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Abstract

The measurement-induced phase transition (MIPT) occurs when the system is evolving un-
der unitary evolution together with local measurements followed by post-selection. We pro-
pose a generalized version of the Lindblad master equation as a continuous equation, to
describe the dynamics of the second Rényi entropy in the MIPT. This generalized Lindblad
equation explicitly takes into account the post-selection in the MIPT, which is realized as
the Einstein-Podolsky-Rosen (EPR) state projection in the equation. Also, this generalized
Lindblad equation preserves the Hermitian, unit trace, and positive definiteness of the den-
sity matrix. We further use the hard-core Bose-Hubbard model as a concrete example to
numerically confirm that our generalized Lindblad equation is applicable to describing the
MIPT.
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1 Introduction

Recent years have seen major progress in the understanding of quantum entanglement, and the
study of entanglement transitions that separate different entanglement phases have been wildly
discussed. Since the unitary evolution of a closed system typically drives it towards volume-law
scaling for the entanglement entropy of subsystems, adding local measurement in the evolution
process has been raised as a method to restrict the growth of entanglement. The study of the entan-
glement transition gave rise to the concept of the measurement-induced phase transition (MIPT).
In measurement-induced phase transition, the unitary evolution can establish the entanglement
between different parts of the system, while the local projective measurements on the system are
believed to destroy the entanglement between different parts of the system. Thus, there is a com-
peting relation between the unitary evolution and local measurements, and therefore, the increase
in measurement rate can lead to an entanglement phase transition [1–7]. This dynamical process
in some cases can be mapped to a classical percolation problem, making it feasible for large-size
classical simulation [8]. It also enables the study of the phase diagram and critical exponents
in different regions [9–15]. The nature of this phase transition has been analyzed from different
perspectives including classical statistical mechanics models [8,16], information scrambling [17],
quantum error corrections [18, 19] and symmetry breaking [20].

The methods of studying entropy dynamics under measurements include tensor network [21–
23], matrix product state [24], random unitary circuit [16, 25]. However, it remains an open ques-
tion to find an equation that is continuous in time to describe the entropy dynamics of a quantum
system along this unitary evolution together with measurements. Also, the role of post-selection
is essential in this entanglement phase transition since it excludes the entropy corresponding to
the probability distribution of different measurement results, and thus makes it possible to obtain
the entanglement transition. Therefore, it should be explicitly written in this continuity equation.
Here, we consider the dynamics of the second Rényi entropy of the system under unitary evolu-
tion together with projective measurements, followed by post-selections to project a general mixed
state to a pure state.

In this paper, we derive a dynamical equation of density matrix to describe the second Rényi
entropy dynamics under unitary evolution and projective measurements that are followed by post-
selections. This generalized Lindblad equation preserves the Hermitian, unit trace, and positive
definiteness of the density matrix. Moreover, in this process, the entropy comes from two parts: the
entanglement entropy of the system corresponding to different measurement results, and the en-
tropy corresponding to the probability distribution of different measurement results. In the MIPT,
we only care about the entropy of the former part, so we need to exclude the entropy of the latter
part. In our equation, we use the measurement on a partial basis to directly exclude this part of
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entropy. Since the measurement on the partial basis is explicitly written in our equation, we can
observe the entanglement phase transition by directly calculating the entanglement entropy from
our equation. Thus, we do not need to run the same protocol many times and post-process the
entropy results to observe this phase transition. Our generalized Lindblad equation thus provides
a natural description of the entropy dynamics along this process.

2 The generalized Lindblad equation for measurement process

We first briefly review how to obtain a Lindblad-like equation that describes a system under unitary
evolution together with frequent measurements [26–29].

For a closed system under unitary evolution, the time evolution of the density matrix of the
system follows:

∂ρ

∂t
= −i[Ĥ, ρ]. (1)

Thus, to the first order of δt, we obtain

ρ(t + δt) ' ρ(t) − i[Ĥ, ρ(t)]δt + o(δt)2. (2)

Next, we consider the system being measured at an equal time interval δt. During two neighbor-
ing measurements, the system’s evolution is governed by Ĥ. Then, the density matrix after the
measurements is

ρM(t + δt) =
∑

a

L̂aρ(t + δt)L̂†a. (3)

Here, we use ρM to denote the density matrix after measurements (M), and L̂a is called the Lind-
blad operator or quantum jump operator. Here, a = 1, ..., n labels the possible quantum jumps
resulting from measurements.

If we simply assume that the probability of the system being measured at time t+δt is P(t+δt),
then the density matrix after this probabilistic measurement is:

ρM(t + δt) = [1 − P(t + δt)] ρ(t + δt) + P(t + δt)
∑

a

L̂aρ(t + δt)L̂†a. (4)

Here, we consider the system is projected to a complete basis

n∑
a=1

L̂†aL̂a = I, (5)

and this assumption preserves the trace of density matrix along this measurement process. By
assuming the completeness of measurement basis and taking the limit δt → 0 then we obtain a
differential equation of density matrix

∂ρ

∂t
= −i

[
H, ρ(t)

]
+ η(t)

n∑
a=1

[
L̂aρ(t)L̂†a −

1
2
{L̂†aL̂a, ρ(t)}

]
. (6)

Here, η(t) is the probability of the system being measured per unit time, and it is defined as
η(t + δt) =

P(t+δt)
δt . Here, we suppose that there is no singularity in η(t). This equation is the same

as the Lindblad master equation if we regard the measurement rate η(t) as the dissipation strength
γ.
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3 The measurement process followed by post-selection

When one considers the case where the system is projected on a partial basis, the Eq. (6) is not
able to describe the density matrix dynamics. Here, projection on a partial basis means we only
save the result of the system being projected on some specific states b where b = 1, 2, ...,m and
m < n. To see the failure of the Eq. (6) in this case, we can first directly use the Eq. (6) by
changing the summation on the right-hand side from a = 1, ..., n to a = 1, ...,m. Then, we will find
that this new equation does not preserve the trace of the density matrix. Therefore, to preserve
the unit trace of the density matrix, we need to normalize the density matrix when the system has
been measured. Thus, in comparison to the Eq. (4), after this probabilistic measurement and the
followed post-selection, the density matrix becomes:

ρM(t + δt) = [1 − P(t + δt)] ρ(t + δt) + P(t + δt)
∑m

a=1 L̂aρ(t + δt)L̂†a
Tr

(∑m
b=1 L̂bρ(t)L̂†b

) . (7)

Here, the denominator on the right-hand side is the normalization factor due to post-selection.
Similar to the Eq. (6), by taking the limit δt → 0, we further obtain:

∂ρ

∂t
= −i[Ĥ, ρ(t)] + η(t)

m∑
a=1

L̂aρ(t)L̂†a
Tr

(∑m
b=1 L̂bρ(t)L̂†b

) − η(t)
2

n∑
a=1

{L̂†aL̂a, ρ(t)}. (8)

If we set m = n which means we measure the system on a complete basis, we will find that the
normalization factor Tr

(∑n
b=1 L̂bρ(t)L̂†b

)
= 1 since we assume the completeness condition of L̂a in

the Eq. (5). In this case, the Eq. (8) is the same as the case without post-selection in the Eq. (6).
For the general m < n, the normalization factor

∑m
b=1 Tr[L̂bρ(t +δt)L̂†b] is generally not one and

depends on ρ(t), and this is a non-linear differential equation of ρ(t) different from the Lindblad
master equation. The non-trivial normalization factor given by the post-selection process leads to
a different differential equation of the density matrix.

4 The general properties of the generalized Lindblad equation

A dynamical equation of the density matrix should preserve the Hermitian, unit trace, and positive
definiteness properties of the density matrix. In the following, we will show that these three
properties of the density matrix are preserved under the evolution of our generalized Lindblad
equation.

We find that only the second term on the left-hand side of the Eq. (8) is different from the
original Lindblad master equation, and we know the original Lindblad master equation preserves
these three properties. Hence, we can simply compare the difference between the second term on
the right-hand side of our generalized Lindblad equation and that of the original Lindblad equation.

Firstly, since
∑m

a=1
L̂aρ(t)L̂†a

Tr
(∑m

b=1 L̂bρ(t)L̂†b
) is Hermitian, and Tr

[∑m
a=1

L̂aρ(t)L̂†a
Tr

(∑m
b=1 L̂bρ(t)L̂†b

) ] = Tr
[

1
2
∑n

a=1{L̂
†
aL̂a, ρ(t)}

]
= 1, it is easy to prove that ρ(t) is Hermitian and preserves its unit trace along this evolution.

Secondly, the proof of positive definiteness is more involved, and it is as follows. We use the
operator-sum representation of quantum channel [30]:

ρ(t + dt) = εdt[ρ(t)] =

n∑
a=0

M̂aρ(t)M̂†a . (9)

Here, M̂0 = Î + (−iĤ + K̂) dt
M̂a =

√
η(t)L̂a

√
dt, a , 0

(10)
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with L̂a representing quantum jump operators, and Î representing the identity operator. Here, K̂ =

− 1
2η(t)

∑n
a=1 L̂†aL̂a. It is straightforward to see that this operator sum representation of quantum

channel is equal to the Lindblad master equation the Eq. (6).
In our case, the density operator can be written in a similar operator-sum representation,

ρ(t + dt) = ε
p
dt[ρ(t)] =

m∑
b=0

M̂bρ(t)M̂†b (11)

with M̂0 = Î + (−iĤ + K̂) dt
M̂b =

√
αtη(t)L̂b

√
dt, b = 1, ...,m.

(12)

Here, K̂ = − 1
2η(t)

∑n
a=1 L̂†aL̂a, and we also assume the completeness condition the Eq. (5). Here,

the superscript p in the Eq. (12) denotes the case with post-selection, and αt =
[
Tr

(∑m
b=1 L̂bρ(t)L̂†b

)]−1

is the normalization factor attributed to post-selection. Also, since m ≤ n, the case where the sys-
tem is being projected on the complete basis is included in the Eq. (11). We assume that at time t,
the density matrix is positive definite, i.e. ρ(t) can be decomposed as ρ(t) =

∑
j p j|ψ j〉〈ψ j|, p j ≥ 0.

Thus, we see that

〈φ|ρ(t + dt)|φ〉 =

n∑
b=0

〈φ|M̂bρ(t)M̂†b |φ〉 =

n∑
b=0

∑
j

p j|〈ψ j|M̂
†

b |φ〉|
2 ≥ 0, ∀φ. (13)

Therefore, we conclude that ρ(t +dt) is positive definite provided that ρ(t) is positive definite. This
completes the proof.

5 Entanglement entropy in the MIFT

We then consider entropy dynamics in the MIPT. We here simply focus on studying the second
Rényi entropy defined as: S (2) = − log

[
Tr(ρ2)

]
. We first notice that the Eq. (8) is not able to

describe entropy dynamics along this process. The reason is as follows. Since the measure-
ment will produce different results, the density matrix of the system during the evolution process
is the summation of the density matrix corresponding to the different measurement results, and
the weight of each result is its probability of it. The reduced density matrix can be written as
ρA =

∑
c pcTrĀρc =

∑
c pcρA,c. Here, pc is the probability of getting ρc, and it satisfies

∑
c pc = 1.

Therefore, it can be seen that the entanglement entropy comes from two parts: the entanglement
entropy of the system corresponding to different measurement results − log{Tr[ρ2

A,c]}, and the en-
tropy corresponding to the probability distribution of different measurement results {pc}. In the
MIPT, we are only concerned with the former part of entropy, and therefore we need to exclude
the latter part. If the density matrix under the dynamic evolution described by the Eq. (8) is directly
used in calculating entropy, we calculate the entanglement entropy of the mixed state obtained by
the average of different measurement results:

S total
A ≡ − log

Tr


 m∑

c=1

pcρA,c

2
 . (14)

Here, pc is the probality of getting ρA,c, and it satisfies
∑

c pc = 1. Notice that not only the former
part of entropy but also the latter part of entropy is included here. Therefore, the dynamics of
entropy cannot be described only by the kinetic equation the Eq. (8).
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To exclude the latter part of entropy in MIPT, we define a new type of entanglement entropy
S new

A in this process as

S new
A = − log

∑
c

p̃c
[
TrAρ

2
A,c

] . (15)

Here, p̃c =
p2

c∑
c′ p2

c′
, and it also satisfies

∑
c p̃c = 1. To see that this definition of entanglement

entropy the Eq. (15) does not take into account the entropy coming from the probability dis-
tribution {pc} in contrast to the Eq. (14), we consider a simple example. We assume that the
system after evolution has probability p1 = 1

2 to be in ρA,1 with Tr[ρ2
A,1] = 1, and probability

p2 = 1
2 to be in ρA,2 with Tr[ρ2

A,2] = 1. This means that in both cases, there is no entangle-
ment entropy between subsystem A and B. Thus, the entropy only comes from the probability
distribution {pc} = {12 ,

1
2 }. Also, we assume Tr(ρA,1ρA,2) < 1 which means ρA,1 and ρA,1 are not

the same, then we obtain S new
A = − log[ 1

2 + 1
2 ] = 0 from the definition in the Eq. (15). How-

ever, if we use the S total
A defined in the Eq. (14) to calculate the entanglement entropy, we obtain

S total
A = − log[ 1

4 + 1
2 Tr(ρA,1ρA,2) + 1

4 ] = − log[ 1
2 + 1

2 Tr(ρA,1ρA,2)] > 0. Therefore, this definition of
entanglement entropy includes the entropy coming from the classical distribution {pc}. The proof
of a more general case is written in the supplementary material [42].

Moreover, when all density matrix ρA,c are mutually orthogonal, it is straightforward to prove
that S total

A ≥ S new
A where the equality is taken when there is only one outcome with probability

p1 = 1. That means S total
A − S new

A is non-negative as long as the entropy of probability distribution
{pc} is non-zero. The details of this proof are written in the supplementary material [42].

6 The application of generalized Lindblad equation on the MIFT

In this section, we show that the entanglement entropy defined in the Eq. (15) can be obtained
from a density matrix defined on a double space, and this double space density matrix’s evolution
is governed by a generalized Lindblad equation that we will propose later.

The dynamics of the second Rényi entropy can be mapped to the dynamics of a wave function
defined on a double space, and therefore the second Rényi entropy dynamics is more straightfor-
ward when it is written on a double space [31, 32]. We denote the two copies of the system on
double space as the left(L) and the right(R) system, and we use ρD to denote the total density
matrix of the double system. Given an initial density matrix ρ =

∑
mn ρmn|m〉〈n|, the double state

density matrix ρD is given by:

ρD = ρ ⊗ ρ =
∑
mnst

ρD
mn,st|m〉L ⊗ |s〉R〈n|L ⊗ 〈t|R (16)

with ρD
mn,st = ρmnρst. We can divide the system into subsystems A and B, and derive the en-

tanglement entropy of subsystem A from ρD. Via a standard double space technique, the single
system entropy S A ≡ − log

[
Tr(ρ2

A)
]

can be represented in the double space density matrix. Using

TrA(ρ2
A) = TrLA,RA(XAρA ⊗ ρA) = TrLA,RA

[
XATrLB,RB(ρD)

]
, we have

S A = − log{TrLA,RA

[
XATrLB,RB(ρD)

]
}, (17)

and it is illustrated in the Fig. (1).
Here, ρA is the reduced density matrix of subsystem A calculated from the total density matrix

as ρA = TrB[ρ]. Here, ρ is the density matrix of the full system. X is the swap operator defined
as X|α〉L|β〉R = |β〉L|α〉R. Here, XA is the swap operator that acts on the subspace A. LA(LB) is the
A(B) subsystem of the L system, and RA(RB) is the A(B) subsystem of the R system.
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Figure 1: The schematic diagram of calculating entanglement entropy from the double state den-
sity matrix ρD.

When we consider the second Rényi entropy, to exclude the entropy coming from the classical
distribution of different measurement results, we can enforce the condition that the L and the R
system always collapse to the same state after measurement. In the double space, this condition
means that the L and the R system are in the Einstein-Podolsky-Rosen (EPR) state. These above
considerations motivate the equation of motion of the total density matrix ρD:

∂ρD

∂t
= −i[ĤD, ρD(t)]+η(t)

n∑
a=1

L̂a,LL̂a,Rρ
D(t)L̂†a,LL̂†a,R

Tr
(∑n

b=1 L̂b,LL̂b,RρD(t)L̂†b,LL̂†b,R
)−η(t)

2

n∑
a.b=1

{L̂†a,LL̂a,LL̂†b,RL̂b,R, ρ
D(t)}.

(18)
Here, L̂a,L and L̂a,R represent the jump operators acting on the L and R system respectively. Also,
ĤD = Ĥ⊗Î+Î⊗Ĥ, and Î denotes the identity operator. This equation can be obtained by replacing ρ
by ρD,Ĥ by ĤD and L̂a by L̂a,LL̂a,R in the Eq. (8). Similar to the discussion in the previous section,
the numerator of the second term on the right-hand side

∑n
a=1 L̂a,LL̂a,Rρ

D(t)L̂†a,LL̂†a,R means that
the double system is being projected on the EPR state since the quantum jump operator on the
L and R system always being the same. It is a sharp contrast to the case where the numerator is
chosen as

∑n
a,b=1 L̂a,LL̂b,Rρ

D(t)L̂†a,LL̂†b,R. Since
∑n

a,b=1 L̂a,LL̂b,Rρ
D(t)L̂†a,LL̂†b,R describes the system

been projected on the complete basis of the double space, whereas EPR states are partial basis of
the double space. The denominator on the right hand side Tr

(∑n
b=1 L̂b,LL̂b,Rρ

D(t)L̂†b,LL̂†b,R
)

is the
normalization factor resulting from post-selection. It is easy to see that this normalization factor
is also non-trivial, making this equation a non-linear differential equation of ρD.

The generalized Lindblad equation Eq. (18) together with the entropy calculated through the
double space technique the Eq. (17) are the central results of this paper. The essential property of
the MIPT can be satisfied with this scheme, and the post-selection is explicitly embedded in the
EPR state projection condition in the Eq. (18). These arguments rely on two steps:

1. Firstly, we will prove that the entropy formula the Eq. (17) for the evolved density matrix
the Eq. (18) can be rewritten in the form of S new

A defined in the Eq. (15). This argument
fundamentally requires the EPR state projection structure achieved by double space and the
choice of Lindblad jump operators in the Eq. (18).

2. Secondly, as we find previously, S new
A in the Eq. (15) and the S total

A in the Eq. (14) are
conceptually different when describing the entanglement entropy. S new

A can exclude the
entropy coming from the classical distribution {pc} by excluding the cross term pcρc pc′ρc′

with c , c′ when calculating the entropy. In the aforementioned literature about MIPT
[8, 10, 15], such exclusions are implemented by post-selection, while here it was naturally
embedded in the framework of the generalized Lindblad equation.
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We will then give a proof of the first argument. Similar to the previous section, the evolution
of the double system density matrix can be represented in the operator-sum form

ρD(t + dt) = εdt[ρD(t)] =

m∑
b=0

M̂D
b ρ

D
0 (t)M̂D†

b (19)

with M̂D
0 = ÎD + (−iĤD + K̂D) dt

M̂D
b =

√
αD

t η(t)L̂b,LL̂b,R
√

dt, b = 1, ...,m.
(20)

Here, K̂D = K̂L + K̂R = −1
4η(t)

∑n
a=1 L̂†a,LL̂a,L −

1
4η(t)

∑n
a=1 L̂†a,RL̂a,R, and we also assume the

completeness condition the Eq. (5). Then, by only keeping the first order of dt, we find that M̂D
b

can be rewritten as M̂D
0 = M̂0,L ⊗ M̂0,R

M̂D
b = M̂b,L ⊗ M̂b,R, b = 1, ...,m

(21)

with

M̂0 = Î + (−iĤ + K̂) dt

M̂b =
[
αD

t η(t)
] 1

4 L̂b(dt)
1
4 ,

and αD
t =

[
Tr

(∑n
b=1 L̂b,LL̂b,Rρ

D(t)L̂†b,LL̂†b,R
)]−1

is the normalization factor attributed to post-selection
in the double space. Then the entanglement entropy calculated from ρD can be written as

S D
A = − log

TrLA,RA

XATrLB,RB(
m∑

b=0

M̂D
b ρ

D
0 M̂D†

b )




= − log{
m∑

b=0

TrLA,RA[XATrLB,RB(M̂b,Lρ0M̂†b,L) ⊗ (M̂b,Rρ0M̂†b,R)]}

= − log

 m∑
b=0

p̃bTrLA,RA

[
XAρA,b ⊗ ρA,b

]
= − log

 m∑
b=0

p̃bTrA
[
ρ2

A,b

]

(22)

with p̃b =
[
Tr

(
M̂bρ0(t)M̂†b

)]2
and ρA,b =

TrB
[
M̂bρ0(t)M̂†b

]
Tr

(
M̂bρ0(t)M̂†b

) . Also, if we define Tr
(
L̂bρ0(t)L̂†b

)
= pb,

then we have p̃b = αD
t η(t)

[
Tr

(
L̂bρ0(t)L̂†b

)]2
= η(t)

p2
b∑

c p2
c

for b = 1, ..., n. When we consider the
case η(t) = 1,which means that the probability of the system being measured per unit time is 1,
this definition of p̃b is consistent with that of the new type of entanglement entropy S new

A in the
Eq. (15). This completes the proof.

7 Numerical results

In this section, we numerically study the second Rényi entropy dynamics of a 1D hard-core
Bose Hubbard [33] system to demonstrate that there is an entanglement phase transition under
the Eq. (18) and (17). The Hamiltonian of the hard-core Bose Hubbard system is

Ĥ = −J
∑
〈i, j〉

b̂†i b̂ j + U
∑
〈i, j〉

n̂in̂ j. (23)

8
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Here, J is the strength of the nearest neighbor hopping, and U is the strength of the nearest neigh-
bor interaction.

The system is driven by the generalized Lindblad equation the Eq. (18) in the double sys-
tem, and we set η(t) = γ as a time-independent measurement rate. Also, we set the projection
measurements as

L̂i,0 =
1
√

L
(1 − n̂i), L̂i,1 =

1
√

L
n̂i. (24)

Here i = 1, 2, ...,Ns, and Ns is the total number of sites. Also, we further normalize the projection
operators to satisfy the completeness condition of the measurement basis in the Eq. (5). These
projection operators mean that the environment is measuring the particle number on each site by
projecting it on one of the particle number basis (|0〉, |1〉). Here, |1〉 denotes the site is occupied,
and |0〉 denotes the site is unoccupied.

In our following numerical calculation, we set J = U = 1,Ns = 6,Nb = 3. Nb is the total
number of the hard-core boson. We denote the left half of the system as subsystem A and the rest
of it as subsystem B. We then calculate the entanglement entropy S A defined in the Eq. (17). We
choose the initial state as a product state in the particle number basis |000111〉.

Figure 2: The dynamics of the entanglement entropy S A as a function of tJ. γ is the measurement
rate. Different curves have different γ in the unit of J. Here, U = J and the number of sites Ns = 6,
and the number of bosons Nb = 3, and subsystem size LA = 3.

As shown in Fig. 2, the entanglement entropy S A between subsystems A and B first quickly
increases as expected in a normal chaotic system. However, it then decreases and saturates to a
non-zero value. It indicates that measurements and the following post-selection process decrease
the entanglement between subsystems. Also, we prove in the supplementary material [42] that
the entanglement entropy is the same regardless of whether one computes partial trace over the
subsystem A or subsystem B, and this explains why entanglement entropy S A is symmetric with
respect to the half system size LA axis (LA = Ns/2 = 3) in Fig. 2.

Moreover, from the result in Fig. 3, we find that when the measurement rate is small (γ/J =

0.5) and LA < Ns/2, the entanglement entropy between the two subsystems A and B is almost
linear in system size LA. Whereas when the measurement rate is large (γ/J = 5) and LA < Ns/2,
the entanglement entropy is almost flat as LA changes. In the MIPT, as the measurement rate
γ increases, the entanglement entropy between the two subsystems A and B will change from
volume-law to area-law, and our results are consistent with it. Thus, our result is in line with
the understanding that there is an entanglement phase transition in this process. Therefore, we
use a concrete example to show that our generalized Lindblad equation the Eq. (18) can describe
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Figure 3: Saturation value of entanglement entropy S A of the subsystem A with different subsys-
tem size LA. Different curves have different γ in the unit of J. Here, Ns = 6, Nb = 3, U/J = 1.

an entanglement phase transition as the measurement rate increases. The detailed information
about the numerical integration technique used in producing Fig. 2 and Fig. 3 is added in the
supplementary material [42].

Also, the numerical results of entanglement entropy calculated from the single-copy mas-
ter equation the Eq. (8) are added in the supplementary material [42] for comparison. We find
that there is no entanglement phase transition in this process, and there is no surprise since we
mentioned in the section 5 that the entanglement entropy calculated from the single-copy master
equation is S total

A defined in the Eq. (14). Since S total
A also includes the entropy corresponding to the

probability distribution of different measurement results, there is no entanglement phase transition
regarding this entanglement entropy.

8 Discussions

In this paper, we derive a generalized Lindblad equation for describing the dynamics of the system
under the measurement process followed by post-selection. We emphasize the post-selection is
essential in the non-linear differential the Eq. (18). Also, the generalized Lindblad equation the
Eq. (18) preserves the Hermitian, unit trace, and positive definiteness of the density matrix. Fur-
thermore, we generalize it to describe the second Rényi entropy dynamics in the MIPT, and we use
a concrete model to demonstrate that our equation can indeed describe this entanglement transi-
tion as the measurement rate increases. Also, our generalized Lindblad equation can be simulated
by the quantum trajectory methods [35–41] as the original Lindblad equation, and we consign the
details to the Supplemental Material [42]. Therefore, the numerical simulation of these dissipative
dynamics is feasible.

Moreover, the post-selection provides information about the probability distribution of mea-
surement results. By using the information of the measurement results, we project the system to
some pure states. Hence, we decrease the entropy of the system. Moreover, the Holevo infor-
mation [34] defined as χ := S v(ρ) −

∑
i piS v(ρi) actually measures how much entropy on average

is reduced once we learn the the distribution {pi}. Here, S v is the von Neumann entropy. Thus,
if we measure von Neumann entropy in the MIPT, we find that the amount of entropy decreased
by measurement and post-selection is just the Holevo information. The decrease of entropy by
the measurement and post-selection process is owing to gaining accessible information about the
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measurement results.
The results we have presented here suggest some further directions that are worth exploring. It

will be enlightening to analytically calculate the entropy from our generalized Lindblad equation.
Also, It will be interesting to explore the Holevo information in the MIPT and try to understand
this phase transition from the perspective of getting accessible classical information. It is also
interesting to experimentally realize this generalized Lindblad equation by coupling the system
to a bath and designing the form of interaction to satisfy the normalization factor of our gener-
alized Lindblad equation. Therefore, we may further find some direct experimental access to the
entanglement phase transition.
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A The definition of the double space density matrix from an initial
single space density matrix

Given an initial density matrix ρ =
∑

mn ρmn|m〉〈n|, the double space density matrix ρD is given by:

ρD =
∑
mnst

ρD
mn,st|m〉L ⊗ |s〉R L〈n| ⊗R 〈t| (25)

with ρD
mn,st = ρmnρst. Here, we assume that the initial double space density matrix is the direct

product of two same single space density matrices. ρD is illustrated in the Fig. (4).

𝒎 𝝆𝑳

𝝆𝑹

𝜌#$,&'( = 𝜌#$) 𝜌&'* =

𝒔 𝒕

𝒏

Figure 4: The schematic diagram of the definition of ρD.

B Three different definitions of entanglement entropy in the measurement-
induced phase transition

In the evolution process together with measurements, measurements will produce different results.
Thus, the density matrix in this process is the summation of the density matrix corresponding
to the different measurement results, and each weight of the sum is the probability of that result.
Therefore, we can write the density matrix as ρ =

∑
c pcρc. Here, c represents the different cases of

evolution due to different measurement results. If we calculate the entanglement entropy directly
from this mixed state density matrix, we obtain

S total = − log

Tr

(∑
c

pcρc)2


 . (26)

Also, we propose a new definition of the second-order Rényi entropy in our paper:

S new = − log

∑
c

p̃cTr[ρ2
c]

 . (27)

Here, p̃c =
p2

c∑
c′ p2

c′
. There is also another kind of the second-order Rényi entropy that people have

used in the MIPT [8, 10]:
S old = −

∑
c

pc log{Tr[ρ2
c]}. (28)
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C The comparison of three different definitions of entanglement en-
tropy in the measurement-induced phase transition

The entropy in MIPT comes from two parts: the entropy of the system corresponding to different
measurement results − log{Tr[ρ2

c]}, and the entropy of the probability distribution of different mea-
surement results {pc}. In the MIPT, we only care about the former part of entropy, and therefore
we need to exclude the latter part.

We will show that both the S new and S old can exclude the latter part of entropy, whereas S total

can not. For instance, we assume that the system after evolution has a probability pc to be in the
case c, and the density matrix in the case c is ρc. Here, ∀c, pc > 0, and

∑n
c=1 pc = 1 with n > 1.

We assume that every ρc satisfies Tr[ρ2
c] = 1, and this means that in each case, ρc is a pure state

density matrix. Meanwhile, we assume Tr(ρcρc′) < 1 for c , c′, and this means ρc and ρc′ are not
the same. Thus, the entropy only comes from the probability distribution {pc} = {p1, p2, ..., pn}.
From the definition in the Eq. (26), we have

S total = − log{Tr[(
n∑

c=1

pcρc)2]}

= − log

 n∑
c=1

p2
cTr(ρ2

c) + 2
∑
c<c′

pc pc′Tr(ρcρc′)


> − log

 n∑
c=1

p2
cTr(ρ2

c) + 2
∑
c<c′

pc pc′


= − log

 n∑
c=1

p2
c + 2

∑
c<c′

pc pc′


= − log

( n∑
c=1

pc)2

 = 0.

(29)

Here, we use Tr(ρA,cρA,c′) < 1 for c , c′ to get the first inequality. Thus, we obtain S total > 0.
In comparison with S total, from the definition in the Eq. (27), we have S new = − log[

∑
i p̃iTr(1)] =

0. Also, from the definition in the Eq. (28), we have S old = −
∑

i pi log[Tr(1)] = 0. Therefore,
we find that S total takes into account the entropy of probability distribution {pc} = {p1, p2, ..., pn},
whereas S new and S old do not.

Also, we find that if the density matrix in each case has the same purity and occurs with the
same probability, then S new and S old are the same. In this case, we have pc = 1

n ,Tr[ρ2
c] = a

for c = 1, ..., n. Then, we have S new = − log(
∑n

c=1
1
n a) = − log(a), and S old = −

∑n
c=1

1
n log a =

− log[a(n× 1
n )] = − log(a). Thus, we find that S new and S old are the same in this case.

D The proof of an inequality between S total and S new

In this section, we will prove that when all density matrix ρc are mutually orthogonal, we have
S total ≥ S new where the equality is taken when there is only one outcome with probability p1 = 1.
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Start from the definition S total, we have

S total = − log{Tr[(
n∑

c=1

pcρc)2]}

= − log

 n∑
c,c′=1

pc pc′Tr(ρcρc′)


= − log

 n∑
c

p2
cTr(ρ2

c)


≥ − log

 n∑
c

p̃cTr(ρ2
c)


=S new.

(30)

Here, we use the Tr(ρcρc′) = 0 for c , c′ to obtain the third equality. Here, Also, we use p̃c =
p2

c∑
c′ p2

c′
≥ p2

c to obtain the fourth line. The equality in the fourth line is taken when there is only

one outcome with probability p1 = 1. Thus, we complete the proof.

E The quantum trajectories method

In this section, we introduce the quantum trajectories method regarding our generalized Lindblad
equation the Eq. (18). The quantum trajectories method involves rewriting the master equation as
a stochastic average over individual trajectories. It is an efficient tool for numerically simulating
dissipative dynamics. Similar to the original Lindblad Master equation, our generalized Lindblad
equation can be expressed in an alternative form:

∂ρD

∂t
= −i

(
ĤD

effρ(t) − ρ(t)ĤD†
eff

)
+ η(t)

n∑
a=1

L̂a,LL̂a,Rρ
D(t)L̂†a,LL̂†a,R

Tr
(∑n

b=1 L̂b,LL̂b,RρD(t)L̂†b,LL̂†b,R
) . (31)

Here ĤD
eff

is the effective Hamiltonian defined as

ĤD
eff = Ĥ ⊗ Î + Î ⊗ Ĥ − i

η(t)
2

∑
a,b

L̂†a,LL̂a,LL̂†b,RL̂b,R. (32)

First, we start from a double system initial state |φD(t)〉, and compute its evolution under the
effective Hamiltonian after a small time step δt:

|φ(1),D(t + δt)〉 = (1 − iHD
effδt)|φ

D(t)〉. (33)

Then, we compute the norm of this wave function at time t + δt.

〈φ(1),D(t + δt)|φ(1),D(t + δt)〉 ≡ 1 − δp (34)

where

δp = η(t)〈φD(t)|i(HD
eff − HD†

eff
)|φD(t)〉δt = η(t)〈φD(t)|

∑
a,b

L̂†a,LL̂a,LL̂†b,RL̂b,R|φ
D(t)〉δt. (35)

Here, we assume the completeness condition of the Eq. (5). Thus, we further have

δp = η(t)δt. (36)
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Second, we choose the propagated state stochastically in the following manner:
1. With probability 1 − δp, the wave function at t + δt is chosen as the one that evolves under the
effective Hamiltonian with a normalization factor accordingly:

|φD(t + δt)〉 =
|φ(1),D(t + δt)〉√

1 − δp
. (37)

2. With probability δp, the wave function at t+δt is chosen as the one that jumps to some particular
quantum channel a:

|φD(t + δt)〉 =
L̂a,LL̂a,R|φ

D(t)〉√
δpa
δt

(38)

where δpa = δt〈φD(t)|L̂†a,RL̂†a,LL̂a,LL̂a,R|φ
D(t)〉. Here, each quantum channel a is chosen with a

probability Πa =
δpa∑
b δpb

δp.
Since from the prescription above, the propagation of the initial density matrix ρD(t) = |φD(t)〉〈φD(t)|

in a given time step is:

ρD(t + δt) =(1 − δp)
|φ(1),D(t + δt)〉√

1 − δp

〈φ(1),D(t + δt)|√
1 − δp

+ δp
∑

a

Πa
L̂a,LL̂a,R|φ

D(t)〉√
δpa
δt

〈φD(t)|L̂†a,RL̂†a,L√
δpa
δt

=|φ(1),D(t + δt)〉〈φ(1),D(t + δt)| + η(t)δt
∑

a

L̂a,LL̂a,R|φ
D(t)〉〈φD(t)|L̂†a,RL̂†a,L

Tr
(∑n

b=1 L̂b,LL̂b,RρD(t)L̂†b,LL̂†b,R
)

= − i
(
ĤD

effρ(t) − ρ(t)ĤD†
eff

)
δt + η(t)δt

∑
a

L̂a,LL̂a,R|φ
D(t)〉〈φD(t)|L̂†a,RL̂†a,L

Tr
(∑n

b=1 L̂b,LL̂b,RρD(t)L̂†b,LL̂†b,R
) .

(39)
Here, the ρD(t + δt) denotes a statistical average over trajectories. It is straightforward to see
that the stochastic propagation given by this quantum trajectories method is equivalent to our
generalized Lindblad equation Eq. (18) after taking a stochastic average over trajectories.

F The entanglement entropy of complement subsystems

In this section, we will prove that the entanglement entropy calculated from the entropy formula
the Eq. (17) for the evolved density matrix the Eq. (18) is the same regardless of whether one
computes partial trace over the subsystem A or subsystem B. Here, subsystems A and B are
complement subsystems of the total system. From the Eq. (22), we have

S D
A = − log

 m∑
b=0

p̃bTrA
[
ρ2

A,b

] . (40)

Also, if we change the subsystem A to its complement subsystem B, we have

S D
B = − log

 m∑
b=0

p̃bTrB
[
ρ2

B,b

] . (41)

with p̃b =
[
Tr

(
M̂bρ0(t)M̂†b

)]2
and ρb =

M̂bρ0(t)M̂†b
Tr

(
M̂bρ0(t)M̂†b

) . Here, each ρb is pure if we start from a

pure state. For a pure state density matrix, using the Schmidt decomposition, we can prove that
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TrA
[
ρ2

A,b

]
= TrB

[
ρ2

B,b

]
, thus we obtain

S D
B = − log

 m∑
b=0

p̃bTrB
[
ρ2

B,b

]
= − log

 m∑
b=0

p̃bTrA
[
ρ2

A,b

]
= S D

A .

(42)

G Numerical results of the entropy computed from the single-copy
master equation

In this section, we will give some numerical results about the system driven by the generalized
Lindblad equation the Eq. (8) in the original single system, and we set η(t) = γ as a time-
independent measurement rate. Also, we set the projection measurements as

L̂i,0 =
1
√

L
(1 − n̂i), L̂i,1 =

1
√

L
n̂i. (43)

The Hamiltonian of is also the hard-core Bose Hubbard system

Ĥ = −J
∑
〈i, j〉

b̂†i b̂ j + U
∑
〈i, j〉

n̂in̂ j. (44)

as the section 7 for comparison. Here, J is the strength of the nearest neighbor hopping, and U is
the strength of the nearest neighbor interaction.

In our following numerical calculation, we set J = U = 1,Ns = 6,Nb = 3. Nb is the total
number of the hard-core boson. We denote the left half of the system as subsystem A and the rest
of it as subsystem B. We then calculate the entanglement entropy S A defined in the Eq. (17). We
choose the initial state as the a product state in the particle number basis |000111〉.

Figure 5: The dynamics of the entanglement entropy S A as a function of tJ. γ is the measurement
rate. Different curves have different γ in the unit of J. Here, U = J and the number of sites Ns = 6,
and the number of bosons Nb = 3, and subsystem size LA = 3. The density matrix is evolved by
the single-copy master equation the Eq. (8).
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Figure 6: Saturation value of entanglement entropy S A of the subsystem A with different subsys-
tem size LA. Different curves have different γ in the unit of J. Here, Ns = 6, Nb = 3, U/J = 1.
The density matrix is evolved by the single-copy master equation the Eq. (8).

As shown in Fig. 5, the entanglement entropy S A between subsystems A and B increases as
expected in a normal chaotic system, and it then saturates to a non-zero value. However, compared
with the dynamics of the entanglement entropy S A in the Fig. 2, it does not decrease in this process,
and the saturation value of S A shown in the Fig. 6 is the same as measurement rate changes.

Therefore, we find that there is no entanglement phase transition in this process, and there
is no surprise since we have mentioned in the section 5 that the entanglement entropy calculated
from the single-copy master equation is S total

A defined in the Eq. (14) as

S total
A ≡ − log

Tr


 m∑

c=1

pcρA,c

2
 . (45)

Here, pc is the probability of getting ρA,c, and it satisfies
∑

c pc = 1. Since S total
A also includes the

entropy corresponding to the probability distribution of different measurement results, there is no
entanglement phase transition regarding this entanglement entropy.

H The detail information about the numerical integration technique
used in producing Fig. 2 and Fig. 3

We used the Runge-Kutta 4th-order (RK4) method for the approximate solutions of simultaneous
nonlinear equations about the double system density matrix. For the Fig. 2 and Fig. 3, we used
Nt = 11000 time steps.
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