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Abstract

We introduce a new regularization of the Redfield equation based on a replacement of
the Kossakowski matrix with its closest positive semidefinite neighbor. Unlike most of
the existing approaches, this procedure is capable of retaining the time dependence of
the Kossakowski matrix, leading to a completely positive (CP) divisible quantum pro-
cess. Using the dynamics of an exactly-solvable three-level open system as a reference,
we show that our approach performs better during the transient evolution, if compared
to other approaches like the partial secular master equation or the universal Lindblad
equation. To make the comparison between different regularization schemes indepen-
dent from the initial states, we introduce a new quantitative approach based on the
Choi-Jamiołkoski isomorphism.
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1 Introduction

Describing the time evolution of a quantum system interacting with an external environment
is of paramount relevance in contemporary physics, with applications in a wide variety of
fields. However, portraying the exact dynamics of an open system is often challenging, due
to the intrinsic complexity of dealing with the large number of degrees of freedom of the en-
vironment. This problem can be tackled by introducing effective descriptions in which only
a small, but essential, amount of bath properties is taken into account to derive a good ap-
proximated picture of the system evolution. One of such examples are Markovian Quantum
Master Equations (QMEs), which express the time derivative of the density matrix in terms
of a superoperator satisfying the prescriptions of the Lindblad-Gorini-Kossakowski-Sudarshan
(LGKS) theorem [1,2].

QMEs are one of the most widely used models in open quantum systems and have been
applied to problems of quantum transport, computation, chemical modeling and quantum
thermodynamics [3,4]. Despite that, the range of validity of QMEs and their reliability in the
description of coherent effects, are still debated today [5]. The standard Born-Markov approx-
imation [6, 7] leads to the Redfield equation [8, 9], which is known to violate the positivity
of the density operator - and other desirable properties of the quantum evolution [10, 11]
- hence providing unphysical predictions [12]. Historically, the main route for curing these
issues required the energy levels of the system to be well-separated: this is the secular approx-
imation, which provided remarkable results in the context of quantum optics and quantum
chemistry [13, 14]. This approach is however not suited for the study of generic many-body
systems, where the spacing between energy levels typically decreases exponentially when in-
creasing the size. For this reason, in recent years a number of works appeared in the literature
proposing ways to obtain LGKS equations that are free of the restrictions imposed by the sec-
ular approximation [15–25].

In this work we argue that these “regularization” techniques amount to a substitution of a
certain matrix that describes the dissipative dynamics, known as the Kossakowski matrix, with
a positive semidefinite one, thus leading to a LGKS equation. With this observation at hand we
propose a natural regularization scheme for the Redfield equation, that amounts in replacing
the Kossakowski matrix with its closest positive semidefinite matrix of the same dimension.
The result is compared with some of the existing schemes, by examining to what extent they
reproduce the true dynamics of a simple open system that can be solved exactly. To do this,
we employ a novel technique that makes use of the Choi-Jamiołkowski isomorphism [26,27]
to envision a numerical comparison that is independent of the choice of the initial state of the
evolution. We emphasize that our procedure can be applied not only to the standard Redfield
equation but also to its version with time-dependent coefficients (that can result, for instance,
from avoiding the so-called "second Markov" approximation). In this case, our regularization
preserves the time dependence of the coefficients but makes the dynamics completely positive
(CP) divisible [28–30]. The residual time dependence is an indicator that our approach could
perform better at short times with respect to existing schemes.

The paper is structured as follows. In Sec. 2 we write the Redfield equation and the associ-
ated Kossakowski matrix. In Sec. 3 we discuss the regularization procedure, first by analysing
common existing schemes in Sec. 3.1 and then by presenting our natural proposal in Sec. 3.2.
In Sec. 4 the reader can find an example of application to an open three-level system: in
Sec. 4.1 we present a direct numerical calculation at the level of the density matrix, while
in Sec. 4.2 we discuss the novel Choi operator technique to compare predictions of different
master equations. Finally, in Sec. 5 we draw our conclusions.
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2 The LGKS theorem and the Redfield equation

Let us consider a quantum system S described by a Hilbert space HS of finite dimension N .
Moreover, let L(HS) be the vector space of linear operators on HS equipped with the Hilbert-
Schmidt inner product 〈X , Y 〉 := Tr

�

X †Y
�

. A linear map Φ : L(HS)→ L(HS) is expected to de-
scribe a physical transformation when it is trace-preserving and completely positive (CPT) [6].
A particularly important case is when the process is described by a quantum dynamical semi-
group [31], i.e., a one-parameter family {Φt}t≥0 of linear CPT maps on L(HS) such that t 7→ Φt
is continuous, Φ0 = 1, and Φt+s = Φt ◦Φs. In this case, if ρ(0) is the initial state of S then the
state at time t is given by ρ(t) = Φt(ρ(0)). Quantum dynamical semigroups are important
because given {Φt} we can find a linear operator L, called the generator of the semigroup,
such that

dρ(t)
d t

= L(ρ(t)), (1)

which is in the form of a Markovian master equation [6]. The well-known theorem of Lind-
blad [1], Gorini, Kossakowski, and Sudarshan [2] characterizes the shape of such a generator.
Here we will use the formulation provided by [32], which is best suited for our discussion.

Theorem 1. A linear operator L : L(HS)→ L(HS) is the generator of a quantum dynamical
semigroup if it can be written in the form

L(ρ) = −i[H,ρ] +
N2
∑

i, j=1

χi j

�

FiρF†
j −

1
2
{F†

j Fi ,ρ}
�

, (2)

where H = H†, {Fi}i=1,...,N2 is an orthonormal basis of L(HS) and χ is a positive semidefinite
complex matrix which is uniquely determined by the choice of {Fi}, called Kossakowski matrix.

One could be also interested in generalizations of Eq. (1) in which the generator becomes
time dependent Lt . In this kind of scenario we must deal with a two-parameter semigroup
Φt,s = T exp
�

∫ t
s dτLτ
�

, where T is the time ordering. Here divisibility is guaranteed, in
the sense that for any t ≥ s ≥ 0 there exists a linear map Λt,s (intertwining map) such that
Φt,0 = Λt,s ◦Φs,0. The case of completely positive intertwining maps (CP-divisibility) is particu-
larly important, since it is characterized by a LGKS-like generator (2) where χ and H become
time-dependent quantities [28–30]. At this level, notice that χ(t)≥ 0 is a sufficient condition
for CPT dynamics but it is by no means necessary [15].

In a general setting where S is allowed to interact with an environment E , the non-
Hamiltonian terms in Eq. (2) play a crucial role. This can be seen with a microscopic derivation
of (2), in which we start from a unitary description of the universe U = S ∪ E , trace away the
environment and obtain - under suitable assumptions - a master equation for S which is in
LGKS form. Since the universe is closed by definition, it is described by a Hamiltonian, which
is commonly written as

HU = HS ⊗1E +1S ⊗HE +HI . (3)

The interaction term HI is of the form

HI =
M
∑

α=1

Aα ⊗ Bα, (4)

where Aα acts on the system and Bα acts on the environment. It is also common to assume
these coupling operators to be Hermitian, but here we will not make this assumption.
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Under the Born-Markov approximation (and other standard assumptions) it is known that
the reduced dynamics of S in the interaction picture eρ(t) := eiHS tρ(t)e−iHS t is [6]

d eρ(t)
d t

=
∑

α,β

∫ t

0

dτ cαβ(τ)[eAβ(t −τ)eρ(t), eA†
α(t)] +H.c., (5)

where cαβ(τ) := 〈eB†
α(τ)Bβ〉 is the environment correlation function (the average 〈·〉 is cal-

culated on the stationary state σ of the environment). This is one of the many forms of the
so-called Redfield equation.

Our first task is to write the Redfield equation in the form (2). Let us consider the basis
{|k〉} of normalized eigenvectors of the free system Hamiltonian HS , so that we can write its
spectral decomposition as HS =

∑

kωkEkk, where Ekq := |k〉〈q|. Since {Ekq}k,q=1,...,N is an
orthonormal basis of L(HS) we can expand, for example,

Aβ =
∑

k,q

Aβ ,kqEkq, (6)

where Aβ ,kq = 〈k|Aβ |q〉. We have now to replace the decomposition (6) inside Eq. (5): the
details are reported in App. A. Going back to the Schrödinger picture, one finds

dρ(t)
d t

= −i[HS +HLS(t),ρ(t)] +
∑

k,q,n,m

χkq,nm(t)
�

Ekqρ(t)E
†
nm −

1
2
{E†

nmEkq,ρ(t)}
�

, (7)

where
χkq,nm(t) =
∑

α,β

�

Γαβ(ωkq, t) + Γ ∗βα(ωnm, t)
�

Aβ ,kqA∗α,nm, (8)

HLS(t) =
∑

k,q,n,m

ηkq,nm(t)E
†
nmEkq, ηkq,nm(t) =

∑

α,β

�

Γαβ(ωkq, t)− Γ ∗βα(ωnm, t)
�

Aβ ,kqA∗α,nm,

(9)
and

Γαβ(ω, t) :=

∫ t

0

dτcαβ(τ)e
iωτ. (10)

We also introduced the Bohr frequencies ωkq :=ωq −ωk. Since χ and HLS generally depend
on time, we do not have an equation of the form (2) yet. A common way to strictly obtain an
equation in the form (2) is to perform the second Markov approximation [6], that amounts in
replacing
∫ t

0 →
∫∞

0 in (10). In this scenario, we will write Γαβ(ω) = limt→∞ Γαβ(ω, t). For
future reference, notice that if we split Γαβ = Jαβ+ iSαβ in its real and imaginary part, we have

Jαβ(ω) =
1
2

∫ ∞

−∞
dτcαβ(τ)e

iωτ =
ĉαβ(ω)

2
, (11)

where ĉαβ is the Fourier transform of cαβ . Therefore one can invoke Bochner’s theorem to
infer that J is a positive semidefinite matrix [6].

In the general time-dependent case it is difficult to say when the Redfield equation leads to
CPT dynamics, since (to our knowledge) there have not yet been found necessary conditions
for complete positivity of a time-dependent generator. However, we do know a sufficient
condition, namely χ(t) ≥ 0. Unfortunately (as we shall also see in Sec. 3.2), χ(t) is not
positive semidefinite in general for the Redfield equation. In the time-independent case, this
is a long-standing well-known problem [12].
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3 Regularization procedures

3.1 Common existing regularizations

We argue that most of the procedures to recover positivity from the Redfield equation are in
fact ways to transform the matrix χ in Eq. (8) into a positive semidefinite one, and the vast
majority of them only deals with the time-independent case. For example, a popular approach
consists in performing a coarse-graining transformation in the equation for eρ(t) [16, 18]. In
our notations, this means that we apply the operation

C∆t(X (t)) :=
1
∆t

∫ t+∆t/2

t−∆t/2
X (s)ds (12)

to both sides of Eq. (46). The advantage lies in the fact that if we choose ∆t ≪ τS , where
τS is the timescale of variation of eρ(t), we can ignore the action of C∆t on eρ(t) and pull the
latter out of the integral. Using the fact that

1
∆t

∫ t+∆t/2

t−∆t/2
ei(ωnm−ωkq)sds = sinc

�

(ωnm −ωkq)∆t

2

�

, (13)

where sinc(x) = sin(x)/x is the cardinal sinus, we see that the effect of the coarse graining is
given by the substitution

χkq,nm→ χ
(∆t)
kq,nm := χkq,nmsinc

�

(ωnm −ωkq)∆t

2

�

, (14)

and similarly for the Lamb shift coefficient ηkq,nm → η
(∆t)
kq,nm. The interesting fact about this

expression is that one can prove that if ∆t is sufficiently high the matrix χ(∆t) will be positive
semidefinite [18]. In the extreme situation ∆t →∞ one has

χ
(∞)
kq,nm = χkq,nmδωkq ,ωnm

, (15)

which is the Kossakowski matrix obtained with a secular approximation [6]. For this reason
one also says that χ(∆t) with general (but appropriate)∆t is the Kossakowski matrix in partial
secular approximation.

A more recent and permissive construction is the one provided by Nathan and Rudner in
Ref. [22] and by Davidović in Ref. [5]. The idea is to replace the arithmetic mean that appears
in (8) with a geometric one:

Γαβ(ωkq) + Γ
∗
βα(ωnm)→ 2
�
Æ

J(ωnm)
q

J(ωkq)
�

αβ
, (16)

where it is intended matrix multiplication of matrix square roots (recall that J ≥ 0). It can be
shown that this approach is justified whenever τS ≫ 1/ωA, where ωA is representative of the
frequency range of the system [33].

3.2 New regularization

Since we have to regularize the Kossakowski matrix, the following proposal seems very nat-
ural: for every t ≥ 0, replace χ(t) with its closest positive semidefinite matrix of the same
dimension. More precisely, given a norm ∥·∥ on the space of N × N complex matrices we
define

χ+(t) := arg min
P=P†≥0

∥χ(t)− P∥ (17)
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and use χ+(t) instead of χ(t) in the Redfield equation, thus obtaining a LGKS-like equation.
Unlike standard approaches, notice that here we are retaining the time dependence of χ. If
we choose the Frobenius norm, an explicit formula for χ+(t) exists [34]. Since in our case
χ(t) is Hermitian the same expression is obtained by using the 2-norm, as Ref. [34] shows.
The result is that χ+(t) is the “positive part” of χ(t), obtained from χ(t) by putting to zero
the negative eigenvalues:

χ+(t) =
χ(t) +
p

χ†(t)χ(t)
2

. (18)

This gives a fairly general efficient way to determine χ+(t), at least numerically: it is sufficient
a spectral decomposition.

In order to gain some understanding we will now make some observations about the spec-
tral structure of χ(t) in (8). For notational convenience, here we will not write the time pa-
rameter and we will use collective indices i = (k, q) and j = (n, m), lexicographically ordered.
Moreover we write Γαβ ,i to mean Γαβ(ωkq, t). Then we have

χi j =
∑

α,β

(Γαβ ,i + Γ
∗
βα, j)Aβ ,iA

∗
α, j =
∑

α

(Gα,iA
∗
α, j + Aα,iG

∗
α, j), (19)

where Gα,i :=
∑

β Γαβ ,iAβ ,i . If we define the vectors |Aα〉 =
∑

i Aα,i |i〉 and |G〉α =
∑

i Gα,i |i〉
one can easily verify that

χ =
∑

α

(|Aα〉〈Gα|+ |Gα〉〈Aα|). (20)

Up to now |Aα〉 and |Gα〉 are general vectors. Since every Hermitian matrix can be written in
the form (20), it is quite difficult to say something general about its spectrum.

A case that can be treated explicitly is when there is only one noise channel M = 1. Here
we can drop the α,β indices and obtain

χ = |A〉〈G|+ |G〉〈A| . (21)

Let us ignore the trivial cases in which Ai ≡ 0 or Γi ≡ 0, which would lead to χ = 0. Then
it is easy to see that the vectors |A〉 and |G〉 are linearly independent, unless Γi ≡ Γ ̸= 0,
in which case |G〉 = Γ |A〉. In the latter scenario χ = 2Re Γ |A〉〈A|: this is a rank-one ma-
trix with nonzero eigenvalue λ = 2Re Γ∥A∥2 and associated normalized eigenvector |A〉/∥A∥,
where ∥A∥2 =
∑

i |Ai|2. This case is not so interesting because, at least when t →∞, λ ≥ 0
by Bochner’s theorem and no regularization is needed. However note that many common
models based on qubits and harmonic oscillators resonantly coupled with a bosonic bath fall
exactly in the case mentioned above (see App. B for details). Suppose instead that |A〉 and |G〉
are independent. Then χ is a rank-two matrix and the eigenvectors associated with nonzero
eigenvalues are of the form |v〉= a |G〉+ b |A〉. Writing χ |v〉= λ |v〉 and equating coefficients
we find two solutions:

λ± = Re 〈G|A〉 ±
q

∥G∥2∥A∥2 − Im2 〈G|A〉, (22a)
�a

b

�

±
=
λ± − 〈G|A〉
∥G∥2

. (22b)

Notice that by the Cauchy-Schwarz inequality λ+ ≥ 0 and λ− ≤ 0, and we confirm that χ is
not positive semidefinite in general [12], even in the time-dependent case.

It is instructive to rewrite these expressions in terms of physical quantities, which are en-
coded in Γ . Given a vector x ∈ RN2

let us define

〈x〉 :=
∑

i x i|Ai|2
∑

i |Ai|2
, (23)

6
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a notation that treats |Ai|2 as a probability distribution. Then

λ± = ∥A∥
2 [〈J〉 ±V(Γ )] , (24)

where we defined for convenience the quantity

V(Γ ) :=
Æ

〈J〉2 + Var(J) + Var(S). (25)

Var(x) := 〈x2〉−〈x〉2 is the variance of x ∈ RN2
. The same result was obtained in Refs. [15,33].

Notice that the bigger the variances the bigger the magnitude of the negative eigenvalue,
hence the regularization is expected to cause minimum disturbance when the environment
correlation function is quite flat in frequency space. A similar expression can be found in
Ref. [24]. There the authors parametrically splitted the Redfield equation in a “positive” and
a “negative” contribution, minimizing the latter with an optimized choice of the parameters.
For a single noise channel this is equivalent to our formulation, since if we write χ = χ++χ−,
where χ− := (χ−

p

χ†χ)/2, then




χ −χ+




=




χ−




 and we know that χ+ minimizes ∥χ − P∥
for positive semidefinite P. Our approach generalizes this view, since it provides a well-defined
procedure to regularize the Kossakowski matrix with an arbitrary number of (even correlated)
noise channels.

To conclude, let us provide the expression for the regularized Kossakowski matrix in the
single noise channel scenario (cf. Eq. (21)). It is given by χ+ = λ+ |+〉〈+|, where |+〉 is the
normalized eigenvector associated with λ+. For simplicity, let us indicate here λ≡ λ+. Given
the shape of a/b in (22), consider the eigenvector

|v〉= (λ− 〈G|A〉) |G〉+ ∥G∥2 |A〉 . (26)

A calculation shows that
∥v∥2 = 2λ∥G∥2∥A∥2V(Γ ). (27)

The normalized eigenvector is therefore |+〉= a |G〉+ b |A〉 with

a =
λ− 〈G|A〉
∥v∥

, b =
∥G∥2

∥v∥
, (28)

and then χ+ = λ(a |G〉+ b |A〉)(a∗ 〈G|+ b∗ 〈A|). Using the expressions given above, one finds
after some algebra that the components of χ+ are

χ+i j =
AiA
∗
j

2V(Γ )
�

ΓiΓ
∗
j + 〈J

2〉+ 〈S2〉+ (V(Γ ) + i〈S〉)Γi + (V(Γ )− i〈S〉)Γ ∗j
�

. (29)

4 Example: open three-level system

Now we want to compare different regularization procedures for a system that can be solved
exactly, in order to try to assess which performs better. We will study a minimal model that
is sufficiently complex to show the feasibility of our approach. A well-known example of
an exactly solvable open quantum system is the spontaneous decay of a qubit into the field
vacuum [6]. As it will be clear later, this setting is not complex enough for our purposes since
the Kossakowski matrix turns out to be rank-one positive in the limit t →∞. A less known
fact is that some kinds of open three-level systems can also be solved exactly [35], so we take
that route.

Consider the V-system depicted in Fig. 1, with free Hamiltonian

HS =ω1 |1〉〈1|+ω2 |2〉〈2| (30)

7
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Figure 1: Open three-level V-system described in Sec. 4. The arrows indicate transi-
tions induced by an external bosonic environment in its vacuum state.

(we assume the ground state |0〉 to be at zero energy). The environment is an infinite collection
of bosonic modes with Hamiltonian HE =

∑

p εp b†
p bp and placed in the respective vacuum |Ω〉.

The interaction is a linear coupling that causes transitions between the levels |0〉 and |1〉 and
between the levels |0〉 and |2〉:

HI =
∑

p

�

g1,p |0〉〈1|+ g2,p |0〉〈2|
�

⊗ b†
p +H.c., (31)

where the coupling constants g1,p and g2,p are assumed for simplicity to be real numbers.
For the purpose of writing the Redfield equation, a simple calculation shows that the only

relevant coupling operators are

Aα = |0〉〈α| , Bα =
∑

p

gα,p b†
p, α ∈ {1,2}. (32)

The others will make cαβ = 0 and hence do not appear in the final master equation. Instead,
for these we have cαβ(τ) =

∑

p gα,p gβ ,pe−iεpτ ̸= 0. For example, let us assume

cαβ(τ) =
γαβµ

2
e−µ|τ|e−iω0τ, (33)

where µ,ω0 ≥ 0 and

γ=

�

γ1
p
γ1γ2p

γ1γ2 γ2

�

, γ1,γ2 ≥ 0. (34)

This exponential shape comes from a Lorentzian bath assumption with

Jαβ(ω) =
γαβµ

2
µ

(ω−ω0)2 +µ2
. (35)

This is the choice that was made in Ref. [35] and we follow it here to provide a direct com-
parison between the exact dynamics and the various master equations. In order to make the
paper self-contained we provide in App. C the derivation of the exact solution that is used in
the following numerical calculations (cf. Eq. (61) and Eq. (70)).

4.1 Numerical comparison

The structure of the Redfield equation (cf. (8)) is determined by the presence of the factor

Aβ ,kqA∗α,nm = 〈k|0〉 〈β |q〉 〈0|n〉 〈m|α〉 . (36)

This means that the only nonzero entries of χ(t) occur for k = n= 0 and q = β , m= α. With
a quick calculation one realizes that

dρ
d t
= −i[HS +HLS(t),ρ] +

∑

α,β

dαβ(t)
�

〈β |ρ|α〉 |0〉〈0| −
1
2
{|α〉〈β | ,ρ}
�

, (37)

8
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where
dαβ(t) := Γαβ(ωβ , t) + Γ ∗βα(ωα, t) (38)

and the Lamb shift is HLS(t) =
∑

α,β hαβ(t) |α〉〈β | with

hαβ(t) :=
1
2i

�

Γαβ(ωβ , t)− Γ ∗βα(ωα, t)
�

. (39)

We can also conveniently rewrite

dρ
d t
=
∑

α,β

�

dαβ(t)ρβα |0〉〈0|+φαβ(t)ρ |α〉〈β |+φ∗βα(t) |α〉〈β |ρ
�

, (40)

where ρβα = 〈β |ρ|α〉 and

φαβ(t) := iδαβωα + ihαβ(t)−
1
2

dαβ(t). (41)

With respect to the basis {|0〉 , |1〉 , |2〉} this can also be written in components as

ρ̇00 = d11ρ11 + d21ρ12 + d12ρ21 + d22ρ22,

ρ̇01 = φ11ρ01 +φ21ρ02,

ρ̇02 = φ12ρ01 +φ22ρ02,

ρ̇11 = −d11ρ11 +φ21ρ12 +φ
∗
21ρ21,

ρ̇12 = φ12ρ11 + (φ
∗
11 +φ22)ρ12 +φ

∗
21ρ22,

ρ̇22 = φ
∗
12ρ12 +φ12ρ21 − d22ρ22.

(42)

This is a linear system of first-order differential equations that can be efficiently solved by a
numerical routine: here we adopted a Runge-Kutta method (RK45) provided by the Python
library scipy [36,37].

Notice that the Kossakowski matrix for this setting (which is 9 × 9) is filled with zeros
except for a 2×2 block with entries dαβ . Therefore it is clear that regularizing χ is equivalent
to regularizing d. By choosing a two-level system instead of a three-level one the nonzero
block would have consisted of a single entry: this scenario would be trivial since positivity is
then guaranteed by Bochner’s theorem, at least in the time-independent case. See App. B for
clarifications on this point.

Now we present a comparison between the exact solution provided by Ref. [35] (reported
here in App. C, cf. Eq. (61) and Eq. (70)) and what we obtain by numerically solving the
system in (42) for various choices of regularization of the matrix d. For the comparison to be
meaningful we put ourselves in a parameter region for which we expect to have Markovian
evolution: in particular we choose ω0 = (ω1 + ω2)/2 and µ > (ω1 + ω2)/2, so that the
Lorentzian spectral density (35) is reasonably flat at the relevant frequencies. In Fig. 2 we
report the results for the evolution starting from the pure initial state |ψ0〉 = (|1〉+ |2〉)/

p
2,

and choosing as parameters ω1 = 1, ω2 = 2, ω0 = 1.5, γ1 = γ2 = 1, and µ = 4. At this level
all equations behave more or less similarly. Except for the fact that the secular-approximated
one globally provides the worst results, it is hard to tell which of the others performs better.
The situation is similar for other choices of parameters (while still remaining in the Markovian
regime, of course).

4.2 Choi operator technique

If we want to assess more carefully the quality of a regularization procedure we should find
a way to compare the results with the exact one in a way that is independent from the initial

9
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Figure 2: Temporal evolution of the density matrix elements starting from the pure
state |ψ0〉 = (|1〉+ |2〉)/

p
2. The label “Regularized Redfield” refers to the proposal

of the present paper. The partial secular case (cf. (14)) is obtained by finding the
smallest coarse-graining time that guarantees positivity of the Kossakowski matrix.
The label “ULE” refers to the “universal Lindblad equation” described in Ref. [22]
(also, cf. (16)). Here ω1 = 1, ω2 = 2, ω0 = 1.5, γ1 = γ2 = 1, and µ= 4.

state. In order to do that, let us step back to the dynamical semigroup picture of Sec. 2. What
we actually want is to compare the semigroup {Φt,s} generated by our master equation with

the semigroup {Φ(e)t,s } generated by the exact dynamics. Here we propose a simple approach
to compare them pointwise, i.e., at fixed time t. More global comparisons should be possible
but are out of the scope of the present paper and are left to future work.

Given a map Φt,s : L(HS)→ L(HS) we can construct the Choi operator [26,27]

J (Φt,s) :=
N
∑

n,m=1

Φt,s(Enm)⊗ Enm ∈ L(HS ⊗HS). (43)

A well-known fact is that Φt,s is completely positive if and only if J (Φt,s) ≥ 0. However, we
are mostly interested in the fact that there exists a bijection Φt,s ↔ J (Φt,s), which is the
Choi-Jamiołkowski isomorphism. The usefulness of this observation is twofold. First of all, on
L(HS ⊗HS) we have well-established metrics that we can use, such as the Hilbert-Schmidt
norm ∥X∥F =

p
Tr X †X or the trace norm ∥X∥1 = Tr

p
X †X . Secondly, if we compute

δ(t) :=







J (Φt,0)−J (Φ
(e)
t,0)







 (44)

we have a (pointwise) measure of the difference between the two dynamics that does not de-
pend on the initial state. In Fig. 3 we report an example for δ(t) calculated with the Hilbert-
Schmidt norm for various master equations. Here we can see how our version of the regular-
ized Redfield equation approximates well the exact dynamics in a more consistent way with
respect to the other master equations, especially at short times. This is clearly a consequence
of our ability to retain time dependence in the Kossakowski matrix. Notice that this was not
at all clear with a direct comparison at the level of the density matrix. We checked that these
conclusions remains qualitatively valid using the trace norm.

10
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Figure 3: Distance from the exact dynamics as represented by the quantity δ(t), de-
fined in (44), using the Hilbert-Schmidt norm. Here ω1 = 10, ω2 = 20, ω0 = 15,
γ1 = γ2 = 1, and µ= 20. The various master equations are chosen as in Fig. 2. Sim-
ilar results are obtained with different choices of parameters, while still remaining
in the Markovian regime.

5 Conclusions

In this work we looked at the problem of finding a LGKS-like equation from the microscopic
dynamics as a regularization process of the Kossakowski matrix in the Redfield equation. With
this picture in mind, we proposed to replace such a matrix with its closest positive semidefinite
one, thus providing the CP-divisible dynamics that is closest to the Redfield one. We also used
the Choi-Jamiołkowski isomorphism to envision a pointwise measure of the distance between
two dynamical processes, and we applied it to the problem of assessing which master equation
better approximates the exact dynamics of a simple open three-level system. We found our
proposal to lead to the overall best results in this regard, being also one of the few to retain
the time dependence of the Kossakowski matrix.

A possible future improvement would be to envision a meaningful measure of the distance
between two dynamical processes which goes beyond the pointwise approach followed here:
this is an interesting problem on its own and can lead to other general applications.

Another question that needs to be addressed is to what extent our conclusions can be
applied to infinite-dimensional systems, where it is trickier to apply the LGKS theorem and
where we expect the choice of the involved norms to matter more.
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A Standard form of the Redfield equation

In this appendix we see how to write the Redfield equation (5) resulting from the Born-Markov
approximation, in the form (2). This step is necessary to derive the Kossakowski matrix associ-
ated with the Redfield equation, check that is not positive semidefinite in general and discuss
eventual regularization procedures. In the interaction picture the decomposition (6) becomes

eAβ(t −τ) =
∑

k,q

Aβ ,kqe−iωkq(t−τ)Ekq, (45)

where we introduced the Bohr frequenciesωkq :=ωq−ωk associated with the jumps between
the eigenstates of the system Hamiltonian |q〉 and |k〉. Applying Eq. (45) to eAβ(t − τ) and
eA†
α(t) in Eq. (5) we end up with

d eρ(t)
d t

=
∑

α,β

∑

k,q,n,m

Γαβ(ωkq, t)Aβ ,kqA∗α,nmei(ωnm−ωkq)t[Ekq eρ(t), E†
nm] +H.c., (46)

where we introduced the quantity Γαβ defined in Eq. (10) of the main text. The exponential
factor in (46) can be eliminated by going back to the Schrödinger picture:

dρ(t)
d t

= −i[HS ,ρ(t)] +
∑

k,q,n,m

�

Kkq,nm(t)[Ekqρ(t), E†
nm] +H.c.
�

, (47)

where we defined the matrix

Kkq,nm(t) :=
∑

α,β

Γαβ(ωkq, t)Aβ ,kqA∗α,nm. (48)

Let us focus on the term inside the round brackets in Eq. (47). If we expand the commutator
and write explicitly the “H.c.” part we get

Kkq,nm[Ekqρ, E†
nm]+H.c.= Kkq,nm(EkqρE†

nm− E†
nmEkqρ)+ K∗kq,nm(EnmρE†

kq −ρE†
kqEnm), (49)

where we dropped the time dependence of ρ(t) and Kkq,nm(t) for ease of notation. It is con-
venient to treat the first and third term of the right-hand side together. Replacing them in the
sum in Eq. (47) we have
∑

k,q,n,m

(Kkq,nmEkqρE†
nm + K∗kq,nmEnmρE†

kq) =
∑

k,q,n,m

(Kkq,nm + K∗nm,kq)EkqρE†
nm. (50)

The second and fourth term of Eq. (49) can be treated similarly:
∑

k,q,n,m

(Kkq,nmE†
nmEkqρ + K∗kq,nmρE†

kqEnm) =
∑

k,q,n,m

(Kkq,nmE†
nmEkqρ + K∗nm,kqρE†

nmEkq)

=
1
2

∑

k,q,n,m

�

(Kkq,nm + K∗nm,kq){E
†
nmEkq,ρ}+ (Kkq,nm − K∗nm,kq)[E

†
nmEkq,ρ]
	

. (51)

Equation (7) is obtained by plugging Eqs. (50) and (51) in Eq. (47) and introducing the ma-
trices ηkq,nm, χkq,nm defined in Sec. 2 of the main text.

12
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B Kossakowski matrix for a qubit and a harmonic oscillator

In this section we compute the Kossakowski matrix of two common scenarios, in which a
bosonic bath is coupled with either a qubit or a harmonic oscillator. Although simple, these
examples share an interesting peculiarity: the Kossakowski matrix of the corresponding time-
independent Redfield equation is positive semidefinite, so that no regularization is needed to
ensure the positivity of the dynamics.

In the first model a qubit is coupled to a bath of harmonic oscillators with a rotating
wave interaction Hamiltonian. Denoting the two energy levels of the qubit as |0〉 , |1〉 we have
HS =ω1 |1〉〈1|, HE =

∑

p εp b†
p bp, while the interaction Hamiltonian writes

HI =
∑

p

g1,p |0〉〈1| ⊗ b†
p +H.c., (52)

where bp is the creation operator relative to the environmental mode p. Using the notation
of Eq. (4) we have A1 = |0〉〈1|, and B1 =

∑

p g1,p b†
p, while the Hermitian conjugates of A1, B1

do not contribute to the dynamical equation since the relative correlation function 〈b̃†
p(τ)bp〉

vanishes. The coordinates of A1 in the decomposition (6) are simply given by A1,kq = δk,0δq,1
so that

Kkq,nm(t) = Γ11(ωkq, t)δk,0δq,1δn,0δm,1 = Γ11(ω01, t)δk,0δq,1δn,0δm,1. (53)

Then the Kossakowski matrix reads

χkq,nm(t) = [Γ11(ω1, t) + Γ ∗11(ω1, t)]δk,0δq,1δn,0δm,1, (54)

where we used ω01 = ω1. The matrix in Eq. (54) is diagonal, with the single non-zero el-
ement being χ01,01(t). After the second Markov approximation is applied, we are left with
χ01,01 = 2ReΓ11(ω1) that is ensured to be positive as a consequence of Bochner’s theorem.

The case of the harmonic oscillator can be treated similarly. While the bath Hamiltonian
is the same as the preceding example, we have HS =ωSa†a and

HI =
∑

p

g1,pa⊗ b†
p +H.c., (55)

where a, a† are creation and annihilation operators of the system. We repeat the calculations
done for the qubit, but considering A1 = a and obtaining A1,kq =

∑∞
l1=0

p

l1 + 1δk,l1δq,l1+1 and

Kkq,nm(t) =
∞
∑

l1,l2=0

Γ11(ωS , t)
Æ

l1 + 1
Æ

l2 + 1δk,l1δq,l1+1δm,l2δn,l2+1. (56)

We perform the sum on l1, l2 and compute the associated Kossakowski matrix, that writes

χkq,nm(t) = 2ReΓ11(ωS , t)
p

k+ 1
p

m+ 1δq,k+1δn,m+1. (57)

Looking for a redefinition of the indices (k, q) = i and (n, m) = j as in Sec. 3.2, we notice that
n, q are forced to be equal to m+1, k+1 respectively. The only ordered couples with a nonzero
contribution to the r.h.s. of (57) are of the form (k, q) = (i, i + 1), so that we can adopt the
simple mapping (k, q) = (i, i+1)→ j and (m, n) = ( j, j+1)→ i. In this new notation Eq. (57)
reads

χi, j(t) = 2ReΓ11(ωS , t)
p

i + 1
p

j + 1, (58)

that has an evident dyadic structure χi, j(t) = 2ReΓ11(ωS , t) |a〉 〈a|where |a〉= (1,
p

2,
p

3, ...).
The matrix above is positive semidefinite only if ReΓ11(ωS , t)> 0, that is guaranteed again by
applying the second Markov approximation.
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C Exact solution of the open three-level system

In this appendix we provide the exact solution of the open three-level system described in
Sec. 4, which is originally described in Ref. [35]. Suppose that the initial state of the universe
is the following pure state:

|Ψ(0)〉= (a0(0) |0〉+ a1(0) |1〉+ a2(0) |2〉)⊗ |Ω〉 . (59)

Since the total number of excitations is conserved, the state at time t must be of the form

|Ψ(t)〉= (a0(t) |0〉+ a1(t) |1〉+ a2(t) |2〉)⊗ |Ω〉+
∑

p

dp(t) |0〉 ⊗
�

�1p

�

, (60)

where
�

�1p

�

is the state of the bath that supports a single excitation at energy εp. From here
it is easy to see that the reduced density operator of the system can be written in the basis
{|0〉 , |1〉 , |2〉} as

ρ(t) := TrE |Ψ(t)〉〈Ψ(t)|=





1− |a1(t)|2 − |a2(t)|2 a0(t)a∗1(t) a0(t)a∗2(t)
a∗0(t)a1(t) |a1(t)|2 a1(t)a∗2(t)
a∗0(t)a2(t) a∗1(t)a2(t) |a2(t)|2



 . (61)

Writing the evolution equation i∂t |Ψ(t)〉 = HU |Ψ(t)〉 and comparing the coefficients, one
finds

ȧ0(t) = 0, (62a)

ȧα(t) = −iωαaα(t)− i
∑

p

gα,pdp(t), (62b)

ḋp(t) = −iεpdp(t)− i g1,pa1(t)− i g2,pa2(t), (62c)

where α ∈ {1, 2}. From Eq. (62a) we immediately conclude that a0(t) = a0(0) for all t ≥ 0.
Remembering that dp(0) = 0, Eq. (62c) can be formally integrated as

dp(t) = −i

∫ t

0

dτ e−iεp(t−τ)
�

g1,pa1(τ) + g2,pa2(τ)
�

, (63)

from which we obtain the following after substitution into Eq. (62b):

ȧ1(t) = −iω1a1(t)−
∫ t

0

dτ c11(t −τ)a1(τ)−
∫ t

0

dτ c12(t −τ)a2(τ), (64a)

ȧ2(t) = −iω2a2(t)−
∫ t

0

dτ c21(t −τ)a1(τ)−
∫ t

0

dτ c22(t −τ)a2(τ), (64b)

where cαβ is the correlation function in Eq. (33). This system can be solved with a Laplace

transformation f̂ (s) =
∫∞

0 d t f (t)e−st , after which

sâ1(s)− a1(0) = −iω1â1(s)− ĉ11(s)â1(s)− ĉ12(s)â2(s), (65a)

sâ2(s)− a2(0) = −iω2â2(s)− ĉ21(s)â1(s)− ĉ22(s)â2(s). (65b)

Now we impose the Lorentzian bath assumption (33)-(35): define M := µ+ iω0 and the zero-
determinant matrix Gαβ := γαβµ/2 and notice that ĉαβ(s) = Gαβ/(p + M). Inserting above
one obtains

â1(s) =
a1(0)[(s+ iω2)(p+M) + G22]− G12a2(0)

Q(s)
, (66a)

â2(s) =
a2(0)[(s+ iω1)(p+M) + G11]− G21a1(0)

Q(s)
, (66b)

14
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where Q(s) = s3 + h1s2 + h2s+ h3 is a polynomial in s with coefficients

h1 = M + i(ω1 +ω2), (67a)

h2 = G11 + G22 −ω1ω2 + iM(ω1 +ω2), (67b)

h3 = −Mω1ω2 + i(ω1G22 +ω2G11). (67c)

Assuming that Q(s) has three nondegenerate roots r1, r2, r3 we can apply the following La-
grange partial fraction decomposition:

A(s)
Q(s)

=
3
∑

j=1

A(r j)

Q′(r j)
1

s− r j
, (68)

where Q′(s) = 3s2 + 2h1s+ h2 is the derivative of Q(s). The result is

â1(s) =
3
∑

j=1

a1(0)[(r j + iω2)(r j +M) + G22]− G12a2(0)

3r2
j + 2h1r j + h2

·
1

s− r j
, (69a)

â2(s) =
3
∑

j=1

a2(0)[(r j + iω1)(r j +M) + G11]− G21a1(0)

3r2
j + 2h1r j + h2

·
1

s− r j
. (69b)

The inverse Laplace transform of these expressions leads to the desired solution:

a1(t) =
3
∑

j=1

a1(0)[(r j + iω2)(r j +M) + G22]− G12a2(0)

3r2
j + 2h1r j + h2

er j t , (70a)

a2(t) =
3
∑

j=1

a2(0)[(r j + iω1)(r j +M) + G11]− G21a1(0)

3r2
j + 2h1r j + h2

er j t , (70b)

together with a0(t) = a0(0).
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