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Abstract1

The Ising critical exponents η, ν and ω are determined up to one-per-thousand rel-2

ative error in the whole range of dimensions 3 ≤ d < 4, using numerical conformal-3

bootstrap techniques. A detailed comparison is made with results by the resummed4

epsilon expansion in varying dimension, the analytic bootstrap, Monte Carlo and non-5

perturbative renormalization-group methods, finding very good overall agreement.6

Precise conformal field theory data of scaling dimensions and structure constants are7

obtained as functions of dimension, improving on earlier findings, and providing bench-8

marks in 3 ≤ d < 4.9
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1 Introduction31

Many approaches to critical phenomena obtain results in continuous space dimension, although32

physically relevant dimensions are integer. Most notable is the perturbative renormalization group33

in d = 4 − ε dimensions [1–4]. This is not merely a technical issue: quantities as functions of real34

d can clarify features that are harder to see at discrete values. E.g., one can follow the topology35

of the renormalization-group (RG) flow as a function of dimension and find instances where the36

universality class changes at non-integer values. This proved particularly useful for systems with37

long-range interactions [5–7] or disorder [8–13].38

The recent very precise numerical conformal bootstrap [14–16] has been formulated in continuous39

dimension [17, 18], in particular for the Ising model in its whole range 4 > d ≥ 2 [19–21]. The40

interest lies in understanding how the strongly interacting Ising conformal field theory connects41

to a free scalar in d = 4 and to the integrable fully-solvable model in d = 2 [22, 23]. Analytic42

bootstrap approaches which use the dimension as a tunable parameter were also developed [24–32].43

Initially, the non-unitarity of the theory in non-integer dimensions [33] was thought to hamper the44

numerical methods involving positive quantities. These concerns have been overcome by de facto45

never observing problems for the quantities of interest, as explained later.46

In this paper, we extend the numerical approach of Ref. [20] using a single correlator, the47

SDPB [34] routine for determining the unitarity domain, and the Extremal Functional Method [35,48

36] for solving the bootstrap equations. We obtain improved results for the scaling dimensions in49

4 > d ≥ 3 by a denser scanning of the unitary region near the Ising point, i.e., the kink. The latter50

gets parametrically sharper as d approaches 4, allowing for its better identification. The conformal51

spectrum in dimensions 4 > d ≥ 2.6 has also been obtained in Ref. [21] via the advanced navigator52

bootstrap technique [37]. We use these very precise results in combination with ours to obtain a53

consistent description of the low-lying spectrum.54

The achieved precision allows us to perform a detailed comparison with state-of-the-art epsilon55

expansion in two regimes: for d close to 4, the series is directly compared to bootstrap data,56

using the necessary finer scale for the latter; for intermediate values between 4 and 3 (included),57

the divergent perturbative series is resummed using well-established methods involving the Borel58

transform [38–41].59

The analysis is done on the dimensions of the conformal fields σ, ε, ε′, corresponding to spin,60

energy and subleading energy. They determine the critical exponents η, ν, ω. The precision of our61
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bootstrap data is summarized by the (mostly) d-independent value of the relative error Err(γ)/γ =62

O(10−3) for the anomalous dimensions γ of the conformal fields σ and ε. As the anomalous63

dimensions are very small for d ≈ 4, the precision for the conformal dimensions ∆σ,∆ε is even64

higher in this region. Regarding the subleading energy, the relative error Err(∆ε′)/∆ε′ stays at65

three digits, as explained later. Some of the structure constants are determined with a higher66

O(10−4) accuracy.67

We compare our data with recent results of the analytic bootstrap [27–32], Monte Carlo simu-68

lations [42–44] and the non-perturbative RG [45, 46]. We find that the data by all methods agree69

very well. This is rather rewarding given the achieved precision. Besides confirming the high qual-70

ity of conformal-bootstrap results, our analysis provides a reference point for further analytic and71

numerical methods aiming at exploring critical phenomena in varying dimensions.72

The outline of this paper is the following. In Sec. 2 we summarize our bootstrap protocol [20]73

and present the results for the three main conformal dimensions mentioned above, together with74

their polynomial fits as a function of dimension and the estimation of errors. In Sec. 3 we briefly75

recall the properties of the epsilon expansion and resummation techniques. We then compare its76

predictions with our bootstrap data and the results by other methods, and authors. A detailed77

analysis of all issues is presented. In Sec. 4, we report the numerical bootstrap data for scaling78

dimensions of structure constants and other conformal fields, and compare them to the existing79

epsilon expansion. In the conclusions in Sec. 5 we discuss open questions.80

2 Conformal bootstrap in non-integer dimension81

The aim of this section is to summarize our procedure for deriving conformal data of scaling82

dimensions and structure constants, as a function of the space-time dimension 4 > d ≥ 2. We83

first discuss the conformal dimensions of three main fields O = σ, ε, ε′. Our goal is to provide a84

polynomial description of ∆O as a function of y = 4 − d, by performing a best fit of the data85

obtained at several values of d1. Our results are finally compared to those obtained from the86

resummed epsilon expansion in Section 3.87

2.1 Summary of numerical methods88

The conformal dimensions and structure constants of the critical Ising model as a function of d89

are computed in the setup of Ref. [20], which we shortly summarize for the reader’s convenience. We90

consider a single 4-point correlator 〈σ(x1)σ(x2)σ(x3)σ(x4)〉, where σ(x) is the primary scalar field91

with lowest dimension, denoted ∆σ. We truncate the functional bootstrap equation to 190 compo-92

nents2. The unitarity condition for this equation is determined through the SDPB algorithm [34],93

leading to a bound in the (∆σ,∆ε) plane; next, the Extremal Functional Method (EFM) [35,36] is94

used to solve the equations on this boundary. We use the generalization of these numerical methods95

to non-integer dimensions developed in Ref. [20], and detailed in its Appendix A.96

Our 1-correlator numerical bootstrap approach has been surpassed by more recent implemen-97

tations [16, 19, 21, 47, 48], but we find it convenient for determining the low-lying spectrum with98

1Note that ε is the energy field, the next-to-lowest scalar primary field, not to be confused with the deviation from
four dimensions denoted by y.

2This corresponds to the standard bootstrap parameter Λ = 18, which counts the number of derivatives in the
approximation of the functional basis.
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modest computing resources. The complete determination of the conformal data for one value of d99

requires about 20 hours on 256 cores, corresponding to 5000 core hours. This simple setting allows100

us to evaluate the spectrum for various dimensions d.101

The first crucial step is to locate the Ising critical point in parameter space. To this end, we102

adopt the twofold strategy of Ref. [20], consisting in searching the kink on the unitarity boundary103

in the (∆σ,∆ε) plane and, at the same time, minimizing the central charge c [15]. This procedure104

allow us to determine for each value of d an interval of values for ∆σ,∆ε and c, that we take as the105

Ising conformal theory, accompanied by an estimate of the uncertainty.106

This procedure is displayed in Fig. 1, where we show the identification of the Ising point for107

d = 3, 3.25, 3.5 and 3.75. The gray area in the plots indicates the chosen errors for ∆σ,∆ε and108

c, which are roughly determined by the mismatch between the positions of the minimum and the109

kink. As a conservative choice, we consider an interval of four data points for each value of d.110

The precision is greater than in Ref. [20], because we perform a finer scan of the ∆σ values111

around the kink. We observe that the kink and the minimum get sharper for d → 4, as shown by112

the four pairs of plots drawn on the same scale in Fig. 1; this is convenient in our approach, since113

it leads to an increased precision when anomalous dimensions are smaller. In Fig. 2, we show the114

point d = 3.875, not considered in the earlier work. It is necessary for studying the region of d→ 4.115

Here the curves are so steep that magnified scales are needed.116

Once the Ising point is determined, we obtain the rest of the conformal data as follows. The117

solution of the bootstrap equations gives a spectrum of conformal dimensions ∆O and structure118

constants fσσO as a function of ∆σ; they are divided into different sets characterized by the spin119

` = 0, 2, 4, . . . of the operator O. The estimation of ∆O and fσσO is obtained by taking the central120

value of such quantities for ∆σ varying in the interval previously identified as the Ising point (grey121

areas in Figs. 1 and 2). The error is obtained from their dispersion.122

It is interesting to point out that, although we largely improved the precision of our results for123

4 > d > 3 with respect to Ref. [20], we observe no signs of trouble associated to non-unitarity in124

our bootstrap spectrum. On general grounds, non-unitarity contributions are expected to appear125

for non-integer values of d due to the presence of negative-norm states [33]. However, these occur126

at very high order in the OPE expansion of the correlator 〈σσσσ〉, thus we may argue that they127

have numerically negligible structure constants. As a matter of fact, their presence does not seem128

to yield problems in solving the bootstrap equations with our method. This conclusion was also129

reached by recent 3-correlator bootstrap studies of the critical O(N) models [18] and the Ising130

model [21] in non-integer space dimensions using the navigator method [37].131
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Figure 1: Determination of the Ising critical point for d = 3, 3.25, 3.5, 3.75 (d = 3 data
from Ref. [20]). Left plots: Identification of the kink; the blue points correspond to the
solutions of the bootstrap equations. Right plots: position of the c minimum. The grey
shaded areas represent the estimated errors on ∆σ, ∆ε and c.
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Figure 2: Determination of the Ising point for d = 3.875, as in Fig. 1. Note the
magnified scale on both axis with respect to those of Fig. 1.

2.2 Analysis of conformal dimensions of the three leading fields for 4 > d ≥ 3132

In Tab. 1 we present our results for the conformal dimensions ∆O in 4 > d > 3 along with those133

of Ref. [20] for 3 ≥ d > 2, also employed in the following. Our implementation of the bootstrap134

determines with high precision the conformal dimensions and structure constants for the first few135

low-lying operators with ` = 0, 2 and 4: O`=0 = σ, ε, ε′, O`=2 = T ′ and O`=4 = C [20].136

d ∆σ ∆ε ∆ε′ ∆ε′′ ∆T ′ ∆C ∆C′

4 1 2 4 6 6 6 8

3.875 0.9376625(5) 1.91831(3) 3.992(2) 7.0(3) 5.9307(6) 5.8752253(9) 7.903(3)
3.75 0.8757175(15) 1.83948(4) 3.9771(12) 6.8(2) 5.8616(12) 5.75111(13) 7.81(3)
3.5 0.753398(3) 1.68868(5) 3.9296(8) 6.82(7) 5.734(7) 5.5053(5) 7.55(6)
3.25 0.633883(8) 1.54639(9) 3.8776(11) 6.92(6) 5.59(2) 5.264(2) 7.25(10)

3 0.518155(15) 1.41270(15) 3.8305(15) 7.01(5) 5.505(10) 5.026(4) 6.7(2)
2.75 0.40747(4) 1.2887(2) 3.800(2) 7.12(8) 5.445(15) 4.790(5) 6.3(2)
2.5 0.30341(1) 1.17625(15) 3.7970(10) 7.32(2) 5.46(3) 4.574(9) 5.78(13)
2.25 0.20822(3) 1.0784(2) 3.847(1) 7.53(2) 5.58(5) 4.344(14) 5.36(6)
2.2 0.19053(8) 1.0610(5) 3.864(4) 7.64(3) 5.69(4) 4.325(15) 5.29(4)
2.15 0.17333(8) 1.0444(4) 3.891(6) 7.73(3) 5.64(13) 4.28(3) 5.19(1)
2.1 0.15663(8) 1.0286(5) 3.9215(5) 7.82(3) 5.820(10) 4.17(4) 5.12(4)
2.05 0.14048(8) 1.0134(7) 3.9565(5) 7.93(3) 5.9050(10) 4.13(6) 5.065(15)
2.01 0.12803(8) 1.001(2) 3.9900(10) 8.035(5) 5.9815(5) 4.01440(10) 5.0115(15)

2.00001 0.125000(10) 0.99989(14) 4.0002(2) 7.99(10) 6.0006(2) 4.000055(10) 5.00048(8)

2 0.125 1 4 8 6 4 5

Table 1: Conformal dimensions of the first few low-lying states for 4 > d > 2. Exact
values for d = 2, 4 are given in bold, results for 3 ≥ d > 2 are taken from Ref. [20].

The goal of this section is to determine the behavior of ∆O as a function of the variable y = 4− d,137

by finding the best fitting polynomial that describes the data in Tab. 1. We use all available values,138

but focus on the range 4 > d ≥ 3 where results are more precise and allow for a comparison with139

other approaches. The points for 3 > d ≥ 2 are mainly used for stabilizing the higher powers of140
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the fitting polynomials3.141

We employ an improved fit method for ∆O(y) that uses orthogonal polynomials [49]: the idea is142

to expresses the nth-order polynomial fit function fn(y) in terms of orthogonal polynomials Pk(y)143

of degree k = 0, 1, . . . , n, instead of a parameterization in terms of monomials, 1, y, y2, . . . , yn. To144

this aim we write145

fn(y) =
n∑
k=0

αkPk(y), 〈Pr(y)Ps(y)〉 ∝
14∑
i=1

Pr(yi)Ps(yi) ∝ δrs, (1)

where yi are the values in Tab. 1. This method is equivalent to the naive one, but is numerically146

more stable and the fit parameters αk can be determined with improved precision and less statistical147

noise.148

The optimal degree n for the fitting polynomial is not known a priori and is determined in the149

following way: The fit with weights proportional to the inverse square of errors is done for several150

values of n, and the least chi-square χ2
min is found as a function of n. At a given order n, adding151

a further term αn+1Pn+1 results in a negligible change of χ2
min and the best fit yields a result for152

αn+1 which is compatible with zero within errors. This identifies n as the degree of the optimal153

polynomial. Finally, we use the results of our best fit for {αk} to assign an error to fn(y) in the154

whole range of 4 > d ≥ 3. Details on the fitting procedure and the computation of errors can be155

found in App. A.156

In this section we focus on the three leading operators σ, ε and ε′ (corresponding to φ, φ2 and157

φ4 in the φ4 field theory), which are determined with very good precision. The analysis of higher-158

dimensional operators is postponed to Sec. 4.2. Instead of working with conformal dimensions, we159

consider the anomalous dimensions160

γσ = ∆σ −
d− 2

2
, γε = ∆ε − (d− 2), γε′ = ∆ε′ − 2(d− 2). (2)

They are related to the Ising critical exponents η, ν and ω by161

η = 2γσ,
1

ν
= 2− γε, ω = d− 4 + γε′ . (3)

The vanishing of anomalous dimensions in the free theory (d = 4) is assumed in the following fits.162

Our analysis starts by comparing the old [20] and new data for 4 > d > 3. In Fig. 3 the new163

results (blue circles) show much smaller errors than the earlier findings (red crosses), due to a more164

accurate localization of the Ising point, as explained above. In these and later figures we report the165

differences (γO−fit) between data and fitting polynomial, because simpler plots would not capture166

the small errors involved (note that the abscissas of the three plots differ by factors of ten). The167

explicit form of the best fitting polynomials are provided in Sec. 3.168

Next, we compare these results with those recently obtained by solving the 3-correlator bootstrap169

with the navigator method [21]. In Fig. 4 our data, given in earlier figures (blue circles), are shown170

on a finer scale, together with the estimated error of the fit (cyan shaded area). The red triangles171

are the navigator values: they come with no errors and thus cannot be directly used for the fits4.172

3Note that the lower quality of 3 > d > 2 data is due to the coarse scanning of ∆σ values, not to an intrinsic
limitation of the numerical bootstrap approach [20].

4Earlier results of Ref. [19] are not considered here due to their large errors.
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Figure 3: Old [20] (red crosses) and new (blue circles) bootstrap data for γσ, γε, γε′ ,
minus the corresponding best fits. The plots use the same scales as in Ref. [20].

A first observation is the fairly good agreement between the two different bootstrap approaches at173

our level of precision.174

We propose to estimate the error of navigator data as follows. We suppose that they are roughly175

of the same size as those found in other 3-correlator studies at d = 3 (rigorous bounds) [48,50], which176

are plotted in Fig. 4 as black diamonds (γσ and γε), and a grey rightward triangle (γε′). Assuming177

these very small uncertainties for each value of d, there seems to be a negative offset with respect to178

our data, in particular for ε′. This could be a systematic error due to our approximate identification179

of the Ising point within the unitarity region (Section 2.1), while the navigator method rigorously180

determines it within a unitarity island [37]. However, other explanations are possible.181

In conclusion, taking into account these considerations, we enlarge the error estimate of our fits182

to the shaded gray bands in Figs. 4, which correspond to the following bounds:183

Err(γσ)

γσ
≈ Err(γε)

γε
. 1× 10−3,

Err(∆ε′)

∆ε′
. 0.5× 10−3, 3.875 ≥ d ≥ 3. (4)

Given the small value of anomalous dimensions for d → 4, these imply extremely low absolute184

errors, Err(γσ) = O(10−6) and Err(γε) = O(10−5) in this range, as spelled out in the following185

sections. This allows us to give a precise comparison to other methods, as a benchmark for the186

Ising universality class in non-integer dimensions.187
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Figure 4: Plot of bootstrap data for γσ, γε, γε′ minus the best fit values.The shaded area
represents the error obtained from the χ2 minimization of the fitting polynomial. The red
triangles are results from Ref. [21] using the navigator method in a 3-correlator bootstrap
setup (no error bars). Black diamonds and grey rightward triangle for d = 3 represent
respectively results by Ref. [48] (γσ and γε) and Ref. [50] (γε′); these data points are
slightly displaced around d = 3 to improve readability. The gray shaded bands represents
the error bounds reported in Eq. (4).

3 Comparison with the epsilon expansion in 4 > d ≥ 3188

In this section, we recall some features of the epsilon expansion and the resummation methods189

employed for it. We compare unresummed and resummed series with the bootstrap results for γσ.190

Then, the analysis is extended to γε and γε′ .191

3.1 Warm-up analysis of the anomalous dimensions γσ192

We start with a brief summary of the properties of the perturbative expansion of the φ4 field193

theory in d = 4 − y, which describes the Ising universality class. This is a textbook subject [51]194

but we would like to single out a few aspects that are important in the following comparison with195

bootstrap results in varying dimensions5.196

The β-function β(g, y) and the anomalous dimensions γO(g), where O = φ, φ2, φ4, take the197

5An up-to-date discussion of epsilon expansion can be found in Refs. [38–41]. We refer to these works for a proof
of the following statements and appropriate referencing.
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following form, in the Minimal Subtraction (MS) [51,52] renormalization scheme,198

β(g, y) = −yg +
n+1∑
k=2

βk g
k, γO(g) =

n∑
k=1

γO,k g
k. (5)

The numerical coefficients βk, γO,k were computed up to order n = 6 in Ref. [40], and n = 7 in199

Ref. [53]. While results up to order n = 15 are known for a subclass of Feynman diagrams believed200

to give the dominant contribution, they are not used here [40,54].201

The coefficients of the β-function (5) grow exponentially with k, and their asymptotic behavior202

can be estimated from the contribution of instanton field configurations [51]203

βk ∼
k→∞

C (−a)k kb k! . (6)

Similar behaviors are found for the coefficients γO,k. The parameters a, b, C depend on the quantity204

considered. One finds that the known values of the coefficients up to order n = 7 grow very fast205

with n but have not yet reached their asymptotic values (6) [40,54].206

The behavior (6) can be understood as follows: The perturbative series has a vanishing radius207

of convergence in the complex g plane, because real negative values of g correspond to an upside-208

down potential and an action not bounded from below. This fact can be exemplified by the simple209

zero-dimension path integral (see App. B.1):210

I(g) =

∫ ∞
−∞

dx√
2π

e−
x2

2
−gx4 =

∞∑
k=0

ak(−g)k, ak =
(4k)!

22k(2k)!k!
∼

k→∞
24k√
2πk
× k! . (7)

This is the generating function counting the number of vacuum Feynman diagrams. The asymp-211

totic behavior of ak can be found by a saddle-point analysis of the integral. In field theory the212

corresponding saddle point is given by instantons [51]6.213

The solution of the fixed-point equation β(g, y) = 0 gives g = g(y) by perturbative inversion214

around g = y = 0; this is used to rewrite the anomalous dimensions as a series in y,215

γO(y) =

n∑
k=1

γO,k y
k. (8)

This is again a divergent series of asymptotic form (6), with suitable parameters a, b and C.216

The ratio of two consecutive terms in the series (8) can be estimated from (6) as, γO,k y/γO,k−1 ≈217

−aky, which is larger than one for y > 1/|ak|. A simple conclusion is that the more terms are218

present in the perturbative series (8), the sooner it diverges as a series in y. We can draw two main219

conclusions:220

i) As it stands, the perturbative series (8) is basically useless for physical dimension y = 1, apart221

from the first couple of terms, and resummation methods are necessary for extracting precise222

values of anomalous dimensions. The resummation is based on the Borel transform, followed223

by a conformal mapping, as will be explained later, and further discussed in App. B.1. This224

procedure gives resummed finite expressions γ̃O(y).225

6There is growing consensus that the large-order behavior is governed by an instanton rather than a renor-
malon [54]. If one could go to much higher orders in the series expansion (e.g., 20-loop order) one could apply
methods of resurgence and trans-series [55].
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ii) For dimensions close to d = 4, i.e., y � 1, there is an optimal number of terms nopt(y), for226

each y value, for which the distance between the series and the resummed function γ̃O(y),227

|γ̃O(y)−∑nopt

1 γO,ky
k|, is minimal before growing again.228

The perturbative anomalous dimensions γ̃O may differ from results obtained by other methods,229

such as the lattice formulation of the path-integral for the Ising model, or by the bootstrap. These230

differences are non-analytic, e.g., δγO(y) ∼ exp(−A/y). Within the resummation procedure, these231

terms may change according to how the inverse Borel transform is performed [55].232

Before discussing the resummation methods in the next section, a first comparison of the per-233

turbative expansion and the bootstrap data for γσ clarifies the issues at stake.234

The perturbative series is [40, 53]235

γσ(y) = 0.00925926y2 + 0.00934499y3 − 0.00416439y4 + 0.0128282y5

−0.0406363y6 + 0.15738y7, (epsilon expansion). (9)

The best polynomial fit of bootstrap data in Tab. 1 using the methods outlined in Sec. 2.2 is7236

γσ(y) = 0.009306473y2 + 0.008899908y3 − 0.001435107y4 + 0.001788710y5

−0.000533980y6 + 0.000128667y7, (conformal bootstrap). (10)

The two polynomials (9) and (10) have different meanings, although their first two coefficients237

are close. On one hand the Feynman-diagram series is exact, but has a vanishing radius of con-238

vergence. On the other hand, the numerical bootstrap data in Tab. 1 should converge to exact239

non-perturbative results upon increasing the numerical precision. The collection of these values240

for any dimension d = 4 − y gives the exact function γexσ (y), which however cannot be expressed241

in terms of a simple polynomial. Therefore, the fit (10) gives approximated values around γexσ (y),242

whose precision is a priori limited. Nonetheless, this description is sufficient at the present level of243

numerical accuracy.244

In Fig. 5 we show the difference between the perturbative series (9) and the bootstrap fit (10)245

for 4 > d ≥ 3. Color lines correspond to the series (9) truncated at different orders n = 2, 3, . . . , 7246

(cf. color legend in the plot). One sees that, the higher the order n ≥ 4, the sooner the perturbative247

series diverges from the bootstrap data (corresponding to the zero horizontal line in Fig. 5). The248

tiny errors of bootstrap points cannot be seen at this scale, thus showing that the unresummed249

perturbative series cannot be used for a precise determination of critical exponents in d = 3, as250

stated in point ii) above. Yet, the lower terms n = 2, 3 may provide crude estimates.251

Fig. 6 shows the other regime, close to four dimensions. Only the bootstrap point for d = 3.875252

is present in this range, but we also show results of Ref. [21] for d ≥ 3.8, which match very well253

while lacking error bars, as discussed earlier8. In contrast to the d ≈ 3 region, we observe that the254

truncated perturbative series shows a different behavior. At any given y value, upon increasing the255

perturbative order up to an optimal value nopt ∼ 1/y, the perturbative series approaches the zero256

horizontal line (with a cyan error band), before starting to diverge. Namely, it matches the exact257

bootstrap value γexσ (y), within numerical errors.258

7Note that the best-fit polynomial (10) starts with an O(y2) term, because the linear term vanishes within errors.
If a linear term is included in the fit procedure, it leads to a coefficient three orders of magnitude smaller than
the quadratic term. Therefore, the conformal bootstrap implies γσ(y) = O(y2) close to d = 4, in agreement with
perturbation theory.

8Note that the red triangles are not used in our fit of bootstrap data.
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Figure 5: Comparison of γσ bootstrap data with unresummed epsilon expansion (9) in
the region 4 > d > 3 for truncations of the series to order n = 2, . . . , 7 (see color legend).
All quantities have been subtracted by the best fit values (see (10)).
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Figure 6: Comparison of γσ data minus best fit in the region 4 > d > 3.8, between
bootstrap (blue circle) and unresummed epsilon expansion (9) with different truncations
of the perturbative series (cf. Fig. 5). The red triangles are the results of the bootstrap
navigator method [21]. The cyan shaded area is the fit error.

Therefore, the comparison between non-perturbative bootstrap results and unresummed epsilon259

expansion for γσ(y) is extremely good in the region 4 > d > 3.8, with precision Err(γσ) ≈ 1×10−6,260

i.e., Err(γσ)/γσ < 1× 10−3. According to the previous discussion, we conclude that we do not see261

any non-perturbative difference for d→ 4.262

We remark that the epsilon expansion can also be obtained by analytic solution of the bootstrap263
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equations around d = 4, assuming a perturbative expansion near the free theory [24,25,27,28,30–32].264

Thus, is our comparison in Fig. 6 tautological? It is not, because the bootstrap identity is a set of265

consistency conditions that depends on the kind of quantities they act on. Our numerical solution266

does not assume any perturbative expansion, i.e., it is an independent solution of the bootstrap267

constraints. That without any perturbative input, our conformal bootstrap results accurately268

reproduce perturbative predictions close to d = 4 is non-trivial.269

A natural question is how our numerical bootstrap approach can reproduce the perturbative270

series, i.e., in which regime the two polynomials (9) and (10) may agree beyond the O(y3) term. As271

said earlier, the bootstrap polynomial (10) is approximated, it can at most describe a band of values272

around γexσ (y). While the size Err(γσ) of this band stays finite in the whole range 0 < y < 1 (see273

plots), that of the epsilon expansion is expanding in y and can be finite only for y < ymax ∼ O(1/n),274

n being the perturbative order. We expect that, upon running the bootstrap for several points yi,275

with 0 < yi < ymax � 1, and by performing best fits with polynomials limited to such a small276

interval, one may find that the two expressions (9) and (10) match order by order, i.e., the epsilon277

expansion is fully recovered.278

3.2 Bootstrap data versus resummed perturbative results279

Precise estimates of the critical exponents have been obtained over the years by refining the280

resummation techniques applied to the epsilon expansion series [2–4,40,41,51,56,57]. In this work,281

we use the methods of Refs. [40,41] extended to dimension 4 > d ≥ 3. Let us briefly recall the main282

steps involved [51]. The Borel transform BγO(t) of the perturbative expansion for the anomalous283

dimension γO (8) is defined by removing the factorial growth from the series,284

BγO(t) =

n∑
k=1

γO,k
k!

tk . (11)

One infers from the asymptotic behavior (6) that this function has a singularity BγO(t) ∼ (1 +285

ta)−b−1 and a corresponding finite radius of convergence.286

The resummed quantity is defined by the inverse Borel transform,287

γ̃O(y) =

∫ ∞
0

dt e−t BγO(yt). (12)

By definition γO(y) in (8) and γ̃O(y) in (12) have the same perturbative expansion; however, the288

latter should be better behaved if BγO(t) is suitably continued analytically outside the original disc289

|t| < 1/|a| to a region including the real positive axis9. Such analytic continuation in principle290

requires the knowledge of all singularities of BγO(t) in the complex t-plane. At this point, one can291

only make educated guesses on these singularities, that translate into (physical) ansatzes for γ̃O(y).292

In practice, one assumes that the only singularity of BγO(t) lies at t = −1/a real and negative,293

and that it is a branch cut extending to t = −∞. Using a conformal mapping t(z), this branch cut294

is mapped onto the unit circle, with the start of the branch cut mapped onto z = −1, and t = −∞295

to z = 1, preserving the origin z = t = 0. As long as there are no other singularities, B(t(z)) has296

a radius of convergence one in z. As t = ∞ corresponds to z = 1, this allows one to perform the297

inverse Borel transform (12). Details on this procedure can be found in App. B.1.298

9In particular, a real negative value of the parameter a in (6), i.e., a perturbative series (8) of definite sign, is
problematic.
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This general idea can be improved in several ways, allowing one to introduce a set of free299

parameters. The latter are determined such that the final result is the least sensible to their300

variation. Apart from providing a robust resummation scheme, the parameter uncertainty implies301

an estimate of the resummation error. These methods have been improved over the years by taking302

into account the phenomenology of critical phenomena [51]. In our work, the resummed data are303

obtained by extending the setup of Refs. [38, 40, 41] from d = 3 to non-integer dimensions. A304

complete account of these methods is too long to be presented here; nonetheless, we provide some305

introductory material that will allow the reader to assess the original works. In App. B.1, the306

resummation is worked out in a toy model, where one can compare it with the exact result. In307

App. B.2, instead, a “reader’s guide” to Ref. [40] is presented, together with the values of the308

resummation parameters used here.309

Let us also mention that another option for the analytic continuation is to use Hypergeometric310

functions, for which the inverse Borel transform can be written as a Meijer-G function [56]. One311

drawback of this approach is the possibility for spurious poles on the integration contour. As here312

we could not give justice to their influence, we exclude this resummation method.313

Figure 7 shows the fitted bootstrap data (blue points) of γσ(y) already reported in Fig. 4, now314

compared to the resummed epsilon-expansion values of Tab. 2 (green squares)10. The agreement315

between these two results is very good, especially for d ≥ 3.5, where the unresummed series (ma-316

genta line) is already diverging, and greatly improves on earlier studies [2, 3] analyzed in [20]. Let317

us remark that resummed γ̃σ(y) values have been obtained for non-integer dimensions down to318

d = 2, still finding agreement with bootstrap data, although with larger uncertainties. Finally,319

Fig. 7 shows the latest Monte Carlo results in d = 3 (yellow rhombus), that match extremely well320

the bootstrap points. Further d = 3 results by these and other methods are summarized in a later321

figure. Finally, Fig. 7 and later plots for the dimensions γε and γε′ also report a solid red curve322

linearly interpolating the navigator points of Ref. [21] obtained for 4 > d ≥ 3. This allows one to323

assess the negligible difference between the two sets of bootstrap data in the comparison to the324

epsilon-expansion.325

d ∆σ ∆ε ∆′ε
3.875 0.937662197(7) 1.91831086(14) 3.9924550(11)
3.75 0.8757158(3) 1.839419(4) 3.97529(3)
3.5 0.753393(10) 1.68854(7) 3.9276(5)
3.25 0.63386(8) 1.5458(4) 3.873(2)

3 0.5181(3) 1.4108(12) 3.820(7)

Table 2: Conformal dimensions of σ,ε and ε′ field from resummed perturbative expan-
sion, obtained according to the methods of [40].

10Resummations in this section use the 6-loop results, that were verified in several independent works [40, 41, 53].
We do not use the 7-loop results of Ref. [53], since they were not yet checked independently. Past experience, e.g.,
with the 5-loop results, teaches us that involved perturbative calculations require confirmation.
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Figure 7: Comparison of γσ data minus best-fit values: bootstrap (blue circles), Borel-
resummed epsilon expansion [40] (green squares), unresummed high-order epsilon expan-
sion (magenta solid curve), d = 3 Monte Carlo [44] (yellow rhombus). We also plot a
solid red line linearly interpolating results of Ref. [21] for 4 > d ≥ 3. Note that data
points are slightly displaced around the same d values (d = 3.875, d = 3.75, d = 3.5,
d = 3.25 and d = 3) to improve readability. Results from earlier work [3] have been
omitted due to their large error bars.

We now extend the previous analysis to the energy field ε. The best fit of the conformal bootstrap326

data is327

γε(y) = 0.333441601y + 0.114095325y2 − 0.083458310y3

+0.081381007y4 − 0.045296977y5 + 0.014290102y6

−0.001741325y7, (conformal bootstrap). (13)

The epsilon-expansion series reads [40,53]328

γε(y) = 0.333333y + 0.117284y2 − 0.124527y3 + 0.30685y4 − 0.95124y5

+3.57258y6 − 15.2869y7, (epsilon expansion). (14)

One remarks the agreement, within errors, of the first two coefficients of this series; this corrects329

less precise results of [20] (cf. Fig. 6b there).330

The comparison for d → 4 before resummation is shown in Fig. 8. As for Fig. 7, the truncated331

perturbative series for γε are plotted. Their curves approach the bootstrap fit (horizontal zero332

axis with cyan error band) with better and better precision. Note the remarkable quality of the333

navigator method (red triangles) [21]. Altogether, the agreement for d → 4 is found with high334

precision, Err(γε) = 3× 10−5 and Err(γε)/γε = 1× 10−3.335

Figure 9 presents a comparison with the resummed perturbative series (Tab. 2): the agreement336

is again very good for 4 > d ≥ 3.5; there is a small O(10−3) deviation from the bootstrap and337

Monte Carlo results [44] (yellow rhombus) in d = 3. Probably there is a slight underestimation of338

the error. Let us remark that this resummation procedure is honest, as it does not use the exact339
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Figure 8: Comparison of the γε data minus the best fit in the region 4 > d > 3.8. Our
bootstrap point is the blue circle with error bar; the triangles are obtained by the navigator
method [21]; the different truncations of the perturbative series are as in Fig. 5. The cyan
shaded area is the fit error.

d = 2 conformal dimension as an input, with which it could be improved. The comparison with340

another method, called Self-Consistent (SC) resummation11 is presented in Fig. 10, where we plot341

data of Tab. 3. In this case, the Borel transform is done on the perturbative series of 1/ν3, instead342

of 1/ν = 2− γe: this choice is motivated by a match with the d = 2 conformal field theory, that is343

achieved through comparing the n dependence of the O(n)-symmetric φ4 theory [41]. We conclude344

that adding information of the exact results in d = 2 improves the resummation of the perturbative345

series (for this particular critical exponent). A similar constraint does not seem to be possible for346

the other critical exponents, as discussed in Ref. [41].347

d ∆ε

3.9 1.93440534057(12)
3.8 1.8706742(6)
3.7 1.808546(5)
3.6 1.747876(2)
3.5 1.68858(6)
3.4 1.63062(15)
3.3 1.5740(3)
3.2 1.5187(5)
3.1 1.4647(9)
3 1.4122(15)

Table 3: Conformal dimension of ε field from resummed perturbative expansion, obtained
according to the methods of [41].

11See Ref. [41] for a detailed discussion of this approach.
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Figure 9: Comparison of γε data minus best fit: bootstrap (blue circles), Borel-resummed
epsilon expansion [40] (green squares), unresummed epsilon expansion (magenta solid
curve), d = 3 Monte Carlo [44] (yellow rhombus). We also plot a solid red line linearly
interpolating results of Ref. [21] for 4 > d ≥ 3. The cyan shaded area is the fit error as
in earlier plots.

0 0.2 0.4 0.6 0.8 1
4− d

−0.002

−0.001

0

0.001

0.002

γ
ε−

fit

Figure 10: Comparison of γε minus best fit: bootstrap (blue circles), Self-Consistent
resummed epsilon expansion [41] (red stars), unresummed epsilon expansion (magenta
solid curve), d = 3 Monte Carlo [44] (yellow rhombus).

Summarizing, the bootstrap and epsilon-expansion results agree very well: for d → 4 the unre-348

summed series fits perfectly, for 4 > d ≥ 3 there is remarkable agreement, keeping in mind that349

the resummation error is roughly one order of magnitude larger than that of bootstrap and Monte350
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Carlo results.351

A comparison of all d = 3 results available in the literature for γσ and γε is given in Figs. 11352

and 12. The corresponding numerical values are in Tab. 4. Besides data already discussed (drawn353

in earlier colors), we report recent results of the non-perturbative renormalization group [45] (brown354

downward triangle). The central value is given by our fit of the bootstrap data with error given by355

the cyan band, not by the mean value of all results. The Figs. 11 and 12 respect our convention356

of plotting the two anomalous dimensions on scales differing by one order of magnitude, roughly357

equal to the ratio of their actual value. Finally, Tab. 4 and Figs. 11, 12 report also the results358

of other 3-correlator bootstrap approaches, using EFM [48] and the navigator method [50], and359

paying particular attention to error estimates (cf. rigorous bounds). We also remark that the360

results obtained by perturbative expansions directly in d = 3 [3, 4] are consistent with bootstrap361

results too, but have one order of magnitude larger errors and are therefore not plotted in Figs. 11362

and 12.363

−0.0006 −0.0004 −0.0002 0 0.0002 0.0004 0.0006
γσ− fit

1-corr. CB

3-corr. CB (rigorous bounds)

Monte Carlo

Borel Res. EE

SC Borel Res. EE

Non-perturbative RG

Navigator

γσ comparison d = 3

Figure 11: Summary of up-to-date predictions for γσ at d = 3 (minus best fit): 1-
correlator bootstrap [20] (blue circle), 3-correlator bootstrap with rigorous bounds [48]
(black pentagon), Monte Carlo [44] (yellow rhombus), Borel-resummed epsilon expan-
sion [40] (green square), Self-Consistent resummed epsilon expansion [41] (red star),
non-perturbative renormalization group [45] (brown downward triangle), bootstrap navi-
gator method [21] (red upward triangle).

We now analyze the subleading Z2-even scalar field ε′, which is related to the critical exponent364

ω = ∆ε′ − d = d− 4 + γε′ . The best fit of our data gives12:365

γε′(y) = 2.000178549y − 0.518006835y2 + 0.721996645y3

−0.684437170y4 + 0.447648598y5 − 0.162903635y6

+0.026155257y7, (conformal bootstrap). (15)

The large errors of the earlier analysis [20] have been reduced, as explained earlier (see Fig. 3). The366

12The fit again assumes γε′ = 0 for d = 4.
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Figure 12: Summary of up-to-date predictions for γε in d = 3 (minus best fit): 1-
correlator bootstrap [20] (blue circle), 3-correlator bootstrap with rigorous bounds [48]
(black pentagon), Monte Carlo [44] (yellow rhombus), Borel-resummed epsilon expan-
sion [40] (green square), Self-Consistent resummed epsilon expansion [41] (red star),
non-perturbative renormalization group [45] (brown downward triangle), bootstrap navi-
gator method [21] (red upward triangle).

d = 3 Ising critical indices ∆σ ∆ε ∆ε′

Bootstrap (1 correlator) 0.518155(15) 1.41270(15) 3.8305(15)
Bootstrap (3 correlators) 0.5181489(10) 1.412625(10) 3.8297(2)
Borel resummed epsilon expansion 0.5181(3) 1.4107(13) 3.820(7)
SC Borel resummed epsilon expansion 0.5178(2) 1.4122(15) 3.827(13)
Monte Carlo 0.51814(2) 1.41265(13) 3.832(6)
Non-perturbative RG 0.5179(3) 1.41270(50) 3.832(14)
Navigator (rigorous bounds) 0.518157(35) 1.41265(36) 3.8295(6)

Table 4: Comparison of d = 3 results for the conformal dimensions of low-lying fields:
1-correlator bootstrap [20], 3-correlator bootstrap [48] (errors on ∆σ and ∆ε are rigorous
bounds), Borel-resummed epsilon expansion [40], Self-Consistent (SC) Borel-resummed
epsilon expansion [41], Monte Carlo [42,44], non-perturbative renormalization group [45,
46] and bootstrap navigator method with rigorous bounds [50].

epsilon-expansion series is [40, 53],367

γε′(y) = 2y − 0.62963y2 + 1.61822y3 − 5.23514y4 + 20.7498y5

−93.1113y6 + 458.7424y7, (epsilon expansion). (16)

In Fig. 13 we show the difference between the data and the bootstrap best fit (15). The overall368

error of the fit for γε′ is estimated to be less than 2.0× 10−3 in the whole range. The relative error369
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Figure 13: Comparison of γε′ data minus best fit: bootstrap (blue circles), Borel-
resummed epsilon expansion [40] (green squares), unresummed epsilon expansion (ma-
genta solid curve), d = 3 Monte Carlo [42] (yellow rhombus). We also plot a solid red
line linearly interpolating results of Ref. [21] for 4 > d ≥ 3.

is Err(γε′)/γε′ = 1× 10−3 for d = 3 but goes up to13 1× 10−2 for d = 3.875. The comparison with370

Monte Carlo [42, 44] in d = 3, and the resummed epsilon-expansion series are also shown, finding371

again good agreement at the coarser scale (note a factor of 10 w.r.t. Fig. 9). A systematic difference372

between bootstrap and epsilon-expansion points is seen for d → 3, similar to what was found for373

γε in Fig. 9. Such a drift is smaller for the navigator results [21] (red line) than for our data, for374

4 > d ≥ 3.5. Further values of ∆ε′ in d = 3 found in the literature are reported in Tab. 4 and375

plotted in Fig. 14. A zoom over the region close to d = 4 is drawn in Fig. 15, showing the same376

features as in Figs. 6 and 8.377

We conclude this section by stressing the very good overall agreement of bootstrap and resummed378

epsilon expansion. The study in varying dimensions clarifies the different behavior of quantities in379

the perturbative and non-perturbative regimes.380

13The growth of the error when passing from d = 3.75 to d = 3.875 is due to the instability of the higher part of
the spectrum when approaching d = 4. This issue is further discussed in Sec. 4.3.
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Figure 14: Summary of up-to-date predictions for γε′ in d = 3 (minus our best fit,
from bottom to top): 1-correlator bootstrap [20] (blue circle), 3-correlator bootstrap [48]
(black pentagon), Monte Carlo [44] (yellow rhombus), Borel-resummed epsilon expan-
sion [40] (green square), Self-Consistent resummed epsilon expansion [41] (red star),
non-perturbative renormalization group [45] (brown downward triangle), bootstrap nav-
igator method with rigorous bounds [50] (grey rightward triangle), bootstrap navigator
method [21] (red upward triangles).
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Figure 15: Comparison of the γε′ data minus the best fit in the region 4 > d > 3.8. Our
bootstrap point is the blue circle with error bar; the triangles are obtained by the navigator
method [21]; the different truncations of the perturbative series are as in Fig. 5. The cyan
shaded area is the fit error.
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4 Structure constants and scaling dimensions of higher fields381

In this section we analyze further bootstrap data. The structure constants (OPE coefficients)382

of low-lying fields σ, ε, ε′, T are very precise, the error being on the fifth decimal, thus better than383

those of the corresponding conformal dimensions presented earlier. Next we discuss subleading and384

spinful fields, ε′′, T ′, C, C ′, presenting results for both dimensions and structure constants. Some of385

them are good, others are not completely correct, showing the limits of our numerical bootstrap386

approach.387

4.1 Structure constants in 4 > d ≥ 3388

Tab. 5 reports all data for structure constants: those for 4 > d > 3 are new results, the ones for389

3 ≥ d > 2 are taken from [20]. The central charge c is obtained from the structure constant fσσT390

of the energy-momentum tensor T by391

f2σσT =
d

4(d− 1)

∆2
σ

c
. (17)

For fσσO, we adopt the by-now standard normalization of [21, 48]. The relation with the earlier392

normalization f̃σσO of Ref. [15] is393

f2σσO =

(
d−2
2

)
`

(d− 2)`
f̃2σσO, (18)

where (x)` ≡ Γ(x+ `)/Γ(x) is the Pochhammer symbol.394

The central charge c and the structure constants fσσε and fσσε′ are determined with very high395

accuracy: their dependence on y = 4 − d is obtained with the fit method of Sec. 3.1, assuming396

d c fσσε fσσε′ fσσε′′ × 104 fσσT ′ fσσC fσσC′

4 1 1.4142136 0 0 0 0.169031 0

3.875 0.99970(2) 1.38228(2) 0.015298(14) 0.33(10) 0.003070(2) 0.1540603(3) 0.000772(2)
3.75 0.998594(3) 1.34586(3) 0.027517(15) 1.4(3) 0.005641(5) 0.133(8) 0.00134(10)
3.5 0.9922615(15) 1.26132(3) 0.04426(3) 4.0(2) 0.00911(10) 0.105(5) 0.0021(3)
3.25 0.976864(6) 1.16282(4) 0.05225(3) 6.0(3) 0.0106(2) 0.084(6) 0.0019(9)

3 0.946535(15) 1.05184(4) 0.05300(5) 7.1(4) 0.010575(15) 0.065(5) 0.0020(5)
2.75 0.893275(15) 0.92939(4) 0.04794(8) 7.0(4) 0.00901(6) 0.048(4) 0.00235(15)
2.5 0.807110(10) 0.796303(5) 0.03885(2) 5.90(9) 0.00668(3) 0.033(3) 0.0029(3)
2.25 0.677724(2) 0.65311(2) 0.02738(4) 4.27(5) 0.00394(14) 0.0195(15) 0.0035(2)
2.2 0.64609(7) 0.62333(6) 0.0245(5) 3.76(9) 0.00352(7) 0.019(4) 0.0038(3)
2.15 0.61243(8) 0.59313(8) 0.0225(5) 3.36(2) 0.0025(5) 0.017(3) 0.00385(15)
2.1 0.57680(10) 0.56249(7) 0.02018(8) 2.98(7) 0.00265(5) 0.016(3) 0.00395(15)
2.05 0.53935(15) 0.53143(8) 0.01785(5) 2.58(4) 0.00230(10) 0.0135(25) 0.00390(10)
2.01 0.5082(3) 0.5058(6) 0.01605(5) 2.246(9) 0.00193(3) 0.01550(10) 0.003920(10)

2.00001 0.500015(15) 0.499998(5) 0.015623(4) 2.0(2) 0.0018520(5) 0.0148235(15) 0.0039040(10)

2 0.5 0.5 0.0156250 2.1972656 0.00185290 0.0148232 0.003906

Table 5: Structure constants of the first few low-lying states for 4 > d > 2. The exact
values for d = 2, 4 are given in bold, results for 3 ≥ d > 2 are taken from [20].
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the exact d = 4 value. The resulting polynomials are reported together with the available epsilon-397

expansion series [30,31,58,59]:398

c(y) = 1− 0.015415049y2 − 0.026663929y3 − 0.004992140y4 − 0.010357094y5

+0.007424814y6 − 0.004670278y7 + 0.001206599y8,

(conformal bootstrap), (19)

c(y) = 1− 0.0154321y2 − 0.0266347y3

−0.0039608y4, (epsilon expansion), (20)

399

fσσε(y) =
√

2− 0.235465537y − 0.170275458y2 + 0.096635030y3 − 0.113371408y4

+0.100586943y5 − 0.054667196y6 + 0.016161292y7 − 0.001992399y8,

(conformal bootstrap), (21)

fσσε(y) =
√

2− 0.235702y − 0.168047y2 + 0.103680y3 − 0.224776y4,

(epsilon expansion), (22)

400

fσσε′(y) = 0.136221303y − 0.118250195y2 + 0.067116467y3 − 0.058700794y4

+0.037159615y5 − 0.012211017y6 + 0.001647332y7

(conformal bootstrap), (23)

fσσε′(y) = 0.1360828y + 0.11844240525y2, (epsilon expansion). (24)

We remark: i) the excellent agreement between the first few terms of the conformal bootstrap and401

epsilon-expansion series, and ii) the need of a high-order O(y7, y8) polynomial for precise fits. The402

corresponding curves are shown in Figs. 16 and 17. Note that c, fσσε and fσσε′ were determined403

with strikingly small (relative) errors, respectively O(10−5), O(10−4) and O(10−4) over the entire404

d range.405

0 0.2 0.4 0.6 0.8 1
4− d

−0.00004

−0.00002

0

0.00002

0.00004

c−
fit

Figure 16: Comparison of c data minus best fit: bootstrap (blue circles), unresummed
epsilon expansion [58, 59] (magenta solid curve), 3-correlator bootstrap at d = 3 [48]
(black pentagon).

The comparison with other conformal bootstrap results is as follows: The best 3-correlator406

determination in d = 3 [48] is shown as a black pentagon in the figures. Data from the navigator407
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Figure 17: Comparison of fσσε and fσσε′ minus best fit: bootstrap (blue circles), unre-
summed epsilon expansion [30,31,58,59] (magenta solid curve), 3-correlator bootstrap at
d = 3 [48] (black pentagon). On the left we also report the resummed epsilon expansion
(green squares) and bootstrap navigator results [21] (red triangles).

method are unfortunately only available for fσσε [21]. The agreement among different numerical408

setups is extremely good. Moreover, as already observed for scaling dimensions, the unresummed409

epsilon expansion captures the d → 4 behavior, and it does it very well, since the lower-order410

terms of the respective polynomials (19)–(24) are equal within errors. For fσσε, the results of the411

resummed epsilon expansion, reported in Tab. 6, are also shown, determined by earlier methods:412

the 4th-order series (22) only allows for a precise agreement down to d ≈ 3.6, given the fine scale of413

Fig. 17. For the remaining quantities, the epsilon expansion is either too short for a resummation,414

or not alternating.415
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d fσσε

3.9 1.3890497(2)
3.8 1.360960(3)
3.7 1.330222(12)
3.6 1.29703(3)
3.5 1.26154(7)
3.4 1.22386(13)
3.3 1.1841(2)
3.2 1.1423(3)
3.1 1.0986(5)
3 1.0531(7)

Table 6: Structure constant fσσε from resummed perturbative expansion, obtained ac-
cording to the methods of [41].

4.2 Higher fields T ′ and C416

The analysis of the fields T ′ (` = 2) and C (` = 4) is done along the same lines. The fit417

polynomials for ∆T ′ and ∆C , obtained as before, are418

∆T ′(y) = 6− 0.567900778y + 0.1779633663y2 − 0.806164966y3

+1.749534636y4 − 1.684842086y5 + 0.765011179y6

−0.126284231y7, (conformal bootstrap), (25)

∆C(y) = 6− 1.001598184y + 0.030791232y2

−0.033868719y3 + 0.041665026y4 − 0.002907562y5

−0.006602770y6, (conformal bootstrap). (26)

They are shown in Fig. 18, along with the bootstrap results of [21] (red triangles) and the available419

epsilon-expansion series (magenta solid lines) [27,32,58,59]:420

∆T ′(y) = 6− 0.5555556y, (epsilon expansion), (27)

∆C(y) = 6− y + 0.01296296y2 + 0.01198731y3

−0.006591585y4, (epsilon expansion). (28)

As shown by the cyan band, representing our fitting error, the scaling dimensions of these fields are421

determined with an accuracy comparable to that achieved for the low-lying ` = 0 states: Err(∆T ′) ≈422

10−2 and Err(∆C) ≈ 3× 10−3, meaning that Err(∆T ′)/∆T ′ ≈ 10−3 and Err(∆C)/∆C ≈ 5× 10−4.423

Within our precision, we observe very good agreement with the results of [21] (especially for T ′).424

Furthermore, the unresummed epsilon expansion is again in agreement with the bootstrap results425

for d→ 4. Overall, the picture is consistent with the ` = 0 case discussed earlier14.426

14The good behavior of the perturbative expansion for larger values of y ≈ 0.8 is not stressed, since it may be an
artifact of the low order of the series.
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Figure 18: Comparison of scaling dimensions minus best fit for T ′, C fields: bootstrap
(blue round points), navigator method [21] (triangle red points), 3-correlator bootstrap at
d = 3 [48] (black pentagon) and unresummed epsilon expansion [27, 32, 58, 59] (magenta
solid line).

The corresponding structure constants are given by the polynomial fits427

fσσT ′(y) = 0.026278214y − 0.012019512y2 − 0.016779681y3

+0.025762223y4 − 0.018571573y5 + 0.006902659y6

−0.001000504y7, (conformal bootstrap), (29)

fσσC(y) = 0.16903085− 0.122480930y + 0.077087613y2 − 0.591032947y3

+1.331591787y4 − 1.231373513y5 + 0.512308476y6

−0.079520247y7, (conformal bootstrap). (30)

They can be compared to the available epsilon expansions [27,32,58–60]:428

fσσT ′(y) = 0.02635231y − 0.013176155y2, (epsilon expansion), (31)

fσσC(y) = 0.16903085− 0.12244675y + 0.02131741y2

+0.002168567y3 − 0.0019760553y4, (epsilon expansion). (32)

The comparison is shown in Fig. 19. Also in this case we observe good agreement between the429

conformal bootstrap polynomials and the epsilon expansion series up to O(y3) terms.430
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Figure 19: Behavior of structure constants fσσT ′ and fσσC (round blue points) compared
with 3-correlator bootstrap at d = 3 [48] (black pentagon) and epsilon expansion (magenta
solid line) [58, 59].

4.3 Subleading fields ε′′ and C ′431

The numerical 1-correlator bootstrap approach used in this paper is known to have a limited432

precision for states higher up in the conformal spectrum, in particular for our approximation to 190433

components of the truncated bootstrap equations. In this section, we show that our identification434

of ε′′ (` = 0) and C ′ (` = 4) has some problems, especially for d→ 4. We explain these difficulties435

by using the epsilon expansion for conformal dimensions and structure constants, as well as the436

3-correlator bootstrap data [21] in varying dimensions, which are definitely more accurate for the437

higher spectrum than our results. We think that these aspects are worth discussing, especially438

because the y = 4− d dependence plays a crucial role.439

We start our analysis from the subleading twist ` = 4 operator C ′, for which we find the following440

best fit polynomial:441

∆C′(y) = 8− 0.827053961y − 0.055211344y2 + 0.053430207y3

+0.010354264y4 − 0.003205703y5, (conformal bootstrap). (33)

These data are shown in Fig. 20 (left part). It turns out that C ′ is degenerate at d = 4 with another442

field with same dimension and spin, called C ′2. Their dimensions are known to leading order in the443

epsilon expansion,444

∆C′(y) = 8− 1.555556y, (34)

∆C′
2
(y) = 8− 0.833333y, (epsilon expansion), (35)

and are plotted in Fig. 20 with magenta dashed and solid lines, respectively. Near these lines, the445

navigator bootstrap results [21] are plotted with gold and red triangles.446

One sees that our results start at d→ 4 very close to C ′2 (see first coefficient in polynomials (33)447

and (34)) and end up near C ′ at d = 3. Therefore, the state we found is a mixture of C ′ and C ′2:448

better numerical precision would be needed for disentangling the two states near d→ 4, obtained,449

e.g., by increasing the number of components approximating the bootstrap equations.450

27



SciPost Physics Submission

0 0.2 0.4 0.6 0.8 1
4− d

6

6.5

7

7.5

8

∆
C
′

0 0.2 0.4 0.6 0.8 1
4− d

−0.004

−0.002

0

0.002

0.004

f σ
σ
C
′ −

fit

Figure 20: Scaling dimension and structure constant of would-be C ′ operator in our
bootstrap spectrum (blue circles). Upward red and downward gold triangles represent
navigator results for C ′ and C ′2 [21]. The dashed and solid magenta lines are the corre-
sponding leading-order epsilon expansion.

The fit of the structure constant is given by451

fσσC′(y) = 0.006871047y − 0.005215834y2 − 0.003223129y3

+0.005087571y4 − 0.001393464y5, (conformal bootstrap), (36)

and plotted in the right part of Fig. 20. The epsilon-expansion results for C ′ and C ′2 read,452

fσσC′(y) = 0.001543806y, (37)

fσσC′
2
(y) = 0.006458202y, (epsilon expansion), (38)

and are shown as magenta dashed and solid lines on the right of Fig. 20.453

These perturbative data show a remarkable fact: for d < 4 the state of higher dimension C ′2454

has a larger structure constant, contrary to the standard behavior of fσσO decreasing fast with455

∆O. It is thus clear that, close to d = 4, C ′2 gives the dominant contribution to a putative mixed456

C ′-C ′2 state. This suggests the reason why our results with limited precision start close to C ′2. The457

analysis is confirmed by the bootstrap result for the structure constant in (36): for d→ 4 it fits the458

perturbative behavior of fσσC′
2
, as seen in the right plot of Fig. 20. In conclusion, our subleading459

` = 4 state is identified as C ′2 for d→ 4, but gradually approaches C ′ in d = 3.460

Another problematic identification concerns the ε′′ field (corresponding to φ6 in the φ4 theory).461

The best fit of bootstrap data gives462

∆ε′′(y) = 2.313321845y − 1.678645012y2 + 0.336440006y3

+0.090959178y4, (conformal bootstrap), (39)

while the leading epsilon-expansion result reads [24,25,60]:463

∆ε′′(y) = 2y − 4.759259y2, (epsilon expansion). (40)

For the structure constant we find464

fσσε′′(y) = 0.002851280y2 − 0.003188068y3 + 0.001218496y4

−0.000161879y5, (conformal bootstrap); (41)

fσσε′′(y) = 0.006901444y2, (epsilon expansion). (42)
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It is apparent that our bootstrap results do not match the leading perturbative expansion for d→ 4.465

The corresponding plots are shown in Fig. 21, where the disagreement with bootstrap results from466

Ref. [21] (red triangles) is also seen.467
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Figure 21: Scaling dimension and structure constant of the would-be ε′′ operator in
our bootstrap spectrum (blue circles). Upward red and downward gold triangles represent
navigator results for ε′′ and ε′′′ [21]. The solid and dashed magenta lines are the corre-
sponding leading-order epsilon expansion, which agree with the navigator results, but not
ours.

Let us investigate the possibility of another mixing of states near d→ 4. In this case there is no468

degenerate field with ε′′ at d = 4. However, the next subleading one ε′′′ ∼ �2φ4 in the φ4 theory469

is present at higher dimension ∆ε′′′ ≤ 8. The epsilon expansion and navigator results for this field470

are also shown in Fig. 21 (left part, gold downward triangles). We remark that a mixing of ε′′ and471

ε′′′ was shown to take place at d = 2.8, i.e., rather far from d = 4 [21].472

We suppose that the limited resolution of our data finds a state which is a mixture of ε′′ and ε′′′473

also for d→ 4, but we cannot be certain of this. As for C ′ and C ′2, support for this argument could474

come from a comparison of the corresponding structure constants fσσε′′ and fσσε′′′ . Unfortunately,475

the epsilon expansion of the latter is not available, so we cannot get a definite explanation of our476

∆ε′′ data.477

5 Conclusions478

In this paper we obtained the conformal dimensions and structure constants of the critical Ising479

CFT as a function of varying dimension 4 > d ≥ 3 by using the numerical conformal bootstrap480

approach.481

Our main result is the precise determination of the anomalous dimensions of the σ, ε, ε′ fields,482

which are related to the Ising critical exponents η, ν, ω. Our relatively simple 1-correlator bootstrap483

setup is able to compute the d-dependence of these quantities with up to one-per-thousand relative484

accuracy; therefore, our findings can be used as a benchmark for future studies in non-integer485

space dimension. For these low-lying states of the conformal spectrum, our results are in very good486

agreement with those of more advanced 3-correlator bootstrap techniques [21, 37, 47, 48], with a487

small offset included in the error estimate.488
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We presented a detailed comparison of available predictions from different methods. For d→ 4,489

our results agree with those from unresummed perturbation theory. This shows two things: that490

non-perturbative differences, which might effect the bootstrap program or the resummed series,491

are negligible for d → 4. The other non-trivial result is that both approaches agree on the same492

analytic continuation in dimension. A possible explanation of this correspondence is provided by493

the analytical bootstrap, which on one hand reproduces the epsilon expansion, and on the other494

hand uses the same ingredients as the numerical bootstrap.495

For 3 ≤ d < 4, but away from d = 4, the bootstrap data agree very well with other results,496

obtained by resummation techniques of the perturbative series, Monte Carlo simulations, and other497

bootstrap approaches. In the whole 4 > d ≥ 3 range we find overall consistency among the different498

approaches; improvements are needed by adding further terms to the perturbative series in d = 3,499

as the current state of the art still shows a O(10−3), O(10−2) discrepancy, respectively for ν and500

ω, and in general much larger error bars than bootstrap and Monte Carlo results.501

We were able to compute bootstrap data for the conformal dimensions of higher-order fields502

in 4 > d ≥ 3, including the lowest-lying spinful fields T ′ (` = 2) and C (` = 4), with a precision503

comparable to that of spinless operators. The central charge and OPE coefficients of low-lying fields504

were obtained with even higher precision than that of the corresponding anomalous dimensions.505

The structure constants agree well with those of the 3-correlator bootstrap, where available (mostly506

in d = 3), and with perturbation theory for d→ 4.507

A possible future development is to improve current bootstrap results in the region 3 > d ≥ 2, in508

order to better understand how the d = 3 theory approaches the d = 2 Virasoro minimal model. To509

this aim, it is important to go beyond the lowest-lying states and precisely probe higher-dimensional510

and higher-spin fields. Improved 3-correlator bootstrap protocols, such as the recently proposed511

navigator method, may be well suited here.512
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Appendix520

A Orthogonal polynomial regression521

Standard polynomial regression of the data set S ≡ {xi, yi,∆yi}Ni=1 is achieved by minimizing522

χ2 =

N∑
k=1

(
yk − f(xk)

∆yk

)2

, (43)
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with respect to the parameters {ci}di=0 of the fit function,523

fn(x) =

n∑
r=0

crx
r. (44)

The degree n of the polynomial is not known a priori.524

A smarter fit is obtained by changing the basis in which the polynomial is expressed:525

Bnaive =
{

1, x, x2, . . . , xd
}
→ Bortho = {P0(x), P1(x), P2(x), . . . , Pd(x)} , (45)

where the polynomials Pk(x) (of degree k) are chosen to be orthogonal on the independent variables526

of the dataset S, i.e.:527

〈Pr(x)Ps(x)〉S =
1

N

N∑
k=1

Pr(xk)Ps(xk) = k2rδrs, (46)

where kr are constants. With this choice, the fit function becomes528

fn(x) =
n∑
r=0

αrPr(x). (47)

The best fit is obtained by minimizing χ2 in Eq. (43). The advantage of the orthogonal polynomial529

regression is that the coefficients αr do not depend on the αs with s > r, i.e., adding higher-degree530

polynomials r > n to fn(x) does not change the value of αr with r ≤ n within the statistical531

errors [49]. Thus, this procedure is better suited to assess the optimal degree of the polynomial.532

The expression of the polynomials Pr(x) is known in the literature. In this work, we follow the533

conventions of Ref. [49]. We start by fixing the r = 0 and r = 1 polynomials as534

P0(x) = 1, P1(x) = 2(x− a1), a1 =
1

N

N∑
k=1

xk ≡ x. (48)

Higher-order polynomials with r ≥ 2 are obtained through the recursive relation [49],535

Pr+1(x) = 2(x− ar+1)Pr(x)− brPr−1(x), (49)

where the coefficients ar+1 and br are given by536

ar+1 =

∑N
k=1 xkP

2
r (xk)∑N

k=1 P
2
r (xk)

, br =

∑N
k=1 P

2
r (xk)∑N

k=1 P
2
r−1(xk)

. (50)

In this work, we find the best fitting polynomial for γO and fσσO as a function of y = 4 − d. We537

always assume their known analytic value for d = 4, for example γO(d = 4) = 0. To enforce such538

constraint, it is sufficient to use as fit function539

hn(x) = fn(x)− fn(0) =

n∑
r=1

α̃r [Pr(x)− Pr(0)] . (51)
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Finally, we reconstruct the original expansion in the naive basis by summing all equal monomials540

among every Pr(x) included in the fit function:541

hn(x) =
n∑
r=1

α̃r [Pr(x)− Pr(0)] =
n∑
r=1

c̃rx
r, (52)

where542

c̃r =

n∑
l=r

α̃l
drPl(x)

dxr

∣∣∣∣∣
x=0

. (53)

Once the two expansions are properly matched, the coefficients obtained from orthogonal poly-543

nomials agree with those obtained using a standard polynomial fit. The advantage of orthogonal544

polynomials resides in their improved numerical stability, which results in an improved precision in545

the computation of the ci.546

Finally, once the best fitting polynomial is obtained, we assign an error to our best fit function547

hn(x) through standard error propagation, via the so-called parameter covariance matrix,548

Cij ≡ Cov(α̃i, α̃j). (54)

Let us define vi(x) as the gradient of the fit function with respect to the ith fit parameter,549

vi(x) =
∂hn(x | ~̃α)

∂α̃i
. (55)

The error on the best fitting polynomial is550

Err(hn)(x) = vT(x)Cv(x) = Cijvi(x)vj(x). (56)

The best fit of γO(y) via orthogonal polynomial regression was done by using the curve fit routine551

from the standard Python library scipy.552

B Resummation of perturbative series553

B.1 Toy model example554

In this appendix, we discuss the perturbative expansion of a toy model in dimension zero:555

I(g) ≡
∫ ∞
−∞

dx√
2π

e−
x2

2
−gx4 . (57)

Its perturbative expansion is556

I(g) =

∞∑
n=0

an(−g)n, an =
(4n)!

22n(2n)!n!
∼

n→∞
24n√
2πn

× n! . (58)

The analytic continuation of the integral (57) from Re(g) > 0 to the full complex plane is given by557

a second-kind modified Bessel K-function:558

I(g) =
1

4
√
πg
e

1
32gK 1

4

(
1

32g

)
. (59)
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Figure 22: The branch cut in I(g) (top left) and IB(t) (top right). While the former
starts at g = 0, the latter is moved to g = −1/16. The lower plot shows IB(t(z)), which
now has a branch-cut singularity at |z| = 1. (We set IB(t(z)) to 0 outside the disc
|z| ≥ 1.)

Using the asymptotic behavior of K 1
4
(z) for z → ∞, one sees that the exponential prefactor is559

canceled, and the series (58) recovered. Note that I(g) has a cut on the whole negative real axis,560

see Fig. 22.561

In field theory, the divergent series is analytically continued without the knowledge of its exact562

expression. Let us explain the strategy on the example of integral (57). The basic idea [51] to563

obtain a convergent series out of Eq. (58), is to divide each term by n!, defining the Borel transform564

IB(t) of the series. In a second step, one reconstructs the original series via an integral transform:565

IB(t) ≡
∞∑
n=0

an
n!

(−t)n, I(g) =

∫ ∞
0

dt e−t IB(tg). (60)

In our example we know the analytic expression in terms of the first-kind complete elliptic integral566

function567

IB(t) =
2Kelliptic

(
1
2 − 1

2
√
16t+1

)
π 4
√

16t+ 1
. (61)

The Borel transform IB(t) has a finite radius of convergence, denoted by −tbc (equal to 1/16 in568

our example). As a consequence, the start of the branch cut is moved from g = 0 to t = tbc < 0,569

see figure 22. Since the radius of convergence of IB(t) is still finite, the integral transform (60)570

does not work as written. One first has to continue IB(t) to the domain 0 ≤ t < ∞. This can be571

achieved by replacing the known truncated series via a converging Padé approximant, leading to a572

Padé-Borel resummation.573

A more powerful strategy is to use a conformal mapping. The most common ansatz is to assume574

that at t = tbc < 0 a cut-singularity starts, which extends on the negative real axis to t = −∞.575
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Figure 23: Left: function I(g) (black, thick, dot-dashed) and its diverse approximations.
Dotted for the series expansion at order 1 (blue), 2 (green), and 3 (red). Solid for the
resummed series at the same order. Dashed for the large-g expansion (same color code).
Right: deviation of the resummed series (65) from the exact result (61) for g = 10 as a
function of n, assuming one knows tbc only approximately. In blue for tbc = −1/16 (the
exact result), in red tbc = −1/32 (a conservative guess), in black tbc = −1/1000 (much
too small). Resummation with tbc = −1/15 (green) does not work. We see that conform
to expectations, taking a too small value for −tbc, the series converges more slowly, while
taking a too large value of −tbc the series does not converge.

One first maps the complex plane with the expected branch cut of IB(t) onto the inside of the576

unit-circle:577

z =

√
1− t/tbc − 1√
1− t/tbc + 1

⇐⇒ t =
−4tbc z

(z − 1)2
. (62)

Next one constructs a series in z by expanding both sides in this variable:578

f(z) ≡
∞∑
n=0

cnz
n =

∞∑
n=0

an(−t(z))n
n!

= IB(t(z)) . (63)

This series is expected to converge for |z| < 1, a fact we can check for our example (but which is579

difficult to prove in general):580

f(z) = 1− 3z

4
+

9z2

64
− 51z3

256
+

1353z4

16384
− 7347z5

65536
+

61617z6

1048576
+O(z7) . (64)

Given n terms in the original series, we know f(z) up to the same order. Using this approximation581

for f(z), we finally obtain:582

I(g) =

∫ ∞
0

dt e−tIB(tg) =
1

g

∫ ∞
0

dt e−t/gIB(t) =
1

g

∫ 1

0
dz t′(z) e−t(z)/gf(z) . (65)

The result of this resummation is shown on Fig. 23. First, in black is the analytic result (59). Next583

are the first three orders in several expansions, using the same color code for order 1 (blue), 2 (green),584

and 3 (red): first the direct expansion in g (dotted), then in solid the resummed expansion (65).585

Dashed, we show a large-g expansion obtained by changing variables gx4 → y in the integral (57),586
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and then expanding the integrand in powers of 1/
√
g:587

I(g) =
1

2
√

2π 4
√
g

∫ ∞
0

dy
e
−

√
y

2
√
g
−y

y
3
4

=
1

2
√

2π 4
√
g

[
Γ
(
1
4

)
− 2

3

Γ
(
7
4

)
√
g

+
Γ
(
5
4

)
8g

+O
(
g−

5
4

)]
.

(66)

B.2 Details on the resummation method588

This appendix aims at providing a “reader’s guide” to the analysis in Ref. [40], which determines589

the resummed series for the d = 3 critical exponents η, ν−1 and ω (related, respectively, to γσ, γε590

and γε′). The same methods are used in our work, by a simple generalization to varying dimension591

4 > d ≥ 3. This guide, together with the introduction in the main text and the example in592

App. B.1, should provide enough information to follow the discussion in Ref. [40]. In particular,593

we are interested in its Sec. V. Let us denote the equations in Ref. [40] by double parentheses, e.g.,594

Eq. ((25)), to avoid confusion with our numbering.595

The resummation procedure with Borel transform and conformal mapping goes along the lines596

described in our Sec. 3.2 and App. B.1. The perturbative series of a critical exponent f(ε) in597

(−2ε) = D − 4 (cf. our y = 4− d) is defined in Eq. ((25)) of [40]:598

f(ε) =

∞∑
k=0

fk (−2ε)k, fk ∼ Cf k! ak kbf as k →∞. (67)

With respect to our notation (cf. our Eq. (6)), the negative sign of a is included in the power of599

epsilon, and the exponent of the power-law behavior earlier denoted by b is now bf .600

The values for the parameters (a, bf ) are given in Eq. ((26)) for the λφ4 theory with O(n)601

symmetry, n = 1 being the case of interest, and they are determined by the known asymptotic602

behavior of the beta function. With respect to the definition given here in Eq. (11), in [40] the Borel603

transform is replaced by the more general Borel–Leroy transform, defined as follows (cf. Eq. ((27))604

in [40]):605

Bbf (x) =
∞∑
k=0

fk
Γ(k + b+ 1)

(−x)k, (68)

where b is a free parameter. The function Bbf (x) behaves as Bbf (x) ∼ (1 + ax)b−bf−1 around606

x = −1/a.607

The function Bbf (x) is then modified in three ways in order to define the inverse transform608

and improve its convergence. The first step is the conformal mapping ((29)) already described in609

App. B.1, involving the known parameter a. The second step is the addition of the power-law pref-610

actor in ((30)) with a second free parameter λ. The third step is the “homographic transformation”611

ε = hq(ε
′) defined in ((32)) which introduces a third free parameter q.612

The resummed epsilon-expansion series f̃(x) is finally obtained from the inverse Borel transform613

of the modified function Bb,λ,`f◦hq reported in ((33)) of [40],614

f̃(ε) =

∫ ∞
0

tbe−tBb,λ,`f◦hq

(
2εt

1− qε

)
dt . (69)
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d b̄ λ̄ q̄

η

3.875 11 2.56 0.20
3.75 11 2.56 0.20
3.5 11 2.56 0.20
3.25 11 2.56 0.20

3 11 2.56 0.20

ν−1

3.875 15 1.32 0.16
3.75 15 1.32 0.16
3.5 15 1.32 0.16
3.25 14 1.30 0.16

3 13.5 1.30 0.16

ω

3.875 19 0.52 0.46
3.75 21.5 1.02 0.40
3.5 21.5 1.02 0.40
3.25 22 1.02 0.40

3 22 1.02 0.40

Table 7: Optimal variational parameters used here in the resummation procedure for
the critical exponents η, ν−1 and ω, as a function of 4 > d ≥ 3.

It depends on three free parameters: b, λ and q (` being the perturbative order considered, ` = 6615

here). Let us briefly mention how these are determined.616

The behavior of f̃(ε) ≡ f̃ b,λ,q` (ε) is studied in the cubic range617

(b, λ, q) ∈ [0, 40]× [0, 4.5]× [0, 0.8]. (70)

The optimal values of the parameters are chosen according to the principle of “minimal sensitivity”618

(w.r.t. varying the parameters) and “fastest apparent convergence” (w.r.t. increasing the perturba-619

tive order by one, `− 1→ `). These dependences are taken into account by a proper definition of620

the error function Ef` (b, λ, q) that is given in Eq. ((36)).621

The global minimum of the error Ēf` = Ef` (b̄, λ̄, q̄) in the cubic range (70) identifies the optimal622

values b = b̄, λ = λ̄ and q = q̄. The final estimate for the critical exponents is obtained from623

the inverse Borel transform (69) with these parameters. The optimization procedure is done in-624

dependently for each dimension d = 4 − 2ε. The results for b̄, λ̄ and q̄ are reported in Tab. 7 for625

the resummations of η, ν−1 and ω at the d values considered. Note the mild dependence of the626

parameters on d.627

We remark that this brief outline brushes over many fine details discussed in Ref. [40], but628

which are crucial for achieving high-quality results, as well as the comparison with other methods629

developed in the extensive literature. More technical information can be found in Ref. [40] and its630

supplementary material, available in arXiv:1705.06483.631
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