO,k−1 ≈208

−aky, which is larger than one for y > 1/|ak|. A simple conclusion is that the more terms are209

present in the perturbative series (8), the sooner it diverges as a series in y. We can draw two main210

conclusions:211

i) As it stands, the perturbative series (8) is basically useless for physical dimension y = 1,212

apart from the first couple of terms, and resummation methods are necessary for extracting213

precise values of anomalous dimensions. The resummation is based on the Borel transform,214

followed by a conformal mapping, as will be explained later, and further discussed in App. B.215

This procedure gives resummed finite expressions γ̃O(y).216

4There is growing consensus that the large-order behavior is governed by an instanton rather than a renor-
malon [53]. If one could go to much higher orders in the series expansion (e.g., 20-loop order) one could apply
methods of resurgence and trans-series [54].
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ii) For dimensions close to d = 4, i.e., y � 1, there is an optimal number of terms nopt(y), for217

each y value, for which the distance between the series and the resummed function γ̃O(y),218

|γ̃O(y)−∑nopt

1 γO,ky
k|, is minimal before growing again.219

The perturbative anomalous dimensions γ̃O may differ from results obtained by other methods,220

such as the lattice formulation of the path-integral for the Ising model, or by the bootstrap. These221

differences are non-analytic, e.g., δγO(y) ∼ exp(−A/y). Within the resummation procedure, these222

terms may change according to how the inverse Borel transform is performed [54].223

Before discussing the resummation methods in the next section, a first comparison of the per-224

turbative expansion and the bootstrap data for γσ clarifies the issues at stake.225

The perturbative series is [38, 52]226

γσ(y) = 0.00925926y2 + 0.00934499y3 − 0.00416439y4 + 0.0128282y5

−0.0406363y6 + 0.15738y7, (epsilon expansion). (9)

The best polynomial fit of bootstrap data in Tab. 1 using the methods outlined in Sec. 2.2 is5227

γσ(y) = 0.009306473y2 + 0.008899908y3 − 0.001435107y4 + 0.001788710y5

−0.000533980y6 + 0.000128667y7, (conformal bootstrap). (10)

The two polynomials (9) and (10) have different meanings, although their first two coefficients228

are close. On one hand the Feynman-diagram series is exact, but has a vanishing radius of con-229

vergence. On the other hand, the numerical bootstrap data in Tab. 1 should converge to exact230

non-perturbative results upon increasing the numerical precision. The collection of these values231

for any dimension d = 4 − y gives the exact function γexσ (y), which however cannot be expressed232

in terms of a simple polynomial. Therefore, the fit (10) gives approximated values around γexσ (y),233

whose precision is a priori limited. Nonetheless, this description is sufficient at the present level of234

numerical accuracy.235

In Fig. 5 we show the difference between the perturbative series (9) and the bootstrap fit (10)236

for 4 > d ≥ 3. Color lines correspond to the series (9) truncated at different orders n = 2, 3, . . . , 7237

(cf. color legend in the plot). One sees that, the higher the order n ≥ 4, the sooner the perturbative238

series diverges from the bootstrap data (corresponding to the zero horizontal line in Fig. 5). The239

tiny errors of bootstrap points cannot be seen at this scale, thus showing that the unresummed240

perturbative series cannot be used for a precise determination of critical exponents in d = 3, as241

stated in point ii) above. Yet, the lower terms n = 2, 3 may provide crude estimates.242

Fig. 6 shows the other regime, close to four dimensions. Only the bootstrap point for d = 3.875 is243

present in this range, but we also show results of Ref. [20] for d ≥ 3.8, which match very well while244

lacking error bars6. In contrast to the d ≈ 3 region, we observe that the truncated perturbative245

series shows a different behavior. At any given y value, upon increasing the perturbative order up246

to an optimal value nopt ∼ 1/y, the perturbative series approaches the zero horizontal line (with a247

cyan error band), before starting to diverge. Namely, it matches the exact bootstrap value γexσ (y),248

within numerical errors.249

5Note that the best-fit polynomial (10) starts with an O(y2) term, because the linear term vanishes within errors.
If a linear term is included in the fit procedure, it leads to a coefficient three orders of magnitude smaller than
the quadratic term. Therefore, the conformal bootstrap implies γσ(y) = O(y2) close to d = 4, in agreement with
perturbation theory.

6Note that the red triangles are not used in our fit of bootstrap data.
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Figure 5: Comparison of γσ bootstrap data with unresummed epsilon expansion (9) in
the region 4 > d > 3 for truncations of the series to order n = 2, . . . , 7 (see color legend).
All quantities have been subtracted by the best fit values (see (10)).
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Figure 6: Comparison of γσ data minus best fit in the region 4 > d > 3.8, between
bootstrap (blue circle) and unresummed epsilon expansion (9) with different truncations
of the perturbative series (cf. Fig. 5). The red triangles are the results of the bootstrap
navigator method [20]. The cyan shaded area is the fit error.

Therefore, the comparison between non-perturbative bootstrap results and unresummed epsilon250

expansion for γσ(y) is extremely good in the region 4 > d > 3.8, with precision Err(γσ) ≈ 1×10−6,251

i.e., Err(γσ)/γσ < 1× 10−3. According to the previous discussion, we conclude that we do not see252

any non-perturbative difference for d→ 4.253

We remark that the epsilon expansion can also be obtained by analytic solution of the bootstrap254
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equations around d = 4, assuming a perturbative expansion near the free theory [23,24,26,27,29–31].255

Thus, is our comparison in Fig. 6 tautological? It is not, because the bootstrap identity is a set of256

consistency conditions that depends on the kind of quantities they act on. Our numerical solution257

does not assume any perturbative expansion, i.e., it is an independent solution of the bootstrap258

constraints. That without any perturbative input, our conformal bootstrap results accurately259

reproduce perturbative predictions close to d = 4 is non-trivial.260

A natural question is how our numerical bootstrap approach can reproduce the perturbative261

series, i.e., in which regime the two polynomials (9) and (10) may agree beyond the O(y3) term. As262

said earlier, the bootstrap polynomial (10) is approximated, it can at most describe a band of values263

around γexσ (y). While the size Err(γσ) of this band stays finite in the whole range 0 < y < 1 (see264

plots), that of the epsilon expansion is expanding in y and can be finite only for y < ymax ∼ O(1/n),265

n being the perturbative order. We expect that, upon running the bootstrap for several points yi,266

with 0 < yi < ymax � 1, and by performing best fits with polynomials limited to such a small267

interval, one may find that the two expressions (9) and (10) match order by order, i.e., the epsilon268

expansion is fully recovered.269

3.2 Bootstrap data versus resummed perturbative results270

Precise estimates of the critical exponents have been obtained over the years by refining the271

resummation techniques applied to the epsilon expansion series [2–4,38,39,50,55,56]. In this work,272

we use the methods of Refs. [38,39] extended to dimension 4 > d ≥ 3. Let us briefly recall the main273

steps involved [50]. The Borel transform BγO(t) of the perturbative expansion for the anomalous274

dimension γO (8) is defined by removing the factorial growth from the series,275

BγO(t) =

n∑
k=1

γO,k
k!

tk . (11)

One infers from the asymptotic behavior (6) that this function has a singularity BγO(t) ∼ (1 +276

ta)−b−1 and a corresponding finite radius of convergence.277

The resummed quantity is defined by the inverse Borel transform,278

γ̃O(y) =

∫ ∞
0

dt e−t BγO(yt). (12)

By definition γO(y) in (8) and γ̃O(y) in (12) have the same perturbative expansion; however, the279

latter should be better behaved if BγO(t) is suitably continued analytically outside the original disc280

|t| < 1/|a| to a region including the real positive axis7. Such analytic continuation in principle281

requires the knowledge of all singularities of BγO(t) in the complex t-plane. At this point, one can282

only make educated guesses on these singularities, that translate into (physical) ansatzes for γ̃O(y).283

In practice, one assumes that the only singularity of BγO(t) lies at t = −1/a real and negative,284

and that it is a branch cut extending to t = −∞. Using a conformal mapping t(z), this branch cut285

is mapped onto the unit circle, with the start of the branch cut mapped onto z = −1, and t = −∞286

to z = 1, preserving the origin z = t = 0. As long as there are no other singularities, B(t(z)) has287

a radius of convergence one in z. As t = ∞ corresponds to z = 1, this allows one to perform the288

inverse Borel transform (12). Details on this procedure can be found in App. B.289

7In particular, a real negative value of the parameter a in (6), i.e., a perturbative series (8) of definite sign, is
problematic.
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This general idea can be modified in several ways, allowing one to introduce a set of variational290

parameters. The latter are determined such that the final result is the least sensible to their291

variation. Apart from providing a robust resummation scheme, it allows one to obtain an estimate292

of the error in the resummation. These methods have been improved over the years by taking into293

account the phenomenology of critical phenomena.294

Let us also mention that another appealing option for the analytic continuation is to use Hyperge-295

ometric functions, for which the inverse Borel transform can be written as a Meijer-G function [55].296

One drawback of this approach is the possibility for spurious poles on the integration contour.297

Figure 7 shows the fitted bootstrap data (blue points) of γσ(y) already reported in Fig. 4, now298

compared to the resummed epsilon-expansion values of Tab. 2 (green squares)8. The agreement299

between these two results is very good, especially for d ≥ 3.5, where the unresummed series (ma-300

genta line) is already diverging, and greatly improves on earlier studies [2, 3] analyzed in [19]. Let301

us remark that resummed γ̃σ(y) values have been obtained for non-integer dimensions down to302

d = 2, still finding agreement with bootstrap data, although with larger uncertainties. Finally,303

Fig. 7 shows the latest Monte Carlo results in d = 3 (yellow rhombus), that match extremely well304

the bootstrap points. Further d = 3 results by these and other methods are summarized in a later305

figure.306
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Figure 7: Comparison of γσ data minus best-fit values: bootstrap (blue circles), Borel-
resummed epsilon expansion [38] (green squares), unresummed high-order epsilon expan-
sion (magenta solid curve), d = 3 Monte Carlo [42] (yellow rhombus). Note that data
points are slightly displaced around the same d values (d = 3.875, d = 3.75, d = 3.5,
d = 3.25 and d = 3) to improve readability.

8Resummations in this section use the 6th-order expansion that received several checks. Contrary to expectation,
the apparent error at 7-loop order seems to be larger than that at 6-loop order, in all resummation schemes we
tried [38,39]
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d ∆σ ∆ε ∆′ε
3.875 0.937662197(7) 1.91831086(14) 3.9924550(11)
3.75 0.8757158(3) 1.839419(4) 3.97529(3)
3.5 0.753393(10) 1.68854(7) 3.9276(5)
3.25 0.63386(8) 1.5458(4) 3.873(2)

3 0.5181(3) 1.4108(12) 3.820(7)

Table 2: Conformal dimensions of σ,ε and ε′ field from resummed perturbative expan-
sion, obtained according to the methods of [38].

We now extend the previous analysis to the energy field ε. The best fit of the conformal bootstrap307

data is308

γε(y) = 0.333441601y + 0.114095325y2 − 0.083458310y3

+0.081381007y4 − 0.045296977y5 + 0.014290102y6

−0.001741325y7, (conformal bootstrap). (13)

The epsilon-expansion series reads [38,52]309

γε(y) = 0.333333y + 0.117284y2 − 0.124527y3 + 0.30685y4 − 0.95124y5

+3.57258y6 − 15.2869y7, (epsilon expansion). (14)

One remarks the agreement, within errors, of the first two coefficients of this series; this corrects310

less precise results of [19] (cf. Fig. 6b there).311

The comparison for d → 4 before resummation is shown in Fig. 8. As for Fig. 7, the truncated312

perturbative series for γε are plotted. Their curves approach the bootstrap fit (horizontal zero313

axis with cyan error band) with better and better precision. Note the remarkable quality of the314

navigator method (red triangles) [20]. Altogether, the agreement for d → 4 is found with high315

precision, Err(γε) = 3× 10−5 and Err(γε)/γε = 1× 10−3.316

Figure 9 presents a comparison with the resummed perturbative series (Tab. 2): the agreement317

is again very good for 4 > d ≥ 3.5; there is a small O(10−3) deviation from the bootstrap and318

Monte Carlo results [42] (yellow rhombus) in d = 3. Probably there is a slight underestimation of319

the error. Let us remark that this resummation procedure is honest, as it does not use the exact320

d = 2 conformal dimension as an input, with which it could be improved. The comparison with321

another method, called Self-Consistent (SC) resummation9 is presented in Fig. 10, where we plot322

data of Tab. 3. In this case, the Borel transform is done on the perturbative series of 1/ν3, instead323

of 1/ν = 2− γe: this choice is motivated by a match with the d = 2 conformal field theory, that is324

achieved through comparing the n dependence of the O(n)-symmetric φ4 theory [39]. We conclude325

that adding information of the exact results in d = 2 improves the resummation of the perturbative326

series (for this particular critical exponent).327

Summarizing, the bootstrap and epsilon-expansion results agree very well: for d → 4 the unre-328

summed series fits perfectly, for 4 > d ≥ 3 there is remarkable agreement, keeping in mind that329

the resummation error is roughly one order of magnitude larger than that of bootstrap and Monte330

Carlo results.331

9See Ref. [39] for a detailed discussion of this approach.
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Figure 8: Comparison of the γε data minus the best fit in the region 4 > d > 3.8. Our
bootstrap point is the blue circle with error bar; the triangles are obtained by the navigator
method [20]; the different truncations of the perturbative series are as in Fig. 5. The cyan
shaded area is the fit error.

d ∆ε

3.9 1.93440534057(12)
3.8 1.8706742(6)
3.7 1.808546(5)
3.6 1.747876(2)
3.5 1.68858(6)
3.4 1.63062(15)
3.3 1.5740(3)
3.2 1.5187(5)
3.1 1.4647(9)
3 1.4122(15)

Table 3: Conformal dimension of ε field from resummed perturbative expansion, obtained
according to the methods of [39].
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Figure 9: Comparison of γε data minus best fit: bootstrap (blue circles), Borel-resummed
epsilon expansion [38] (green squares), unresummed epsilon expansion (magenta solid
curve), d = 3 Monte Carlo [42] (yellow rhombus). The cyan shaded area is the fit error
as in earlier plots.
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Figure 10: Comparison of γε minus best fit: bootstrap (blue circles), Self-Consistent
resummed epsilon expansion [39] (red stars), unresummed epsilon expansion (magenta
solid curve), d = 3 Monte Carlo [42] (yellow rhombus).
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A comparison of all d = 3 results available in the literature for γσ and γε is given in Figs. 11332

and 12. The corresponding numerical values are in Tab. 4. Besides data already discussed (drawn333

in earlier colors), we report recent results of the non-perturbative renormalization group [43] (brown334

downward triangle). The central value is given by our fit of the bootstrap data with error given by335

the cyan band, not by the mean value of all results. The Figs. 11 and 12 respect our convention336

of plotting the two anomalous dimensions on scales differing by one order of magnitude, roughly337

equal to the ratio of their actual value. Finally, Tab. 4 and Figs. 11, 12 report also the results338

of other 3-correlator bootstrap approaches, using EFM [46] and the navigator method [49], and339

paying particular attention to error estimates (cf. rigorous bounds). We also remark that the340

results obtained by perturbative expansions directly in d = 3 [3, 4] are consistent with bootstrap341

results too, but have one order of magnitude larger errors and are therefore not plotted in Figs. 11342

and 12.343

d = 3 Ising critical indices ∆σ ∆ε ∆ε′

Bootstrap (1 correlator) 0.518155(15) 1.41270(15) 3.8305(15)
Bootstrap (3 correlators) 0.5181489(10) 1.412625(10) 3.8297(2)
Borel resummed epsilon expansion 0.5181(3) 1.4107(13) 3.820(7)
SC Borel resummed epsilon expansion 0.5178(2) 1.4122(15) 3.827(13)
Monte Carlo 0.51814(2) 1.41265(13) 3.832(6)
Non-perturbative RG 0.5179(3) 1.41270(50) 3.832(14)
Navigator (rigorous bounds) 0.518157(35) 1.41265(36) 3.8295(6)

Table 4: Comparison of d = 3 results for the conformal dimensions of low-lying fields:
1-correlator bootstrap [19], 3-correlator bootstrap [46] (errors on ∆σ and ∆ε are rigorous
bounds), Borel-resummed epsilon expansion [38], Self-Consistent (SC) Borel-resummed
epsilon expansion [39], Monte Carlo [40,42], non-perturbative renormalization group [43,
44] and bootstrap navigator method with rigorous bounds [49].

−0.0006 −0.0004 −0.0002 0 0.0002 0.0004 0.0006
γσ− fit

1-corr. CB

3-corr. CB (rigorous bounds)

Monte Carlo

Borel Res. EE

SC Borel Res. EE

Non-perturbative RG

Navigator

γσ comparison d = 3

Figure 11: Summary of up-to-date predictions for γσ at d = 3 (minus best fit): 1-
correlator bootstrap [19] (blue circle), 3-correlator bootstrap with rigorous bounds [46]
(black pentagon), Monte Carlo [42] (yellow rhombus), Borel-resummed epsilon expan-
sion [38] (green square), Self-Consistent resummed epsilon expansion [39] (red star),
non-perturbative renormalization group [43] (brown downward triangle), bootstrap navi-
gator method [20] (red upward triangle).
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γε comparison d = 3

Figure 12: Summary of up-to-date predictions for γε in d = 3 (minus best fit): 1-
correlator bootstrap [19] (blue circle), 3-correlator bootstrap with rigorous bounds [46]
(black pentagon), Monte Carlo [42] (yellow rhombus), Borel-resummed epsilon expan-
sion [38] (green square), Self-Consistent resummed epsilon expansion [39] (red star),
non-perturbative renormalization group [43] (brown downward triangle), bootstrap navi-
gator method [20] (red upward triangle).

We now analyze the subleading Z2-even scalar field ε′, which is related to the critical exponent344

ω = ∆ε′ − d = d− 4 + γε′ . The best fit of our data gives10:345

γε′(y) = 2.000178549y − 0.518006835y2 + 0.721996645y3

−0.684437170y4 + 0.447648598y5 − 0.162903635y6

+0.026155257y7, (conformal bootstrap). (15)

The large errors of the earlier analysis [19] have been reduced, as explained earlier (see Fig. 3). The346

epsilon-expansion series is [38, 52],347

γε′(y) = 2y − 0.62963y2 + 1.61822y3 − 5.23514y4 + 20.7498y5

−93.1113y6 + 458.7424y7, (epsilon expansion). (16)

In Fig. 13 we show the difference between the data and the bootstrap best fit (15). The overall348

error of the fit for γε′ is estimated to be less than 2.0× 10−3 in the whole range. The relative error349

is Err(γε′)/γε′ = 1 × 10−3 for d = 3 but goes up to 1 × 10−2 for d = 3.875. The comparison with350

Monte Carlo [40, 42] in d = 3, and the resummed epsilon-expansion series are also shown, finding351

again good agreement at the coarser scale (note a factor of 10 w.r.t. Fig. 9). A drift towards lower352

values for the green epsilon-expansion points is seen, as for γε. Further values of ∆ε′ in d = 3 found353

in the literature are reported in Tab. 4 and plotted in Fig. 14. A zoom over the region close to354

d = 4 is drawn in Fig. 15, showing the same features of Fig. 6 and Fig. 8.355

We conclude this section by stressing the very good overall agreement of bootstrap and resummed356

epsilon expansion. The study in varying dimensions clarifies the different behavior of quantities in357

the perturbative and non-perturbative regimes.358

10The fit again assumes γε′ = 0 for d = 4.
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Figure 13: Comparison of γε′ data minus best fit: bootstrap (blue circles), Borel-
resummed epsilon expansion [38] (green squares), unresummed epsilon expansion (ma-
genta solid curve), d = 3 Monte Carlo [40] (yellow rhombus).
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Figure 14: Summary of up-to-date predictions for γε′ in d = 3 (minus best fit): 1-
correlator bootstrap [19] (blue circle), 3-correlator bootstrap [46] (black pentagon), Monte
Carlo [42] (yellow rhombus), Borel-resummed epsilon expansion [38] (green square), Self-
Consistent resummed epsilon expansion [39] (red star), non-perturbative renormaliza-
tion group [43] (brown downward triangle), bootstrap navigator method with rigorous
bounds [49] (grey rightward triangle), bootstrap navigator method [20] (red upward trian-
gles).

4 Structure constants and scaling dimensions of higher fields359

In this section we analyze further bootstrap data. The structure constants (OPE coefficients)360

of low-lying fields σ, ε, ε′, T are very precise, the error being on the fifth decimal, thus better than361

those of the corresponding conformal dimensions presented earlier. Next we discuss subleading and362

spinful fields, ε′′, T ′, C, C ′, presenting results for both dimensions and structure constants. Some of363
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Figure 15: Comparison of the γε′ data minus the best fit in the region 4 > d > 3.8. Our
bootstrap point is the blue circle with error bar; the triangles are obtained by the navigator
method [20]; the different truncations of the perturbative series are as in Fig. 5. The cyan
shaded area is the fit error.

them are good, others are not completely correct, showing the limits of our numerical bootstrap364

approach.365

4.1 Structure constants in 4 > d ≥ 3366

d c fσσε fσσε′ fσσε′′ × 104 fσσT ′ fσσC fσσC′

4 1 1.4142136 0 0 0 0.169031 0

3.875 0.99970(2) 1.38228(2) 0.015298(14) 0.33(10) 0.003070(2) 0.1540603(3) 0.000772(2)
3.75 0.998594(3) 1.34586(3) 0.027517(15) 1.4(3) 0.005641(5) 0.133(8) 0.00134(10)
3.5 0.9922615(15) 1.26132(3) 0.04426(3) 4.0(2) 0.00911(10) 0.105(5) 0.0021(3)
3.25 0.976864(6) 1.16282(4) 0.05225(3) 6.0(3) 0.0106(2) 0.084(6) 0.0019(9)

3 0.946535(15) 1.05184(4) 0.05300(5) 7.1(4) 0.010575(15) 0.065(5) 0.0020(5)
2.75 0.893275(15) 0.92939(4) 0.04794(8) 7.0(4) 0.00901(6) 0.048(4) 0.00235(15)
2.5 0.807110(10) 0.796303(5) 0.03885(2) 5.90(9) 0.00668(3) 0.033(3) 0.0029(3)
2.25 0.677724(2) 0.65311(2) 0.02738(4) 4.27(5) 0.00394(14) 0.0195(15) 0.0035(2)
2.2 0.64609(7) 0.62333(6) 0.0245(5) 3.76(9) 0.00352(7) 0.019(4) 0.0038(3)
2.15 0.61243(8) 0.59313(8) 0.0225(5) 3.36(2) 0.0025(5) 0.017(3) 0.00385(15)
2.1 0.57680(10) 0.56249(7) 0.02018(8) 2.98(7) 0.00265(5) 0.016(3) 0.00395(15)
2.05 0.53935(15) 0.53143(8) 0.01785(5) 2.58(4) 0.00230(10) 0.0135(25) 0.00390(10)
2.01 0.5082(3) 0.5058(6) 0.01605(5) 2.246(9) 0.00193(3) 0.01550(10) 0.003920(10)

2.00001 0.500015(15) 0.499998(5) 0.015623(4) 2.0(2) 0.0018520(5) 0.0148235(15) 0.0039040(10)

2 0.5 0.5 0.0156250 2.1972656 0.00185290 0.0148232 0.003906

Table 5: Structure constants of the first few low-lying states for 4 > d > 2. The exact
values for d = 2, 4 are given in bold, results for 3 ≥ d > 2 are taken from [19].
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Tab. 5 reports all data for structure constants: those for 4 > d > 3 are new results, the ones for367

3 ≥ d > 2 are taken from [19]. The central charge c is obtained from the structure constant fσσT368

of the energy-momentum tensor T by369

f2σσT =
d

4(d− 1)

∆2
σ

c
. (17)

For fσσO, we adopt the by-now standard normalization of [20, 46]. The relation with the earlier370

normalization f̃σσO of Ref. [15] is371

f2σσO =

(
d−2
2

)
`

(d− 2)`
f̃2σσO, (18)

where (x)` ≡ Γ(x+ `)/Γ(x) is the Pochhammer symbol.372

The central charge c and the structure constants fσσε and fσσε′ are determined with very high373

accuracy: their dependence on y = 4 − d is obtained with the fit method of Sec. 3.1, assuming374

the exact d = 4 value. The resulting polynomials are reported together with the available epsilon-375

expansion series [29,30,57,58]:376

c(y) = 1− 0.015415049y2 − 0.026663929y3 − 0.004992140y4 − 0.010357094y5

+0.007424814y6 − 0.004670278y7 + 0.001206599y8,

(conformal bootstrap), (19)

c(y) = 1− 0.0154321y2 − 0.0266347y3

−0.0039608y4, (epsilon expansion), (20)
377

fσσε(y) =
√

2− 0.235465537y − 0.170275458y2 + 0.096635030y3 − 0.113371408y4

+0.100586943y5 − 0.054667196y6 + 0.016161292y7 − 0.001992399y8,

(conformal bootstrap), (21)

fσσε(y) =
√

2− 0.235702y − 0.168047y2 + 0.103680y3 − 0.224776y4,

(epsilon expansion), (22)
378

fσσε′(y) = 0.136221303y − 0.118250195y2 + 0.067116467y3 − 0.058700794y4

+0.037159615y5 − 0.012211017y6 + 0.001647332y7

(conformal bootstrap), (23)

fσσε′(y) = 0.1360828y + 0.11844240525y2, (epsilon expansion). (24)

We remark: i) the excellent agreement between the first few terms of the conformal bootstrap and379

epsilon-expansion series, and ii) the need of a high-order O(y7, y8) polynomial for precise fits. The380

corresponding curves are shown in Figs. 16 and 17. Note that c, fσσε and fσσε′ were determined381

with strikingly small (relative) errors, respectively O(10−5), O(10−4) and O(10−4) over the entire382

d range.383

The comparison with other conformal bootstrap results is as follows: The best 3-correlator384

determination in d = 3 [46] is shown as a black pentagon in the figures. Data from the naviga-385

tor method [20] are also available for fσσε. The agreement among different numerical setups is386

extremely good. Moreover, as already observed for scaling dimensions, the unresummed epsilon387

22



SciPost Physics Submission

0 0.2 0.4 0.6 0.8 1
4− d

−0.00004

−0.00002

0

0.00002

0.00004

c−
fit

Figure 16: Comparison of c data minus best fit: bootstrap (blue circles), unresummed
epsilon expansion [57, 58] (magenta solid curve), 3-correlator bootstrap at d = 3 [46]
(black pentagon).
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Figure 17: Comparison of fσσε and fσσε′ minus best fit: bootstrap (blue circles), unre-
summed epsilon expansion [29,30,57,58] (magenta solid curve), 3-correlator bootstrap at
d = 3 [46] (black pentagon). On the left we also report the resummed epsilon expansion
(green squares) and bootstrap navigator results [20] (red triangles).
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expansion captures the d→ 4 behavior, and it does it very well, since the lower-order terms of the388

respective polynomials (19)–(24) are equal within errors. For fσσε, the results of the resummed389

epsilon expansion, reported in Tab. 6, are also shown, determined by earlier methods: the 4th-order390

series (22) only allows for a precise agreement down to d ≈ 3.6, given the fine scale of Fig. 17.391

For the remaining quantities, the epsilon expansion is either too short for a resummation, or not392

alternating.393

d fσσε

3.9 1.3890497(2)
3.8 1.360960(3)
3.7 1.330222(12)
3.6 1.29703(3)
3.5 1.26154(7)
3.4 1.22386(13)
3.3 1.1841(2)
3.2 1.1423(3)
3.1 1.0986(5)
3 1.0531(7)

Table 6: Structure constant fσσε from resummed perturbative expansion, obtained ac-
cording to the methods of [39].

4.2 Higher fields T ′ and C394

The analysis of the fields T ′ (` = 2) and C (` = 4) is done along the same lines. The fit395

polynomials for ∆T ′ and ∆C , obtained as before, are396

∆T ′(y) = 6− 0.567900778y + 0.1779633663y2 − 0.806164966y3

+1.749534636y4 − 1.684842086y5 + 0.765011179y6

−0.126284231y7, (conformal bootstrap), (25)

∆C(y) = 6− 1.001598184y + 0.030791232y2

−0.033868719y3 + 0.041665026y4 − 0.002907562y5

−0.006602770y6, (conformal bootstrap). (26)

They are shown in Fig. 18, along with the bootstrap results of [20] (red triangles) and the available397

epsilon-expansion series (magenta solid lines) [26,31,57,58]:398

∆T ′(y) = 6− 0.5555556y, (epsilon expansion), (27)

∆C(y) = 6− y + 0.01296296y2 + 0.01198731y3

−0.006591585y4, (epsilon expansion). (28)

As shown by the cyan band, representing our fitting error, the scaling dimensions of these fields are399

determined with an accuracy comparable to that achieved for the low-lying ` = 0 states: Err(∆T ′) ≈400

10−2 and Err(∆C) ≈ 3× 10−3, meaning that Err(∆T ′)/∆T ′ ≈ 10−3 and Err(∆C)/∆C ≈ 5× 10−4.401

Within our precision, we observe very good agreement with the results of [20] (especially for T ′).402
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Furthermore, the unresummed epsilon expansion is again in agreement with the bootstrap results403

for d→ 4. Overall, the picture is consistent with the ` = 0 case discussed earlier11.404
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Figure 18: Comparison of scaling dimensions minus best fit for T ′, C fields: bootstrap
(blue round points), navigator method [20] (triangle red points), 3-correlator bootstrap at
d = 3 [46] (black pentagon) and unresummed epsilon expansion [26, 31, 57, 58] (magenta
solid line).

The corresponding structure constants are given by the polynomial fits405

fσσT ′(y) = 0.026278214y − 0.012019512y2 − 0.016779681y3

+0.025762223y4 − 0.018571573y5 + 0.006902659y6

−0.001000504y7, (conformal bootstrap), (29)

fσσC(y) = 0.16903085− 0.122480930y + 0.077087613y2 − 0.591032947y3

+1.331591787y4 − 1.231373513y5 + 0.512308476y6

−0.079520247y7, (conformal bootstrap). (30)

They can be compared to the available epsilon expansions [26,31,57–59]:406

fσσT ′(y) = 0.02635231y − 0.013176155y2, (epsilon expansion), (31)

fσσC(y) = 0.16903085− 0.12244675y + 0.02131741y2

+0.002168567y3 − 0.0019760553y4, (epsilon expansion). (32)

11The good behavior of the perturbative expansion for larger values of y ≈ 0.8 is not stressed, since it may be an
artifact of the low order of the series.
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The comparison is shown in Fig. 19. Also in this case we observe good agreement between the407

conformal bootstrap polynomials and the epsilon expansion series up to O(y3) terms.408
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Figure 19: Behavior of structure constants fσσT ′ and fσσC (round blue points) compared
with 3-correlator bootstrap at d = 3 [46] (black pentagon) and epsilon expansion (magenta
solid line) [57, 58].

4.3 Subleading fields ε′′ and C ′409

The numerical 1-correlator bootstrap approach used in this paper is known to have a limited410

precision for states higher up in the conformal spectrum, in particular for our approximation to 190411

components of the truncated bootstrap equations. In this section, we show that our identification412

of ε′′ (` = 0) and C ′ (` = 4) has some problems, especially for d→ 4. We explain these difficulties413

by using the epsilon expansion for conformal dimensions and structure constants, as well as the414

3-correlator bootstrap data [20] in varying dimensions. We think that these aspects are worth415

discussing, especially because the y = 4− d dependence plays a crucial role.416

We start our analysis from the subleading twist ` = 4 operator C ′, for which we find the following417

best fit polynomial:418

∆C′(y) = 8− 0.827053961y − 0.055211344y2 + 0.053430207y3

+0.010354264y4 − 0.003205703y5, (conformal bootstrap). (33)

These data are shown in Fig. 20 (left part). It turns out that C ′ is degenerate at d = 4 with another419

field with same dimension and spin, called C ′2. Their dimensions are known to leading order in the420

epsilon expansion,421

∆C′(y) = 8− 1.555556y, (34)

∆C′
2
(y) = 8− 0.833333y, (epsilon expansion), (35)

and are plotted in Fig. 20 with magenta dashed and solid lines, respectively. Near these lines, the422

navigator bootstrap results [20] are plotted with gold and red triangles.423

One sees that our results start at d→ 4 very close to C ′2 (see first coefficient in polynomials (33)424

and (34)) and end up near C ′ at d = 3. Therefore, the state we found is a mixture of C ′ and C ′2:425

better numerical precision would be needed for disentangling the two states near d→ 4, obtained,426

e.g., by increasing the number of components approximating the bootstrap equations.427
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Figure 20: Scaling dimension and structure constant of would-be C ′ operator in our
bootstrap spectrum (blue circles). Upward red and downward gold triangles represent
navigator results for C ′ and C ′

2 [20]. The dashed and solid magenta lines are the corre-
sponding leading-order epsilon expansion.

The fit of the structure constant is given by428

fσσC′(y) = 0.006871047y − 0.005215834y2 − 0.003223129y3

+0.005087571y4 − 0.001393464y5, (conformal bootstrap), (36)

and plotted in the right part of Fig. 20. The epsilon-expansion results for C ′ and C ′2 read,429

fσσC′(y) = 0.001543806y, (37)

fσσC′
2
(y) = 0.006458202y, (epsilon expansion), (38)

and are shown as magenta dashed and solid lines on the right of Fig. 20.430

These perturbative data show a remarkable fact: for d < 4 the state of higher dimension C ′2431

has a larger structure constant, contrary to the standard behavior of fσσO decreasing fast with432

∆O. It is thus clear that, close to d = 4, C ′2 gives the dominant contribution to a putative mixed433

C ′-C ′2 state. This suggests the reason why our results with limited precision start close to C ′2. The434

analysis is confirmed by the bootstrap result for the structure constant in (36): for d→ 4 it fits the435

perturbative behavior of fσσC′
2
, as seen in the right plot of Fig. 20. In conclusion, our subleading436

` = 4 state is identified as C ′2 for d→ 4, but gradually approaches C ′ in d = 3.437

Another problematic identification concerns the ε′′ field (corresponding to φ6 in the φ4 theory).438

The best fit of bootstrap data gives439

∆ε′′(y) = 2.313321845y − 1.678645012y2 + 0.336440006y3

+0.090959178y4, (conformal bootstrap), (39)

while the leading epsilon-expansion result reads [23,24,59]:440

∆ε′′(y) = 2y − 4.759259y2, (epsilon expansion). (40)

For the structure constant we find441

fσσε′′(y) = 0.002851280y2 − 0.003188068y3 + 0.001218496y4

−0.000161879y5, (conformal bootstrap); (41)

fσσε′′(y) = 0.006901444y2, (epsilon expansion). (42)
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It is apparent that our bootstrap results do not match the leading perturbative expansion for d→ 4.442

The corresponding plots are shown in Fig. 21, where the disagreement with bootstrap results from443

Ref. [20] (red triangles) is also seen.444
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Figure 21: Scaling dimension and structure constant of the would-be ε′′ operator in
our bootstrap spectrum (blue circles). Upward red and downward gold triangles represent
navigator results for ε′′ and ε′′′ [20]. The solid and dashed magenta lines are the corre-
sponding leading-order epsilon expansion, which agree with the navigator results, but not
ours.

Let us investigate the possibility of another mixing of states near d→ 4. In this case there is no445

degenerate field with ε′′ at d = 4. However, the next subleading one ε′′′ ∼ �2φ4 in the φ4 theory446

is present at higher dimension ∆ε′′′ ≤ 8. The epsilon expansion and navigator results for this field447

are also shown in Fig. 21 (left part, gold downward triangles). We remark that a mixing of ε′′ and448

ε′′′ was shown to take place at d = 2.8, i.e., rather far from d = 4 [20].449

We suppose that the limited resolution of our data finds a state which is a mixture of ε′′ and ε′′′450

also for d→ 4, but we cannot be certain of this. As for C ′ and C ′2, support for this argument could451

come from a comparison of the corresponding structure constants fσσε′′ and fσσε′′′ . Unfortunately,452

the epsilon expansion of the latter is not available, so we cannot get a definite explanation of our453

∆ε′′ data.454

5 Conclusions455

In this paper we obtained the conformal dimensions and structure constants of the critical Ising456

CFT as a function of varying dimension 4 > d ≥ 3 by using the numerical conformal bootstrap457

approach.458

Our main result is the precise determination of the anomalous dimensions of the σ, ε, ε′ fields,459

which are related to the Ising critical exponents η, ν, ω. Our relatively simple 1-correlator bootstrap460

setup is able to compute the d-dependence of these quantities with up to one-per-thousand relative461

accuracy; therefore, our findings can be used as a benchmark for future studies in non-integer space462

dimension.463

We presented a detailed comparison of available predictions from different methods. For d→ 4,464

our results agree with those from unresummed perturbation theory. This shows two things: that465
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non-perturbative differences, which might effect the bootstrap program or the resummed series,466

are negligible for d → 4. The other non-trivial result is that both approaches agree on the same467

analytic continuation in dimension. A possible explanation of this correspondence is provided by468

the analytical bootstrap, which on one hand reproduces the epsilon expansion, and on the other469

hand uses the same ingredients as the numerical bootstrap.470

For 3 ≤ d < 4, but away from d = 4, the bootstrap data agree very well with other results,471

obtained by resummation techniques of the perturbative series, Monte Carlo simulations, and other472

bootstrap approaches. In the whole 4 > d ≥ 3 range we find overall consistency among the different473

approaches; improvements are needed by adding further terms to the perturbative series in d = 3,474

as the current state of the art still shows a O(10−3), O(10−2) discrepancy, respectively for ν and475

ω, and in general much larger error bars than bootstrap and Monte Carlo results.476

In addition, we obtained results for the conformal dimensions of higher-order fields and structure477

constants. As for the former, we are able to precisely compute bootstrap data related to the lowest-478

lying spinful fields T ′ (` = 2) and C (` = 4) with comparable precision to that for ` = 0. We find479

that both the central charge, and the OPE coefficients of low-lying fields are obtained with higher480

precision than the corresponding anomalous dimensions. The structure constants agree well with481

other bootstrap findings in the d→ 3 regime and with perturbation theory close to d = 4, confirming482

the overall picture found for critical exponents.483

A possible future development is to improve current bootstrap results in the region 3 > d ≥ 2, in484

order to better understand how the d = 3 theory approaches the d = 2 Virasoro minimal model. To485

this aim, it is important to go beyond the lowest-lying states and precisely probe higher-dimensional486

and higher-spin fields. Improved 3-correlator bootstrap protocols, such as the recently proposed487

navigator method, may be well suited here.488
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Appendix496

A Orthogonal polynomial regression497

Standard polynomial regression of the data set S ≡ {xi, yi,∆yi}Ni=1 is achieved by minimizing498

χ2 =

N∑
k=1

(
yk − f(xk)

∆yk

)2

, (43)
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with respect to the parameters {ci}di=0 of the fit function,499

fn(x) =

n∑
r=0

crx
r. (44)

The degree n of the polynomial is not known a priori.500

A smarter fit is obtained by changing the basis in which the polynomial is expressed:501

Bnaive =
{

1, x, x2, . . . , xd
}
→ Bortho = {P0(x), P1(x), P2(x), . . . , Pd(x)} , (45)

where the polynomials Pk(x) (of degree k) are chosen to be orthogonal on the independent variables502

of the dataset S, i.e.:503

〈Pr(x)Ps(x)〉S =
1

N

N∑
k=1

Pr(xk)Ps(xk) = k2rδrs, (46)

where kr are constants. With this choice, the fit function becomes504

fn(x) =
n∑
r=0

αrPr(x). (47)

The best fit is obtained by minimizing χ2 in Eq. (43). The advantage of the orthogonal polynomial505

regression is that the coefficients αr do not depend on the αs with s > r, i.e., adding higher-degree506

polynomials r > n to fn(x) does not change the value of αr with r ≤ n within the statistical507

errors [48]. Thus, this procedure is better suited to assess the optimal degree of the polynomial.508

The expression of the polynomials Pr(x) is known in the literature. In this work, we follow the509

conventions of Ref. [48]. We start by fixing the r = 0 and r = 1 polynomials as510

P0(x) = 1, P1(x) = 2(x− a1), a1 =
1

N

N∑
k=1

xk ≡ x. (48)

Higher-order polynomials with r ≥ 2 are obtained through the recursive relation [48],511

Pr+1(x) = 2(x− ar+1)Pr(x)− brPr−1(x), (49)

where the coefficients ar+1 and br are given by512

ar+1 =

∑N
k=1 xkP

2
r (xk)∑N

k=1 P
2
r (xk)

, br =

∑N
k=1 P

2
r (xk)∑N

k=1 P
2
r−1(xk)

. (50)

In this work, we find the best fitting polynomial for γO and fσσO as a function of y = 4 − d. We513

always assume their known analytic value for d = 4, for example γO(d = 4) = 0. To enforce such514

constraint, it is sufficient to use as fit function515

hn(x) = fn(x)− fn(0) =

n∑
r=1

α̃r [Pr(x)− Pr(0)] . (51)
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Finally, we reconstruct the original expansion in the naive basis by summing all equal monomials516

among every Pr(x) included in the fit function:517

hn(x) =
n∑
r=1

α̃r [Pr(x)− Pr(0)] =
n∑
r=1

c̃rx
r, (52)

where518

c̃r =
n∑
l=r

α̃l
drPl(x)

dxr

∣∣∣∣∣
x=0

. (53)

Once the two expansions are properly matched, the coefficients obtained from orthogonal poly-519

nomials agree with those obtained using a standard polynomial fit. The advantage of orthogonal520

polynomials resides in their improved numerical stability, which results in an improved precision in521

the computation of the ci.522

Finally, once the best fitting polynomial is obtained, we assign an error to our best fit function523

hn(x) through standard error propagation, via the so-called parameter covariance matrix,524

Cij ≡ Cov(α̃i, α̃j). (54)

Let us define vi(x) as the gradient of the fit function with respect to the ith fit parameter,525

vi(x) =
∂hn(x | ~̃α)

∂α̃i
. (55)

The error on the best fitting polynomial is526

Err(hn)(x) = vT(x)Cv(x) = Cijvi(x)vj(x). (56)

The best fit of γO(y) via orthogonal polynomial regression was done by using the curve fit routine527

from the standard Python library scipy.528

B Example of series resummation529

In this appendix, we discuss the perturbative expansion of a toy model in dimension zero:530

I(g) ≡
∫ ∞
−∞

dx√
2π

e−
x2

2
−gx4 . (57)

Its perturbative expansion is531

I(g) =

∞∑
n=0

an(−g)n, an =
(4n)!

22n(2n)!n!
∼

n→∞
24n√
2πn

× n! . (58)

The analytic continuation of the integral (57) from Re(g) > 0 to the full complex plane is given by532

a second-kind modified Bessel K-function:533

I(g) =
1

4
√
πg
e

1
32gK 1

4

(
1

32g

)
. (59)
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Figure 22: The branch cut in I(g) (top left) and IB(t) (top right). While the former
starts at g = 0, the latter is moved to g = −1/16. The lower plot shows IB(t(z)), which
now has a branch-cut singularity at |z| = 1. (We set IB(t(z)) to 0 outside the disc
|z| ≥ 1.)

Using the asymptotic behavior of K 1
4
(z) for z → ∞, one sees that the exponential prefactor is534

canceled, and the series (58) recovered. Note that I(g) has a cut on the whole negative real axis,535

see Fig. 22.536

In field theory, the divergent series is analytically continued without the knowledge of its exact537

expression. Let us explain the strategy on the example of integral (57). The basic idea [50] to538

obtain a convergent series out of Eq. (58), is to divide each term by n!, defining the Borel transform539

IB(t) of the series. In a second step, one reconstructs the original series via an integral transform:540

IB(t) ≡
∞∑
n=0

an
n!

(−t)n, I(g) =

∫ ∞
0

dt e−t IB(tg). (60)

In our example we know the analytic expression in terms of the first-kind complete elliptic integral541

function542

IB(t) =
2Kelliptic

(
1
2 − 1

2
√
16t+1

)
π 4
√

16t+ 1
. (61)

The Borel transform IB(t) has a finite radius of convergence, denoted by −tbc (equal to 1/16 in543

our example). As a consequence, the start of the branch cut is moved from g = 0 to t = tbc < 0,544

see figure 22. Since the radius of convergence of IB(t) is still finite, the integral transform (60)545

does not work as written. One first has to continue IB(t) to the domain 0 ≤ t < ∞. This can be546

achieved by replacing the known truncated series via a converging Padé approximant, leading to a547

Padé-Borel resummation.548

A more powerful strategy is to use a conformal mapping. The most common ansatz is to assume549

that at t = tbc < 0 a cut-singularity starts, which extends on the negative real axis to t = −∞.550
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Figure 23: Left: function I(g) (black, thick, dot-dashed) and its diverse approximations.
Dotted for the series expansion at order 1 (blue), 2 (green), and 3 (red). Solid for the
resummed series at the same order. Dashed for the large-g expansion (same color code).
Right: deviation of the resummed series (65) from the exact result (61) for g = 10 as a
function of n, assuming one knows tbc only approximately. In blue for tbc = −1/16 (the
exact result), in red tbc = −1/32 (a conservative guess), in black tbc = −1/1000 (much
too small). Resummation with tbc = −1/15 (green) does not work. We see that conform
to expectations, taking a too small value for −tbc, the series converges more slowly, while
taking a too large value of −tbc the series does not converge.

One first maps the complex plane with the expected branch cut of IB(t) onto the inside of the551

unit-circle:552

z =

√
1− t/tbc − 1√
1− t/tbc + 1

⇐⇒ t =
−4tbc z

(z − 1)2
. (62)

Next one constructs a series in z by expanding both sides in this variable:553

f(z) ≡
∞∑
n=0

cnz
n =

∞∑
n=0

an(−t(z))n
n!

= IB(t(z)) . (63)

This series is expected to converge for |z| < 1, a fact we can check for our example (but which is554

difficult to prove in general):555

f(z) = 1− 3z

4
+

9z2

64
− 51z3

256
+

1353z4

16384
− 7347z5

65536
+

61617z6

1048576
+O(z7) . (64)

Given n terms in the original series, we know f(z) up to the same order. Using this approximation556

for f(z), we finally obtain:557

I(g) =

∫ ∞
0

dt e−tIB(tg) =
1

g

∫ ∞
0

dt e−t/gIB(t) =
1

g

∫ 1

0
dz t′(z) e−t(z)/gf(z) . (65)

The result of this resummation is shown on Fig. 23. First, in black is the analytic result (59). Next558

are the first three orders in several expansions, using the same color code for order 1 (blue), 2 (green),559

and 3 (red): first the direct expansion in g (dotted), then in solid the resummed expansion (65).560

Dashed, we show a large-g expansion obtained by changing variables gx4 → y in the integral (57),561
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and then expanding the integrand in powers of 1/
√
g:562

I(g) =
1

2
√

2π 4
√
g

∫ ∞
0

dy
e
−

√
y

2
√
g
−y

y
3
4

=
1

2
√

2π 4
√
g

[
Γ
(
1
4

)
− 2

3

Γ
(
7
4

)
√
g

+
Γ
(
5
4

)
8g

+O
(
g−

5
4

)]
.

(66)
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