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Abstract1

Applying time-dependent driving is a basic way of quantum control. Driven systems2

show various dynamics as its time scale is changed due to the different amount of nona-3

diabatic transitions. The fast-forward scaling theory enables us to observe slow (or fast)4

time-scale dynamics during moderate time by inducing additional driving. Here we dis-5

cuss its application to nonadiabatic transitions. We derive mathematical expression of6

additional driving and also find a formula for calculating it. Moreover, we point out rela-7

tion between the fast-forward scaling theory for nonadiabatic transitions and shortcuts8

to adiabaticity by counterdiabatic driving.9
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1 Introduction22

Realization of high-speed quantum control is one of the most critical elements of quantum23

technologies. As a matter of course, even classical technologies have been developed in pur-24

suit of high-speed processing for practical use. However, there is more essential reason in the25

quantum case. In quantum systems, decoherence is inevitable and it smears quantumness.26
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Speedup of quantum control is required for minimizing a bad influence of decoherence. Pre-27

ciseness of quantum control is also an important factor. Indeed, most quantum advantages28

stem from delicate interference among the exponentially large number of quantum states or29

high sensitivity of quantum states against small system parameters. To realize such precise30

quantum control, its speed might have to be slower than experimental limitations to some31

extent.32

Time rescaling of control schemes may be necessary to satisfy the above requirements.33

However, changing time scale affects dynamics and its measurement outcomes since the amount34

of nonadiabatic transitions differs. This is also a problem from the viewpoint of quantum sim-35

ulation of nonadiabatic phenomena. The fast-forward scaling theory was proposed as a candi-36

date for resolving this problem [1,2]. It enables us to change time scale of dynamics without37

changing measurement outcomes by inducing additional driving. It was first formulated for a38

single-particle problem in potential [1], but it is not limited to such a specific system. Indeed,39

it has been extended to charged particles [3], many-body systems [4], discrete systems [5,6],40

Dirac dynamics [7], classical systems [8], stochastic systems [9], etc (see Ref. [2] and refer-41

ences therein).42

The fast-forward scaling theory can also be applied to acceleration of adiabatic time evolu-43

tion by introducing a “regularization term” [10]. In this sense, the fast-forward scaling theory44

is regarded as one of the methods of shortcuts to adiabaticity [11–14]. There are two rep-45

resentative approaches in shortcuts to adiabaticity. One is counterdiabatic driving, in which46

speedup of adiabatic time evolution is realized by applying additional driving (the counterdia-47

batic term) [11, 12]. The other is invariant-based inverse engineering, in which it is realized48

by scheduling system parameters [13]. Relation between the fast-forward scaling theory and49

invariant-based inverse engineering was discussed in a specific system [15]. Moreover, it was50

pointed out in Ref. [16] that the regularization term is identical to the counterdiabatic term51

(or the single-eigenstate counterdiabatic term proposed in Ref. [17]). Combination of the52

fast-forward scaling theory and shortcuts to adiabaticity was also discussed [6].53

Here we summarize points to be discussed in the present paper. First, we consider applica-54

tion of the fast-forward scaling theory to nonadiabatic transitions. Although the fast-forward55

scaling theory was originally formulated for nonadiabatic dynamics, it rather represents “not56

adiabatic” dynamics. We formulate it so that nonadiabatic transitions characterized by popu-57

lations on instantaneous energy eigenstates are rescaled in time. In the fast-forward scaling58

theory, there exist phase degrees of freedom. We fix them so that the diagonal part of a total59

Hamiltonian in the energy-eigenstate basis of a reference Hamiltonian is only given by the ref-60

erence Hamiltonian in rescaled time and additional driving just contributes to the off-diagonal61

part. As the result, we find that the additional terms consist of the counterdiabatic term and62

its similar term. We point out that the latter term reproduces nonadiabatic transitions caused63

by the reference Hamiltonian in the original time scale. Next, we propose another approach64

for calculating additional terms. Variety of derivation would enhance its utility. Finally, we65

discuss the adiabatic limit of reference dynamics. We show that the fast-forward scaling the-66

ory for nonadiabatic transitions is asymptotically equivalent to shortcuts to adiabaticity by67

counterdiabatic driving without introducing any new concept such as the regularization term.68

2 Fast-forward scaling theory69

Here we overview and explain our viewpoint of the fast-forward scaling theory for better un-70

derstanding of the present results. Note that we adopt a similar notation to Ref. [6] instead of71

the conventional notation [1,2].72

We introduce reference dynamics |Ψref(t)〉 governed by a time-dependent Hamiltonian73
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Ĥref(t). The reference dynamics can be specified by measurement. For example, projection74

measurement on a certain orthonormal basis |σ〉 gives population of the reference dynamics75

on this basis76

|cσ(t)|2 = |〈σ|Ψref(t)〉|2, (1)

where |Ψref(t)〉 =
∑

σ cσ(t)|σ〉. The aim of the fast-forward scaling theory is to obtain the77

same population in different time scale. For this purpose, we introduce rescaled time s = s(t).78

Then, the aim of the fast-forward scaling theory can be formulated as a problem to find rescaled79

dynamics (the fast-forward state) |ΨFF(t)〉 and its Hamiltonian ĤFF(t) satisfying80

|〈σ|ΨFF(t)〉|2 = |〈σ|Ψref(s)〉|2, (2)

where time scale becomes fast forward for ds/d t > 1, slow down for 0 < ds/d t < 1, a pause81

for ds/d t = 0, and a rewind for ds/d t < 0.82

Since the rescaled dynamics |ΨFF(t)〉 is identical with the reference dynamics at the rescaled83

time |Ψref(s)〉 except for phase on the basis |σ〉, it is given by84

|ΨFF(t)〉= Û(t)|Ψref(s)〉, (3)

where Û(t) is a unitary operator85

Û(t) = e−i
∑

σ fσ(t)|σ〉〈σ|, (4)

with a real number fσ(t). By considering time derivative of rescaled dynamics (3), we can86

also find its Hamiltonian87

ĤFF(t) =
ds
d t

Û(t)Ĥref(s)Û
†(t)− iħhÛ(t)

�

∂

∂ t
Û†(t)

�

. (5)

A theoretically trivial example is Û(t) = 1 [ fσ(t) = 0], which gives ĤFF(t) = (ds/d t)Ĥref(s),88

but it may be experimentally nontrivial. For example, it may require time-dependent mass for89

quantum particles since the overall amplitude of the reference Hamiltonian must be changed90

as ds/d t [1]. This example explains why we introduce the unitary operator Û(t), i.e., it is91

used to make protocols feasible in experiments.92

3 Nonadiabatic transitions93

Next we also overview nonadiabatic transitions (for details, see, e.g., Ref. [18]) and shortly94

mention shortcuts to adiabaticity by counterdiabatic driving [11,12].95

In the energy-eigenstate basis, the reference dynamics and its Hamiltonian can be ex-96

pressed as97

|Ψref(t)〉=
∑

n

cn(t)e
− i
ħh

∫ t
0 d t ′En(t ′)|n(t)〉, (6)

and Ĥref(t) =
∑

n En(t)|n(t)〉〈n(t)|. Nonadiabatic transitions are characterized by the abso-98

lute square of each coefficient of the energy-eigenstate basis [Eq. (1) with |σ〉 = |n(t)〉], i.e.,99

|cn(t)|2 = |〈n(t)|Ψref(t)〉|2. The Schrödinger equation gives its time evolution100

iħh
∂

∂ t
cn(t) + iħh

∑

m

〈n(t)|
�

∂

∂ t
|m(t)〉

�

cm(t) = 0. (7)

Here, the off-diagonal part of the second term causes transitions between different levels, i.e.,101

it describes nonadiabatic transitions. The operator form of the second term is given by102

Ĥcd(t) = iħh
∑

n,m
(n6=m)

|n(t)〉〈n(t)|
�

∂

∂ t
|m(t)〉

�

〈m(t)|, (8)
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which is known as the adiabatic gauge potential [18] or the counterdiabatic term [11,12]. In103

counterdiabatic driving, we apply this term to the reference Hamiltonian, and then nonadia-104

batic transitions are canceled out and the solution of the Schrödinger equation becomes the105

adiabatic state [11,12].106

4 Time rescaling of nonadiabatic transitions107

Now we discuss time rescaling of nonadiabatic transitions. The condition for the rescaled108

dynamics (2) is rewritten as109

|〈n(s)|ΨFF(t)〉|2 = |〈n(s)|Ψref(s)〉|2. (9)

Note that the energy-eigenstate basis in the left-hand side of this equation is that in the rescaled110

time s, whereas the rescaled dynamics is in the usual time scale t. Such dynamics is given by111

Eq. (3) and Eq. (4) with |σ〉= |n(s)〉.112

Then we discuss the rescaled Hamiltonian (5). The first term in the rescaled Hamiltonian113

(5) is simply given by (ds/d t)Û(t)Ĥref(s)Û†(t) = (ds/d t)Ĥref(s), i.e., it only gives the diag-114

onal term in the energy-eigenstate basis. In addition, the diagonal term in the second term115

of the rescaled Hamiltonian (5) is given by ħh
∑

n(d fn/d t)|n(s)〉〈n(s)|. Therefore, by setting116

ħh(d fn/d t) = (1 − ds/d t)En(s), the diagonal part of the total rescaled Hamiltonian (5) be-117

comes Ĥref(s). For this phase fn(t), we can also calculate off-diagonal terms, and finally we118

find that the total rescaled Hamiltonian (5) is given by119

ĤFF(t) = Ĥref(s) +
ds
d t
[Ĥcd(s) + Ĥnad(t)], (10)

where the second term (ds/d t)Ĥcd(s) is the counterdiabatic term (8) for the reference Hamil-120

tonian in the rescaled time Ĥref(s), and the third term is our finding given by121

Ĥnad(t) = −iħh
∑

n,m
(n6=m)

e−i[ fn(t)− fm(t)]|n(s)〉〈n(s)|
�

∂

∂ s
|m(s)〉

�

〈m(s)|. (11)

Remarkably, the matrix element of the third term (11) is given by122

〈n(s)|Ĥnad(t)|m(s)〉= −e−i[ fn(t)− fm(t)]〈n(s)|Ĥcd(s)|m(s)〉, (12)

that is, the third term (11) is the opposite sign of the counterdiabatic term (8) with the phase123

factor associated with the rescaling rate ds/d t. Note that the third term (11) completely124

cancels out the second term (8) when the rescaled time s is equal to the time t, and thus the125

rescaled Hamiltonian (10) recovers the reference Hamiltonian Ĥref(t). According to the theory126

of counterdiabatic driving [11,12], the second term (ds/d t)Ĥcd(s) cancels out diabatic changes127

caused by the first term Ĥref(s), and thus we can conclude that the third term (ds/d t)Ĥnad(t)128

reproduces nonadiatic transitions caused by the reference Hamiltonian in the original time129

scale Ĥref(t).130

Finally, we propose another way for constructing the third term (11). As in the case of131

counterdiabatic driving, it is not always easy to construct additional driving from its mathe-132

matical expression. Indeed, we have to find explicit expression of operators from off-diagonal133

elements |n(s)〉〈m(s)|. The key idea of our proposal is use of the following formula [19]134

e−Ô(t) ∂

∂ t
eÔ(t) =

∞
∑

k=0

(−1)k

(k+ 1)!
(adÔ(t))

k ∂

∂ t
Ô(t), (13)
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for the second term of Eq. (5), where Ô(t) = i
∑

n fn(t)|n(s)〉〈n(s)| in the present paper and135

adÔ• = [Ô,•] is the adjoint action, i.e., (adÔ)
k• = [Ô, [Ô, . . . [Ô,•] . . . ]] is the kth nested136

commutator. That is, once we find the explicit expression of Ô(t), which can be calculated by137

using diagonal elements |n(s)〉〈n(s)|, we can construct the second term of Eq. (5) by calculating138

the nested commutators. Notably, the counterdiabatic term (8) can also be calculated by139

using the nested commutators of the reference Hamiltonian [20–22], and thus we can extract140

the third term (11) from the results. Because difficulty in finding operator forms from off-141

diagonal elements |n(s)〉〈m(s)| and diagonal elements |n(s)〉〈n(s)| could differ depending on142

given systems, this formula has potential usefulness for constructing the additional term (11).143

Moreover, for a D-dimensional quantum system, the number of elements is D(D − 1)/2 for144

off-diagonal elements (and their Hermitian conjugates), but it is D for diagonal elements.145

5 Adiabatic limit146

Now we discuss asymptotic behavior of our results in the adiabatic limit of reference dynam-147

ics. In the conventional formalism of the fast-forward scaling theory for adiabatic time evo-148

lution [2, 10], we have to introduce the “regularization term” for its justification since the149

adiabatic state is not the solution of the Schrödinger equation under a given reference Hamil-150

tonian. Later it was pointed out that this regularization term is the counterdiabatic term or the151

single-eigenstate counterdiabatic term [16]. Here we propose another interpretation without152

introducing such an addition concept. Note that for simplicity we set ħh= 1 and assume that all153

time scale and energy scale are dimensionless (we can easily recover dimension by multiplying154

ħh in an appropriate way).155

Adiabatic time evolution is realized under slow change of parameters. Roughly speak-156

ing, the operation time should be larger than the inverse square of the minimum energy gap,157

Tad � (∆Emin)−2, where Tad is the adiabatic time scale and ∆Emin is the minimum energy158

gap. We assume that the operation time of the reference dynamics Tref is long enough com-159

pared with this adiabatic time scale, Tref ¦ Tad. By using the fast-forward scaling theory,160

we can realize this adiabatic time evolution within shorter time, say the fast-forwarded time161

scale TFF, where TFF� Tad ® Tref. Then, for example, the rescaled time s can be expressed as162

s(t) = (Tref/TFF)t. Since ds/d t = Tref/TFF� 1, the leading term in the phase factor of the third163

term e−i[ fn(t)− fm(t)] is given by |
∫ t

0 d t ′(Tref/TFF)[Em(s(t ′)) − En(s(t ′))]| ≥ |Tref(t/TFF)∆Emin|.164

Since t/TFF is a linear sweep from 0 to 1, the leading value of the phase is determined by the165

relation between the reference time scale Tref and the minimum energy gap ∆Emin. In the166

adiabatic limit, Tref ¦ Tad � (∆Emin)−2, this term gives high-frequency oscillation, and thus167

the third term in the rescaled Hamiltonian (11) effectively vanishes. As the result, the rescaled168

Hamiltonian (10) becomes the summation of the reference Hamiltonian in the rescaled time169

scale and its counterdiabatic Hamiltonian, i.e., ĤFF(t) ≈ Ĥref(s) + (ds/d t)Ĥcd(s). In conclu-170

sion, we find that the fast-forward scaling theory for adiabatic time evolution is asymptotically171

equivalent to shortcuts to adiabaticity by counterdiabatic driving.172

6 Example173

Finally, we consider an example. As the reference Hamiltonian, we consider a two-level system174

175

Ĥref(t) = −hx(t)X̂ − hz(t)Ẑ , (14)

where hx(t) and hz(t) are a time-dependent transverse field and a time-dependent longitudinal176

field. Here we express the Pauli matrices as {X̂ , Ŷ , Ẑ}. The eigenenergies and their eigenstates177
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are given by178










E±(t) = ±
Æ

hx2(t) + hz2(t),

|+ (t)〉=
�

− sinθ (t)
cosθ (t)

�

, | − (t)〉=
�

cosθ (t)
sinθ (t)

�

(15)

where θ (t) satisfies179














sin 2θ (t) =
hx(t)

p

hx2(t) + hz2(t)
,

cos 2θ (t) =
hz(t)

p

hx2(t) + hz2(t)
.

(16)

First, we construct the additional term by using the formula (11). The operator form of the180

off-diagonal element is given by |+ (s)〉〈−(s)|= (1/2) cos2θ (s)X̂ − (i/2)Ŷ − (1/2) sin 2θ (s)Ẑ ,181

and its coefficient is given by 〈+(s)|(∂ /∂ s)| − (s)〉 = ∂ θ (s)/∂ s. The phase factor is given by182

e−i[ f+(t)− f−(t)] = e−2i f+(t), where f+(t) =
∫ t

0 d t ′(1− ds/d t ′)E+(s). Therefore, we find that the183

additional term (11) is given by184

Ĥnad(t) = −
∂ θ (s)
∂ s

sin 2 f+(t)[cos2θ (s)X̂ − sin 2θ (s)Ẑ]−
∂ θ (s)
∂ s

cos 2 f+(t)Ŷ . (17)

Note that we can also construct the counterdiabatic term from Eq. (8) by using the above185

equations and it is given by186

Ĥcd(s) =
∂ θ (s)
∂ s

Ŷ . (18)

Next, we construct the additional term by using the formula (13). The operator forms of187

the diagonal elements are given by |±(s)〉〈±(s)|= (1/2)1̂∓(1/2) sin 2θ (s)X̂∓(1/2) cos 2θ (s)Ẑ ,188

where the double sign corresponds and 1̂ is the identity operator, and thus we obtain Ô(t) =189

−i f+(t)[sin 2θ (s)X̂ + cos2θ (s)Ẑ]. Note that (∂ /∂ t)Ô(t) = i(1 − ds/d t)Ĥref(s) − 2i(ds/d t)190

(∂ θ (s)/ds) f+(t)[cos 2θ (s)X̂ − sin2θ (s)Ẑ] and [Ô(t), Ĥref(s)] = 0. Owing to the algebraic191

structure of the nested commutators, we obtain192

(adÔ(t))
k ∂

∂ t
Ô(t) =

ds
d t
∂ θ (s)
∂ s

(−i)k+1[2 f+(t)]
k+1Ŵk, for k > 0, (19)

where Ŵk = iŶ for odd k and Ŵk = cos2θ (s)X̂ − sin 2θ (s)Ẑ for even k. By substituting193

this result for Eq. (5), we obtain Eq. (10) with Eqs. (14), (17), and (18). As mentioned in194

the general discussion, the counterdiabatic term (18) can be specified by using the nested195

commutators of the reference Hamiltonian (14), and thus we can extract Eq. (17).196

Finally, we consider the adiabatic limit of the reference dynamics. Here we again assume197

the linear rescaling s(t) = (Tref/TFF)t and fast-forwarding Tref/TFF� 1. In the present exam-198

ple, the third term (17) oscillates with phase 2 f+(t). The leading term of this phase is given199

by |2 f+(t)| ≈ |
∫ t

0 d t ′(Tref/TFF)∆E(s)| ≥ |Tref(t/TFF)∆Emin|, where∆E(s) = E+(s)−E−(s) is an200

energy gap. As mentioned in the general discussion, we find that it causes fast oscillation in201

the adiabatic limit, Tref ¦ Tad � (∆Emin)−2, and thus the total rescaled Hamiltonian is given202

by ĤFF(t)≈ Ĥref(s) + (ds/d t)Ĥcd(s).203

7 Conclusion204

In this paper, we discussed time rescaling of nonadiabatic transitions by using the fast-forward205

scaling theory. We found that the additional terms consist of the counterdiabatic term (8) and206

6
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its similar term (11). We pointed out that the latter term (11) reproduces nonadiabatic tran-207

sitions caused by the reference Hamiltonian in the original time scale. Moreover, we showed208

that the third term (11) effectively vanishes in the adiabatic limit due to fast oscillation. As the209

result, the fast-forward scaling theory for nonadiabatic transitions asymptotically reproduces210

counterdiabatic driving of shortcuts to adiabaticity.211

We proposed two ways for calculating the additional term, i.e., Eq. (11) and Eq. (13).212

Although these formulae use different elements in the energy-eigenstate basis, the knowledge213

of the energy eigenstates of the reference Hamiltonian is required. It is the important future214

work to find methods for constructing the additional term without the knowledge of the energy215

eigenstates as in the case of counterdiabatic driving of shortcuts to adiabaticity [20–22].216
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