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We study the speed of sound in strong-interaction matter in density regimes which are expected
to be governed by the presence of a color-superconducting gap. At (very) high densities, our analysis
indicates that the speed of sound approaches its asymptotic value associated with the non-interacting
quark gas from below, in agreement with first-principles studies which do not take the presence of
a color-superconducting gap into account. Towards lower densities, however, the presence of a gap
induces an increase of the speed of sound above its asymptotic value. Importantly, even if gap-
induced corrections to the pressure may appear small, we find that derivatives of the gap with
respect to the chemical potential can still be sizeable and lead to a qualitative change of the density
dependence of the speed of sound. Taking into account constraints on the density dependence of the
speed of sound at low densities, our general considerations suggest the existence of a maximum in
the speed of sound. Interestingly, we also observe that specific properties of the gap can be related
to characteristic properties of the speed of sound which are indirectly constrained by observations.

I. INTRODUCTION

The impressive progress made in the observation of
neutron-star mergers via gravitational-wave signals [1, 2]
together with the advances made in direct measurements
of the radius and the mass of heavy neutron stars [3–12]
challenges our understanding of the properties of dense
strong-interaction matter. For example, constraints from
neutron-star masses suggest the existence of a maximum
in the speed of sound in dense matter which exceeds the
asymptotic value of a non-interacting quarks gas [13–19],
preferably at densities n/n0 ≲ 10 (where n0 is the nuclear
saturation density).

By writing the speed of sound cs as a ratio of deriva-
tives of the pressure P with respect to the chemical po-
tential µ, it becomes apparent that this quantity is a
sensitive probe to analyze the density dependence of the
pressure of strong-interaction matter:

cs =
1√
µ

(
∂P

∂µ

) 1
2
(
∂2P

∂µ∂µ

)− 1
2

. (1)

Indeed, this expression suggests that seemingly small
contributions to the equation of state may already lead to
significant changes in the density dependence of the speed
of sound, depending on the scaling of these contributions
with the density. Therefore, already a qualitatively cor-
rect description of the density dependence of the speed
of sound in strong-interaction matter requires a detailed
understanding of the relevant degrees of freedom at work
at different densities and their dynamics.

In the low-density regime, where the dynamics is gov-
erned by spontaneous chiral symmetry breaking with nu-
cleons and pions as effective degrees of freedom, chiral
effective field theory (EFT) provides a framework to de-
scribe nuclear matter in a systematic fashion [20]. In
particular, it opens up the opportunity to constrain prop-
erties of nuclear matter at low densities [21]. Specifically
for the speed of sound, studies based on chiral EFT pre-
dict a rapid increase with the density [22, 23].

Considering the high-density regime, we first note that
the chiral symmetry of the theory of the strong interac-
tion (Quantum Chromodynamics, QCD) is expected to
be at least effectively restored. However, the ground state
is still nontrivial. In fact, already early ground-breaking
studies of the theory of the strong interaction, ranging
from low-energy model studies [24–27] to first-principles
studies in the weak-coupling limit [28–34], pointed out
that strong-interaction matter at sufficiently low tem-
peratures and high densities is a color superconductor,
due to the presence of a Bardeen-Cooper-Schrieffer-type
instability, see Refs. [35–46] for reviews. In recent stud-
ies based on the functional renormalization group (fRG)
approach, it has then been found that the presence of
a color-superconducting gap in the excitation spectrum
of the quarks gives rise to a maximum in the speed of
sound [23, 47, 48]. Notably, in accordance with con-
straints from nuclear physics and observations [13–19],
this maximum exceeds the asymptotic value associated
with the non-interacting quark gas, for both isospin-
symmetric matter and neutron-star matter.

Finally, at very high densities and under the assump-
tion that the color-superconducting gap does not con-
tribute significantly to the equation of state, perturbative
calculations suggest that the speed of sound eventually
approaches its asymptotic value from below [49–58], see
also Ref. [23] for a discussion.

With the present work, we aim at an analysis of the
density dependence of the speed of sound and the identi-
fication of mechanisms underlying qualitatively different
scenarios. In particular, our analysis allows to relate the
size of the color-superconducting gap to the specific value
of the density at which the speed of sound exceeds its
asymptotic value when the density is decreased starting
from asymptotically high densities. To this end, we first
discuss the form of the equation of state in the presence
of a color-superconducting gap in Sec. II. In Sec. III, we
then analyze the speed of sound in detail for the case of
two massless quark flavors coming in three colors. A gen-
eralization of our considerations to the phenomenologi-
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cally most relevant case of (2 + 1) flavors is in principle
possible but is beyond the scope of this work. Never-
theless, we believe that our present study already pro-
vides valuable information on general properties of dense
strong-interaction matter. Our conclusions can finally be
found in Sec. IV.

II. EQUATION OF STATE

Throughout this work, we shall restrict ourselves to the
isospin-symmetric limit at zero temperature in density
regimes which are governed by the presence of a color-
superconducting gap.

Our analysis of the density dependence of the speed of
sound in Sec. III builds on an expansion of the equation
of state in the presence of a color-superconducting gap.
In this section, we therefore discuss this expansion on
general grounds. To be more specific, in Subsec. II A, we
first consider the expansion of the pressure in the case
where the gauge coupling is treated as a fixed “external”
parameter. In Subsec. II B, we then give a brief discussion
in the context of fully non-perturbative calculations.

A. Expansion of the equation of state

Let us start our discussion by considering the pressure
in the non-interacting limit:

P = PSB =
µ4

2π2
, (2)

where µ is the quark chemical potential. Turning on the
strong coupling g, a color-superconducting gap |∆0| is
generated in the excitation spectrum of the quarks, even
for infinitesimally small values of g because of a Bardeen-
Cooper-Schrieffer-type instability in the system (see, e.g.,
Refs. [36–41, 59] for detailed discussions of this aspect).
Since the strong coupling is dimensionless and we assume
it to be a constant parameter for the time being, the
chemical potential is the only scale in the problem. Thus,
we have |∆0| = |∆0(µ, g)| = µf∆(g). The dimensionless
function f∆(g) depends only on the coupling g.

In the weak-coupling limit at high densities, the gap
can be computed analytically. For example, for the chi-
rally symmetric gap (with JP = 0+) associated with pair-
ing of the two-flavor color-superconductor (2SC) type, it
was found that [28–31, 34]

|∆0| ∼ µg−5 exp

(
− 3π2

√
2g

)
. (3)

With respect to the dependence of the gap to the
coupling, it should be added that Bardeen-Cooper-
Schrieffer-type gaps in the fermion spectrum are in gen-
eral expected to be non-analytic smooth functions of the
coupling g. In particular, an approximation of the gap in
terms of a Taylor series about g = 0 does not exist, see,

e.g., Refs. [39, 41] for reviews. Note also that the gap
is directly related to the expectation value of a quark
bilinear. For the gap in Eq. (3), for example, we have

∆a
0 ∼ ⟨ψT

b Cγ5τ2ϵabcψc⟩ , (4)

where C is the charge-conjugation operator, τ2 is the sec-
ond Pauli matrix, and, in color space, it is summed over
the totally antisymmetric tensor ϵabc. Note that |∆0|2 :=∑

a |∆a
0 |2 is a gauge-invariant quantity.

The gap as given in Eq. (3) only exhibits a trivial de-
pendence on the chemical potential which arises from the
fact that µ is the only dimensionful quantity if the cou-
pling g is treated as a constant “external” parameter. In
a non-perturbative computation which takes the scale de-
pendence of the coupling into account, however, the gap
may acquire a non-trivial dependence on the chemical
potential µ since the chemical potential then has to be
measured in units of the scale set by the running of the
coupling, which is ΛQCD. The latter scale is also present
in the vacuum limit. We shall come back to this below
but focus on a constant coupling g for the moment.
In a computation of the pressure (which is essentially

given by the quantum effective action Γ evaluated at
its minimum), one has to take into account that the
quark and gluon propagators are potentially altered in
the presence of a gap. However, not all gluons and
quarks are directly affected by the gap. For example,
because of the underlying Anderson-Higgs-type mecha-
nism [60–64] associated with the symmetry-breaking pat-
tern SU(3) → SU(2) in color space, only five of the
eight gluons effectively acquire an effective mass ∼∆0,
see, e.g., Refs. [39, 41] for a review. This suggests that
the pressure is a function of the coupling g and the
gap, P = P (g, |∆0|2). Employing now dimensional and
symmetry arguments, we arrive at the following expan-
sion of the pressure in terms of the dimensionless gauge-
invariant quantity |∆̄0|2 = |∆0/µ|2:1

P = PSB

(
γ0(g) + γ1(g)|∆̄0|2

+
1

2
γ2(g)|∆̄0|4 + . . .

)
, (5)

where ∆0 is assumed to be homogeneous and

γi(g) =
µ2i

PSB

∂iP (g, |∆0|2)
(∂|∆0|2)i

∣∣∣∣∣
|∆0|=0

. (6)

1 Here, we exploit the fact that we can at least formally compute
the quantum effective action Γ in the presence of an auxiliary
field (e.g., associated with a quark bilinear). In the underlying
path integral, this requires to introduce a suitably chosen source
term. In any case, for our present purposes, one has to choose
an auxiliary field which agrees identically with the gap at the
minimum of the corresponding effective action. The effective
action can then be written as a power series of this auxiliary field.
The functions γi are therefore related to correlation functions,
see below. Note that the pressure and the effective action are
related: P = −Γ0/V4, where Γ0 is the effective action evaluated
at its physical minimum and V4 is the spacetime volume.
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The dependence on the chemical potential is fully de-
termined by the non-interacting quark gas since the
coupling is still considered to be a constant and µ-
independent parameter. Note that we assume that the
pressure is an analytic function of the gap which should
be the case away from a phase transition.

The first term in the expansion (5) is the pressure in
the absence of a gap. Thus, we have

γ0(g) = 1 +O(g2) . (7)

The g-dependent corrections can be extracted from per-
turbative calculations [49–58], provided that the gauge
coupling is sufficiently small.

Since the pressure is related to the effective action,
the functions γi can be extracted from correlation func-
tions evaluated at vanishing gap. For example, γ1 can
be related to the diquark propagator and therefore to a
four-quark correlation function of the following form:〈

(ψ̄bτ2ϵabcγ5Cψ̄T
c )(ψ

T
d Cγ5τ2ϵadeψe)

〉 ∣∣∣
|∆0|=0

. (8)

For example, non-perturbative methods may be em-
ployed to compute γ1, see, e.g., Ref. [47]. From this study,
we deduce that

γ1(g) = 2 +O(g2) . (9)

Note that we expand the pressure in powers of |∆0|2 and
not in the condensate. Therefore, γ1 is finite for g → 0.
For |∆0|2, however, we have |∆0|2 → 0 for g → 0.

A computation of g-dependent corrections to the func-
tion γ1(g) is beyond the scope of the present work.
However, we can make a general statement about this
function by exploiting the fact that the ground state of
strong-interaction matter is expected to be a color su-
perconductor at sufficiently high densities. In fact, this
implies that the pressure in this density regime should be
greater than the pressure in the absence of a gap. If this
was not the case at some (high) density, then the system
would undergo a phase transition to an ungapped phase
(as the ground state is associated with the phase with
lowest Gibbs energy, i.e., highest pressure). Therefore,
we conclude that γ1(g) > 0 for sufficiently high densities,
where ∆̄0 is small and therefore terms of the order ∼∆̄4

0

and higher can be dropped in Eq. (5).
In general, the coefficient functions γj in Eq. (5) are

associated with correlation functions of 4j quarks. For
example, eight-quark correlation functions are required
to compute the function γ2(g). With respect to the rel-
evance of terms with j > 1, we note that such terms
have been observed to be subleading over a wide density
range in a non-perturbative computation of the speed of
sound [47]. Of course, the relevance of these terms ulti-
mately depends on the density and the details of the gap
(such as its size and density dependence).

We would like to add that, for γ0=1, γ1=2 and γi=0
(i > 1), we recover the approximation of the pressure
which has already been used in early studies of dense

strong-interaction matter, see, e.g., Refs. [36, 65, 66].
Generally speaking, the g-independent contributions to
the γi-functions can be extracted from a one-loop ap-
proximation of the effective action of QCD which only
takes the quark loop in the presence of a gap into ac-
count, see Refs. [47, 67] for a discussion in the context of
renormalization-group studies. Terms depending on the
coupling g are generated by, e.g., quantum corrections
to the gluon polarization tensor. However, we emphasize
that a computation of the γi-functions does not neces-
sarily require to specify the functional form of the gap.
Indeed, for the expansion (5), we have only assumed the
existence of a gap.

Let us finally comment on the dependence of the ex-
pansion (5) on the chemical potential. Up to this point,
the chemical potential is the only dimensionful scale in
our analysis since we have assumed that the coupling g
is a constant parameter. Therefore, the gap must be pro-
portional to µ and the pressure (5) must be proportional
to µ4, i.e., we have P/PSB = fP (g) with a dimensionless
function fP depending only on g but not on µ. A non-
trivial dependence on the chemical potential can be intro-
duced by taking into account that the coupling carries an
implicit dependence on the chemical potential. For ex-
ample, this may be estimated by evaluating the coupling
in a one-loop approximation at the chemical potential µ:
g2(µ/ΛQCD) = 1/(b0 ln(µ/ΛQCD)). From a phenomeno-
logical standpoint, this corresponds to assuming that the
typical momentum transfer in interaction processes is of
the order of the chemical potential µ. In any case, by
using g2(µ/ΛQCD) in Eq. (5), we effectively replace the
“parameter” g with the dimensionless quantity µ/ΛQCD:

P = PSB

(
γ0(g(µ/ΛQCD))

+ γ1(g(µ/ΛQCD))|∆̄0|2 + . . .
)
, (10)

where ∆̄0 = ∆̄0(µ, g(µ/ΛQCD)). In this way, the pres-
sure acquires a non-trivial dependence on the chemical
potential. With respect to a computation of the speed
of sound cs, we note that the dependence on µ/ΛQCD

is essential. In fact, we only have cs = 1/
√
3 (i.e., the

value of the non-interacting quark gas), if the coupling g
is assumed to be independent of the chemical potential.

B. Expansion of the equation of state and
non-perturbative approaches

In a fully non-perturbative study, the scale depen-
dence of the coupling is explicitly taken into account
in the computation of correlation functions. The scale
in such a study is set by fixing the value of the strong
coupling at a given scale which can then be translated
into the scale ΛQCD. At finite chemical potential, this
implies that corrections to the equation of state of the
non-interacting quark gas in general depend on µ/ΛQCD.
For the gap, which can be computed as the expectation
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value of a quark bilinear, we therefore have

∆a
0 = ∆a

0(µ, µ/ΛQCD) ∼ ⟨ψT
b Cγ5τ2ϵabcψc⟩ . (11)

The functional form of |∆0|2 =
∑

a |∆a
0 |2 is in general

non-trivial and, at lower densities, it may even deviate
from the one resulting from Eq. (3) with the coupling g
replaced by g(µ/ΛQCD), see, e.g., Refs. [23, 26, 28, 30, 31,
39, 41, 47, 68–70] for corresponding discussions. Indeed,
towards lower densities, strong-interaction matter is ef-
fectively probed at smaller and smaller momentum scales
and therefore corrections beyond the weak-coupling limit
may become relevant.

With the gap at hand for a given value of the chemical
potential, we can formally write the pressure again as a
power series in the gauge-invariant quantity |∆̄0|2:

P = PSB

(
γ̃0(µ/ΛQCD)

+ γ̃1(µ/ΛQCD)|∆̄0|2 + . . .
)
, (12)

which corresponds to Eq. (10). Again, since the ground
state is expected to be a color superconductor, we
have γ̃1 > 0, at least at sufficiently high densities where
higher orders in |∆̄0| can be dropped, see our discussion
in the previous subsection. Of course, in a fully non-
perturbative study, such an expansion may be of limited
interest since the pressure may be available numerically
as a function of the chemical potential µ. Still, our con-
siderations can be useful to analyze properties of dense
strong-interaction matter, as we shall see next.

III. SPEED OF SOUND

We now employ the expansion (10) for a qualitative
analysis of the density dependence of the speed of sound.
Throughout this section, we shall set γi = 0 for i > 1.
This leaves us with

P ≈ PSB

(
γ0 + γ1|∆̄0|2

)
. (13)

For our qualitative study, we expect that this is sufficient.
Indeed, it has been observed in Ref. [47] that terms of
order ∼ |∆̄0|4 and higher do not alter the qualitative
behavior of the speed of sound over a wide density range.

Let us now start by considering the case where the
γi-functions are assumed to be independent of g. To be
specific, we use γ0(g) = 1 and γ1(g) = 2 as discussed
in the previous section. Assuming that the gap |∆0| in-
creases monotonically as a function of µ but |∆0|/µ→ 0
for µ → ∞, it has been pointed out in Ref. [48] that
the speed of sound approaches its asymptotic value from
above for µ→ ∞ (i.e., in the limit of infinite density n).
Note that these assumptions about the gap are consis-
tent with the expected behavior of the gap as a function
of the chemical potential, at least for (very) large chem-
ical potentials, see, e.g., Refs. [23, 26, 28, 30, 31, 36–
41, 47, 68, 69]. In any case, away from the high-density
regime, it has been found before that the gap induces an
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1Figure 1. Color-superconducting |∆0| (top panel) and |∆0|/µ
(bottom panel) as a function of the chemical potential µ as ob-
tained from a study in the weak-coupling limit [28, 30, 31, 39],
see Eq. (16), and a recent fRG study at low and intermediate
densities [47]. The (blue) band is associated with the fRG
data and results from a variation of the regularization scheme
and the experimental uncertainty in the strong coupling.

increase of the speed of sound above the value associated
with the non-interacting quark gas [23, 47, 48].
Next, we consider the case with γi = 0 (for i > 0), i.e.,

all gap-induced corrections to the pressure are dropped.
For γ0, we choose

γ0(g) = 1− g2

2π2
+O(g3) . (14)

This leads us to the perturbative result for the pressure
at leading order in the coupling g, see Refs. [49–52]. For
the coupling, we now employ the standard one-loop result
evaluated at the scale set by the chemical potential:2

g2(µ/ΛQCD) =
1

b0 ln(µ/ΛQCD)
. (15)

Here, ΛQCD = Λ0 exp(−1/(b0g
2
0)) with b0 = 29/(24π2)

and g0 is the value of the strong coupling at the scale Λ0.
3

Using now Eq. (1), we find that the speed of sound is
smaller than its asymptotic value for all densities con-
sidered in this work. Moreover, we observe that the
speed of sound approaches its asymptotic value from be-
low for n→ ∞, see also our discussion below. Note that
this remains unchanged, even if higher-order corrections
in γ0 are taken into account [23, 56–58].

2 Of course, this is not fully consistent since the correction ∼g2 in
Eq. (14) is generated by a two-loop diagram. For our qualitative
analysis of the speed of sound, however, this is of no relevance.

3 In our numerical calculations, we choose g20/(4π) ≈ 0.179
and Λ0=10GeV [71]. This yields ΛQCD ≈ 0.265GeV. In order
to avoid that our analysis is spoilt by the Landau pole associated
with the scale ΛQCD, we ensure that the chemical potential is
(sufficiently) greater than the scale ΛQCD in our computations.
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1Figure 2. Speed of sound (squared) as a function of the baryon density n in units of the nuclear saturation density n0 for different
values ∆⋆ of the gap at n/n0 = 10, ∆⋆ = |∆0(n/n0 =10)|. For comparison, it has been found that |∆0| ≈ 0.07 . . . 0.16GeV
at n/n0 ≈ 5 in an early low-energy model study [24]. Note that the gap in this type of model studies increases with increasing
densities. The dashed horizontal line corresponds to the speed of sound squared of the non-interacting quark gas. The blue
dashed line (perturbative QCD, pQCD) is the speed of sound as obtained by choosing γ0 as given in Eq. (14) and setting γi = 0
for i > 0. Left panel: Speed of sound (squared) as obtained by using a gap with a functional form as found in the weak-coupling
limit, see Eq. (16). The parameter s0 has been tuned such that ∆⋆ = 0.02GeV, 0.16GeV, 0.21GeV, 0.30GeV (∆⋆ = 0.02GeV
corresponds to s0 = 1). Right panel: Speed of sound (squared) as obtained by employing a gap with a functional form as found
in a recent fRG calculation [47]. To obtain the different values for ∆⋆, we have simply rescaled the gap, as also done for the
gap in the weak-coupling limit.

For small |∆0|/µ, it may be tempting to drop cor-
rections associated with the gap in the expansion (10),
such that the pressure is given by the pressure of the
ungapped system (as described by γ0). In fact, the gap-
induced corrections vanish identically for µ → ∞, pro-
vided that ∆0/µ→ 0 for µ→ ∞. At least at first glance,
it may therefore be reasonable to drop gap-induced cor-
rections in a computation of the pressure. For the speed
of sound, however, the situation may be different since
it is essentially given by the ratio of the first and second
derivative of the pressure with respect to the chemical
potential, see Eq. (1). Even if the gap-induced terms
to the pressure may appear small, their derivatives may
still yield sizeable contributions to the speed of sound.
To analyze this aspect, we choose γ0 as given in Eq. (14)
and γ1 = 2. This corresponds to combining the two cases
discussed above. Moreover, we now have to specify the
functional form of the gap in Eq. (13). Since the precise
functional form of the gap over a wide density range is
still unknown, we employ the results for the gap from
two different calculations: the gap from a calculation in
the weak-coupling limit [30, 31, 39] and the gap from a
recent fRG study at low and intermediate densities [47],
where strong-interaction matter is expected to enter the
strong-coupling regime. With these results for the gap
at hand, we can then gain a better understanding of how
the size of the gap and its density dependence affects the
speed of sound.

In the weak-coupling limit, the gap can be computed
analytically [30, 31, 39]:

|∆0| = sµg−5 exp

(
− 3π2

√
2g

)
, (16)

where s=512π4 exp(−(4+π2)/8)s0. Here, we have intro-
duced a dimensionless parameter s0 which allows us to
vary the size of the gap. For s0 = 1, we recover the gap
found in Refs. [30, 31, 39]. Note that a variation of s0
only slightly affects the density dependence of the gap.

The results for the gap from the aforementioned fRG
study are only available in numerical form [47]. In
Fig. 1, we show the fRG results for the gap as a func-
tion of the chemical potential together with the results
in the weak-coupling limit. Note that, at low densi-
ties, the gaps found in recent fRG studies are consistent
with those found in conventional low-energy model stud-
ies [23, 24, 47]. Still, in our computations below, we
shall also vary the size of the gap computed in Ref. [47]
by simply rescaling it with a constant prefactor in order
to analyze how the size of the gap affects the speed of
sound in this case.

In Fig. 2, we present our results for the speed of
sound (squared) as a function of the baryon density n =
(∂P/∂µ)/3 as obtained from choosing γ0 as given in
Eq. (14) and γ1 = 2. The results from a calculation
with the gap (16) is shown in the left panel of this fig-
ure whereas the results from a calculation based on the
gap from a recent fRG study can be found in the right
panel. We observe that the qualitative behavior of the
speed of sound as a function of the density is the same
in both cases. Indeed, the speed of sound approaches
its asymptotic value associated with the non-interacting
quark gas from below for n → ∞. Moreover, starting
at (very) high densities, we find that the speed of sound
first decreases in both cases when the density is lowered
and remains close to the speed of sound as obtained from
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1Figure 3. Crossing density n∗
cs (density at which the speed

of sound crosses the line associated with the speed of sound
of the non-interacting quark gas) as a function of |∆0(n

∗
cs)|

(value of the gap at the crossing density). The red line is
associated with the calculation employing a functional form of
the gap as found in the weak-coupling limit, whereas the blue
dashed line corresponds to the calculations employing a gap
with a functional form as found in a recent fRG calculation,
see main text for details. The dots are associated with the
dashed vertical lines in Fig. 2.

a computation in the absence of a gap (associated with
γ2 = 0). Importantly, we also observe that the effect of
a color-superconducting gap continuously increases with
decreasing density and eventually leads to the emergence
of a local minimum in the speed of sound at n = nmin.

In the spirit of our present study, this minimum may
be used to divide strong-interaction matter into different
regimes. For n > nmin, we find that gap-induced correc-
tions become subleading and may be dropped, not only
in computations of the pressure but also in computations
of the speed of sound. However, for n < nmin, the gap
leaves a clear imprint in the speed of sound. In fact, be-
low nmin, we find that gap-induced corrections lead to a
qualitative change of the density dependence of the speed
of sound. To be more specific, we observe an increase
of the speed of sound towards lower densities such that
it eventually exceeds its asymptotic value at the “cross-
ing density” n∗cs , i.e., the density at which the speed of
sound crosses the line associated with the speed of sound
of the non-interacting quark gas, see dots and vertical
lines in Fig. 2. However, the actual value of this char-
acteristic quantity depends on the density dependence of
the gap and its size as measured by the parameter ∆⋆,
which is defined to be the size of the gap at n/n0 = 10,
∆⋆ = |∆0(n/n0 = 10)|. In our calculations, we vary ∆⋆

by a simple global rescaling of the gap with a constant
parameter, see, e.g., Eq. (16).

In Fig. 3, we show the crossing density n∗cs as a func-
tion of |∆0(n

∗
cs)| which is the value of the gap at n = n∗cs .

Loosely speaking, we observe that a larger value of the
crossing density n∗cs comes along with a larger value of
the gap at the crossing density. Thus, for a large color-

10 20 30 40 50 100 200
10−3

10−2

10−1

100

n/n0

γ
1
|∆

0
|2 /

(γ
0
−

1)

∆? = 0.02 GeV
∆? = 0.16 GeV
∆? = 0.21 GeV
∆? = 0.30 GeV

1Figure 4. Size of the leading-order gap-induced correction to
the pressure relative to the size of the leading-order pertur-
bative correction. The solid lines are associated with calcula-
tions employing the functional form of the gap found in the
weak-coupling limit whereas the dashed lines are associated
with calculations employing the functional form of the gap
found in a recent fRG study. As discussed in the main text,
the gaps have been rescaled to estimate the effect of the size
of the gap which as parametrized by the parameter ∆⋆ (size
of the gap at n/n0 = 10).

superconducting gap, we expect the speed of sound to
exceed its asymptotic limit already at high densities. In-
terestingly, the crossing density n∗cs is not only sensitive
to the size of the gap. Our results suggest that this quan-
tity is also (very) sensitive to the functional form of the
gap, i.e., its density dependence. This can be deduced
from a comparison of our results for a gap with a func-
tional form as found in the weak-coupling limit with those
for a gap with a functional form as found in a recent fRG
study, see Figs. 2 and 3.
The existence of the crossing density can indeed be re-

lated to the properties of the color-superconducting gap,
such as its size and its dependence on the chemical po-
tential (or density). At least qualitatively, this can be
seen by inserting the expansion (10) into the definition
of the speed of sound, see Eq. (1). Taking into account
only terms up to order ∼ |∆̄0|2, we find

c2s =
1

3
+

π2

6µ3

∂

∂µ
PSB

(
γ0 − 1 + γ1|∆̄0|2

)
+ . . . . (17)

Here, we have assumed that corrections to the non-
interacting quark gas are sufficiently small such that
the denominator in Eq. (1) can be approximated by
the expression for the non-interacting quark gas. From
Eq. (17), we can read off that the speed of sound exceeds
its asymptotic value, provided that

∂

∂µ
PSBγ1|∆̄0|2 >

∂

∂µ
PSB (1− γ0) . (18)

For γ0 = 1, it immediately follows that c2s > 1/3, pro-
vided that PSBγ1|∆̄0|2 increases with the chemical po-
tential, see our discussion above and Ref. [48]. Using the
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result for γ0 at leading order in the strong coupling, see
Eq. (14), we find that

PSB (1− γ0) ∼
µ4

ln(µ/ΛQCD)
, (19)

which determines the µ-dependence of the right-hand
side of Eq. (18). The dependence of the left-hand side
of Eq. (18) on the chemical potential depends on the
µ-dependence of the gap. In order to quantify the lat-
ter within the considered range of chemical potentials
(0.5GeV ≲ µ ≲ 1.5GeV), we assign an effective scaling
exponent σ to the gap, |∆0| ∼ µσ. This leads us to

PSBγ1|∆̄0|2 ∼ µ2(1+σ) . (20)

A fit to the numerical data yields σ ≈ −0.5 for the gap
obtained in the weak-coupling limit and σ ≈ 0.1 for the
gap computed in the fRG study. From Eq. (17), we can
now in principle obtain an estimate for µ∗

cs , i.e., the value
of the chemical potential at which the speed of sound ex-
ceeds its asymptotic value.4 In any case, these simple
considerations already illustrate that µ∗

cs (and therefore
also the crossing density n∗cs) depends significantly on two
properties of the color-superconducting gap: the func-
tional form of the µ-dependence of the gap as measured
by its first derivative with respect to µ and the size of
the gap which effectively appears as a constant of pro-
portionality on the right-hand side of Eq. (20).

In Fig. 3, we indeed observe that the functional form
of the gap clearly affects the value of the crossing den-
sity n∗cs . To be specific, for a given value of the crossing
density n∗cs , the value of the gap at the crossing density
is found to be (significantly) smaller in the calculations
employing the functional form of the gap found in the
weak-coupling limit than in the calculations employing
the functional form of the gap found in the fRG study,
at least for n∗cs ≲ 40. However, we also observe that
the functional form of the gap becomes less relevant in
“scenarios” with large gaps.

4 Our considerations can also be used to obtain a simple estimate
for the scaling behavior of the speed of sound above the crossing
density (in a regime where the scaling of the gap can be described
by the exponent σ). Indeed, assuming µ ∼ n1/3, we find

c2s =
1

3
+ c̄0(1 + σ)n

2(σ−1)
3 − c̄1

ln(c̄2n
1
3 )

,

where c̄0, c̄1, c̄2 are positive constants and c̄2n
1
3 > 1 within the

validity range of this estimate. This “scaling law” illustrates the
importance of the functional form of the gap (as measured by the
exponent σ). Note that σ < −1 disfavors the emergence of a local
minimum in the speed of sound as well as the appearance of a
maximum with c2s > 1/3 towards lower densities, at least at this
order of the expansion. Moreover, by requiring that |∆0|/µ → 0
for µ → ∞, it follows that σ < 1. We add that gap-induced
corrections to the equation of state may potentially also exhibit
a logarithmic scaling. For example, we may have |∆0| ∼ µσ̄ lnµ
(σ̄ < 1). Then, the power-law scaling of the gap-induced term in
the expression for c2s is altered by a logarithmic correction.

The relevance of the functional form of the gap can also
be illustrated by considering the pressure, see Eq. (12).
To this end, we compare the leading-order gap-induced
correction to the pressure of the non-interacting quark
gas with the leading-order perturbative correction to the
pressure of the non-interacting quark gas, see Fig. 4. Of
course, the relevance of the gap-induced corrections to
the pressure increases trivially with the size of the gap.
However, in general, this does not necessarily entail a
qualitative change of the density scaling of the speed of
sound compared to calculations where gap-induced cor-
rections are not taken into account. Also, comparatively
small gap-induced corrections to the pressure may still
lead to a qualitative change of the speed of sound as
a function of the density, depending on the functional
form of the gap. To be concrete, let us consider the
green line associated with the crossing density n∗cs ≈ 8
and |∆0(n

∗
cs)| ≈ 0.16GeV in Fig. 3. For this green line,

which has been computed by employing the functional
form of the gap found in the weak-coupling limit, we
find that the gap-induced corrections to the pressure are
smaller than the perturbative corrections by a factor of
four for n ≈ n∗cs . At n/n0 ≈ 28 (where the corresponding
speed of sound assumes a local minimum, see green line
in the left panel of Fig. 2), the gap-induced corrections
to the pressure are already smaller than the perturbative
corrections by a factor of six.5 Nevertheless, the gap-
induced corrections lead to a qualitative change of the
density dependence of the speed of sound. Thus, even if
the gap-induced corrections to the pressure appear small,
derivatives of the gap with respect to the chemical po-
tential µ (as they enter the speed of sound) can still be
sizeable because of its nontrivial dependence on µ.
We close by adding that our observations are in accor-

dance with a non-perturbative study of the thermody-
namics of dense strong-interaction matter as presented
in Ref. [23], where RG flows starting from the QCD ac-
tion are considered. There, the pressure computed in the
presence of a gap at high densities is found to be consis-
tent with the one from calculations which do not take into
account a color-superconducting gap. However, towards
lower densities, the presence of a gap has also been found
to make a significant difference and eventually leads to
an emergence of a maximum in the speed of sound which
exceeds its asymptotic value. In this respect, it is in-
teresting to note that the existence of an increase of the
speed of sound above the value associated with the nonin-
teracting quark gas has also been observed in low-energy
models, where QCD matter is studied coming from low
densities (see, e.g., Refs. [72–76]) rather than from high
densities as done here.

5 Note that, at such high densities, the perturbative correction
∼ g2 corresponds to ∼ 30% of the pressure of the non-interacting
quarks. Since the gap-induced correction corresponds to ∼ 16%
of the perturbative correction, the gap-induced correction to the
pressure corresponds to only ∼ 5% of the pressure of the non-
interacting quark gas.
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IV. CONCLUSIONS

Our analysis of the speed of sound in dense strong-
interaction matter with two massless quark flavors builds
on an expansion of the equation of state in terms of the
color-superconducting gap. We have discussed this ex-
pansion in detail. For example, we have pointed out that
the zeroth-order term of this expansion can be directly
related to the pressure as, e.g., computed in perturbative
studies of dense strong-interaction matter. The first gap-
induced term in this expansion can be constrained by the
fact that strong-interaction matter is expected to be a su-
perconductor at sufficiently high densities. Gap-induced
corrections of even higher order in this expansion appear
to be parametrically suppressed at high densities.

Starting in the infinite-density limit, our analysis based
on the aforementioned expansion of the pressure shows
that the speed of sound first decreases, even in the pres-
ence of a color-superconducting gap. This observation is
in agreement with first-principles studies of dense strong-
interaction matter where such a gap in the excitation
spectrum of the quarks has not been taken into account,
see, e.g., Refs. [23, 53–58]. However, towards lower den-
sities, the gap-induced corrections become increasingly
important and lead to the emergence of a local mini-
mum in the speed of sound at high densities. Above the
density associated with this minimum, gap-induced cor-
rections are small and our analysis even suggests that the
corresponding contributions to the equation of state may
be safely neglected in studies of thermodynamic proper-
ties of dense strong-interaction matter. Below the den-
sity associated with this minimum, gap-induced correc-
tions to the equation of state become significant. In fact,
these corrections induce an increase of the speed of sound
when the density is further decreased such that the speed
of sound eventually crosses the line associated with the
speed of sound of the non-interacting quark gas. Taking
into account results from studies based on chiral EFT in-
teractions at low densities [22, 23], the existence of such
a “crossing density” suggests the existence of a maxi-
mum in the speed of sound, in accordance with Ref. [23].
Of course, a quantitative determination of the position
of this maximum is very challenging as the dynamics
for n/n0 < 10 is expected to be governed by a huge va-
riety of interaction channels (including vector channels),
which become equally relevant towards the nucleonic low-
density regime [23], see also Refs. [72, 73, 77–84]. With
respect to our expansion of the equation of state, we note
that higher-order corrections become relevant in this low-
density regime. In particular, the computation of the
coefficients γi may require non-perturbative methods.
Interestingly, we have found that the actual values of

the crossing density and the density associated with the
aforementioned local minimum in the speed of sound are
not predominantly determined by the size of the gap but
depend also significantly on the functional form of the
gap (i.e., its dependence on the chemical potential). In

particular, the value of the crossing density can be an-
alytically related to the first derivative of the gap with
respect to the chemical potential. Thus, even if the gap-
induced contributions to the pressure may appear small,
derivatives of the gap with respect to the chemical po-
tential may be sizeable and therefore significantly affect
the density dependence of the speed of sound. This ob-
servation is confirmed by our numerical studies.
With respect to astrophysical applications, it should

be added that strange quarks may become relevant in
the density regime considered in this work. Still, on a
qualitative level, the density dependence of the speed of
sound in neutron-star matter may also be constrained
by mechanisms which are similar to the ones discussed
in the present work. Indeed, with respect to the maxi-
mum in the speed of sound, constraints from neutron-star
masses also strongly support the existence of a maximum
in the speed of sound in neutron-rich matter [13–19]. In
particular, the existence of a maximum in the speed of
sound and a local minimum in the speed of sound at
high densities has already been discussed in an analysis of
constraints from astrophysical observations in Ref. [13].
It is also interesting to speculate whether it is possible
to use constraints on the speed of sound from nuclear
physics and observations to constrain the properties of
color-superconducting matter. To be more specific, con-
straints on the speed of sound from observations provide
estimates for lower bounds of the crossing density [17–19].
Since our present study suggests that this density can be
related to the size of the gap, constraints on the crossing
density allow to draw conclusions on the size of the gap
in dense strong-interaction matter, see Fig. 3. For exam-
ple, according to our present analysis, a crossing density
of 8n0 requires that the color-superconducting gap as-
sumes values of about 160MeV in this density regime.
Of course, a quantitative computation of, e.g., the

crossing density and the associated size of the gap re-
quires the inclusion of higher-order corrections in our ex-
pansion of the pressure. However, this is beyond the
scope of this work. Our present study rather aims at a
better understanding of the mechanisms determining the
density dependence of the speed of sound in dense strong-
interaction matter. Still, we believe that our present
analysis already adds to our understanding of the dynam-
ics underlying strong-interaction matter at high densities.
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[29] T. Schäfer and F. Wilczek, Phys. Rev. D60, 114033
(1999), arXiv:hep-ph/9906512 [hep-ph].

[30] R. D. Pisarski and D. H. Rischke, Phys. Rev. D61,
051501 (2000), arXiv:nucl-th/9907041 [nucl-th].

[31] R. D. Pisarski and D. H. Rischke, Phys. Rev. D61,
074017 (2000), arXiv:nucl-th/9910056 [nucl-th].

[32] W. E. Brown, J. T. Liu, and H.-c. Ren, Phys. Rev. D61,
114012 (2000), arXiv:hep-ph/9908248 [hep-ph].

[33] N. J. Evans, J. Hormuzdiar, S. D. H. Hsu, and
M. Schwetz, Nucl. Phys. B581, 391 (2000), arXiv:hep-
ph/9910313 [hep-ph].

[34] D. K. Hong, V. A. Miransky, I. A. Shovkovy, and
L. C. R. Wijewardhana, Phys. Rev. D61, 056001 (2000),
[Erratum: Phys. Rev. D62, 059903 (2000)], arXiv:hep-
ph/9906478 [hep-ph].

[35] D. Bailin and A. Love, Phys. Rept. 107, 325 (1984).
[36] K. Rajagopal and F. Wilczek, “The Condensed matter

physics of QCD,” in At the frontier of particle physics.
Handbook of QCD. Vol. 1-3 , edited by M. Shifman
and B. Ioffe (World Scientific, 2000) pp. 2061–2151,
arXiv:hep-ph/0011333.

[37] M. G. Alford, Ann. Rev. Nucl. Part. Sci. 51, 131 (2001),
arXiv:hep-ph/0102047.

[38] M. Buballa, Phys. Rept. 407, 205 (2005), arXiv:hep-
ph/0402234 [hep-ph].

[39] D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004),
nucl-th/0305030.

[40] I. A. Shovkovy, Proceedings, 4th Biennial Conference on
Classical and Quantum Relativistic Dynamics of Par-
ticles and Fields (IARD 2004): Saas Fee, Switzer-
land, June 12-19, 2004, Found. Phys. 35, 1309 (2005),
arXiv:nucl-th/0410091 [nucl-th].

[41] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
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