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Abstract

For sufficiently large mass ratios the attractive exchange force caused by a
single light atom interacting with a few heavy identical fermions can overcome
their Fermi degeneracy pressure and bind them into an N+1 cluster. Here, by
using a mean-field approach valid for large N , we find that N + 1 clusters can
attract each other and form a self-bound charge density wave, the properties
of which we fully characterize. Our work shows that there are no fundamental
obstacles for having self-bound states in fermionic mixtures with zero-range
interactions.
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1 Introduction

According to our current understanding of Nature, big composite self-bound objects (nu-
clei, atoms, molecules, liquids, solids, etc.) are formed due to attractive finite-range forces
originating from exchanges of bosons (gluons, photons, etc.) However, one of the archety-
pal fermionic models, the two-component mass-balanced Fermi gas with zero-range at-
traction [1], exhibits no self-binding. Increasing the attraction in such a gas leads to
the formation of dimers consisting of fermions of different sort. The dimers repel each
other in any space dimension because of the Pauli exclusion principle for the constituent
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fermions [2–9]. The Pauli “repulsion” is also believed to be the main mechanism prevent-
ing binding of four neutrons, although the topic remains controversial since internucleon
interactions are not zero range [10].

Introducing mass imbalance into the model can lead to binding of mesoscopic clusters
of type N + 1, where the exchange force of a single light atom overcomes the degeneracy
pressure of a small Fermi sea of N heavy atoms. Such clusters with N up to 5 have
been studied by exact few-body techniques in all dimensions [11–18] and we have recently
developed their mean-field theory in one dimension valid for large N [19].

Can a two-component Fermi mixture with zero-range interactions become self-bound in
the thermodynamic limit? A good starting point to answer this question is to understand
whether two clusters of the type N + 1 can stick together. This problem is nontrivial; the
light atoms should be sufficiently light to ensure attraction for the heavies, but, on the
other hand, their own degeneracy pressure (inversely proportional to the light mass) can
hinder binding. No evidence of such binding has been reported. Here we can cite rather
extensive studies of the fermionic 2+2 system and the dimer-dimer scattering problem in
the mass-imbalanced case [20–26]. Although not fully comprehensive (i.e., not all dimen-
sions and possible mass ratios covered), these studies are consistent with the scenario that
the 2+2 fermionic system is either unbound or breaks into two repulsive dimers or into a
heavy-heavy-light trimer plus a free light atom when the trimer gets below the two-dimer
threshold. Naidon and co-workers [27, 28] estimated that three-dimensional 2+1 trimers
repel each other.

In this article we show that in one dimension N + 1 clusters can arrange themselves
into a self-bound configuration, at least, for sufficiently large N . To this end we use the
mean-field theory based on the Thomas-Fermi approximation for the heavy atoms, valid in
the limit N � 1 [19]. In this case, the system behavior is governed by a single parameter
α = (π2/3)N3m/M . We find that two clusters bind for 2.3 < α < 9.4. Interestingly,
instead of merging, they stay at a finite distance from each other and keep a double-
peak density profile (see the gray dotted curve in Fig. 2). Below α = 2.3 this state
becomes metastable and the true ground state corresponds to two N+1 clusters at infinite
separation. Our calculations show that three or more clusters can form a self-bound charge
density wave with one light atom per period. We describe bulk properties of these states
by a fully analytic weak-modulation theory, the Peierls instability [29] emerging as a
complementary explanation of the modulation.

2 Model and N + 1 cluster solution

We address the problem of Nh fermions of mass M interacting with Nl fermions of mass
m through the mean-field density functional

Ω =
∫
dx
{∑Nl

i=1

[
|∂xφi(x)|2/2m+ gn(x)|φi(x)|2

]
+ π2n(x)3/6M

−
∑Nl

i=1 εi|φi(x)|2 − µn(x)
}
, (1)

where g < 0 is the heavy-light interaction constant, φi(x) are the wave functions of the light
atoms, and n(x) is the density profile of the heavy atoms. The term ∝ n3(x) is the kinetic
energy of an ideal Fermi gas taken in the Thomas-Fermi local-density approximation [19,
30]. The model (1) thus requires weak interactions (a � λh, λl) and n(x) slowly varying
on the scale ∼ λh. Here, a = −(m + M)/(mMg) is the scattering length and λh ∼ 1/n
and λl ∼ |φi/∂xφi| are, respectively, the typical de Broglie wave lengths of the heavy and
light atoms. The first line in Eq. (1) defines the total energy E, which we seek to minimize
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subject to constraints
∫
φ∗i (x)φj(x)dx = δij [31] and

∫
n(x)dx = Nh. The normalization

constraints are taken into account by introducing Lagrange multipliers εi and µ.
One can show that up to an overall scaling factor, the behavior of the system satisfying

Eq. (1) is governed by two dimensionless parameters. We choose the first to be Nl and
the second to be α = (π2/3)N3m/M , where N = Nh/Nl. Indeed, introducing the charac-
teristic size λ = 1/(2m|g|N), new coordinate u = x/λ, and rescaling φi(x) = φ̃i(u)/

√
λ,

n(x) = Nñ(u)/λ, Eq. (1) reduces to

Ω

2mg2N2
=

∫
du

{
Nl∑
i=1

[
|∂uφ̃i(u)|2 − ñ(u)|φ̃i(u)|2

]
+ αñ3(u)−

Nl∑
i=1

ε̃i|φ̃i(u)|2 − µ̃ñ(u)

}
,

(2)
where µ̃ = 2mNµλ2 < 0, ε̃i = 2mεiλ

2 and the normalization constraints are now∫
φ̃∗i (u)φ̃j(u)du = δij and

∫
ñ(u)du = Nl.

We minimize Ω imposing that the variational derivatives of Eq. (2) with respect to φ̃∗i
and ñ vanish. These conditions, respectively, lead to the equations

−∂2
uφ̃i(u)− ñ(u)φ̃i(u) = ε̃iφ̃i(u), (3)

ñ(u) = (3α)−1/2Re

√√√√ Nl∑
i=1

|φ̃i(u)|2 + µ̃. (4)

The energy of the system then equals

E

2mg2N2
=

Nl∑
i=1

ε̃i + α

∫
ñ3(u)du. (5)

Let us briefly summarize the main results obtained for the case Nl = 1 [19]. The
N + 1 cluster exists for α < 12 and we show its energy, denoted by ENl=1

N+1 , as a function
of α in the inset of Fig. 1. In the limit α → 0 the heavy atoms are much more localized
than the light one, and the system can be described as a light atom bound by a point-
like potential Ngδ(x) [we have ENl=1

N+1 /(2mg
2N2) → −1/4]. With increasing α the heavy

atoms get more freedom and their chemical potential grows till it reaches µ = 0 at α =
12. This corresponds to the right endpoints of the red dashed curves in Fig. 1 [here
ENl=1
N+1 /(2mg

2N2) = −1/60]. Beyond this point the droplet cannot accomodate more
heavy atoms. The validity of the model (2) is verified by the following arguments. Note
that Eqs. (3) and (4) are dimensionless and, for α ∼ 1 and Nl ∼ 1, the spatial extent of
the cluster is of order λ (in original units). The condition of the slowly varying density
can be written as |∂xn(x)| � n2 and translates to N � 1. This inequality is equivalent
to (m/M)1/3 � 1 since we are mainly interested in α ∼ 1. We thus have a ≈ −1/mg,
or, in rescaled units, ã = a/λ ≈ −2N , which is much larger than λ̃h ∼ 1/N and λ̃l ∼ 1,
ensuring weak interactions.

3 Binding of two or more N + 1 clusters

In the case Nl = 2 we solve Eqs. (3) and (4) iteratively. Namely, we diagonalize Eq. (3)
assuming a certain initial ñ, substitute the obtained φ̃i into Eq. (4), tune µ̃ to satisfy the
normalization constraint for ñ, and repeat the procedure till convergence. In this manner,
we obtain three types of solutions. The first type is two isolated N+1 clusters, the second
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Figure 1: Energies per cluster ENl=1
N+1 (red dashed), ENl=2

N+1 (gray dotted), ENl=3
N+1

(blue dash-dotted), and ENl=∞
N+1 (black solid) in units of the energy of an isolated

N + 1 cluster ENl=1
N+1 shown in the inset. For small α, Nl isolated N + 1 clusters

can lose one of their light atoms and rearrange into Nl − 1 isolated clusters with
larger N . The final-to-initial energy ratio (with minus sign) is shown for Nl = 2
(magenta dotted) and Nl = 3 (green dash-dotted). The crossing region (black
frame) will be shown in more detail in Fig. 3.

is a bound state of two N + 1 clusters, and the third is a 2N + 1 cluster plus a free light
atom. The first type is the ground state of the 2N + 2 system for 0.16 < α < 2.3.

The second type is realized in the region α > 1.6. The corresponding energy per cluster
(we denote it by ENl=2

N+1 ) is shown in Fig. 1 as the gray dotted curve. For our purposes it
is convenient to normalize all energies in Fig. 1 to the energy of an isolated N + 1 cluster,
shown as the horizontal red dashed line. For α > 2.3 the bound-state configuration is
the ground state, and in the region 1.6 < α < 2.3 it is only dynamically stable (thermo-
dynamically it prefers to break into isolated clusters). This state is characterized by a
density profile with two maxima separated by a finite distance (see Fig. 2). Below α = 1.6
the metastable state disappears and the clusters unbind. To qualitatively understand this
phenomenon, we have performed a variational analysis by taking ñ(u) as a sum of two
Gaussians with variable width σ̃, placed at distance ξ̃ from each other. The minimization
of Eq. (5) with respect to σ̃ then gives the energy as a function of ξ̃. The curves E(ξ̃)
obtained in this manner can feature a (meta)stable minimum at finite ξ̃. They are very
similar to what we obtain for infinite Nl (see Sec. 4 and Fig. 4). The left panel in Fig. 4
corresponds to the critical α where the metastable minimum disappears. This is the point
where the minimum and maximum of E(ξ̃) merge, creating nonanalytical singularities in
both the optimal ξ̃ and the energy. The same nonanalytic behavior is observed in our
exact (not variational) numerics. In fact, the critical points in Fig. 1 are determined by
gradually decreasing α and monitoring the distance between the peaks and the energy of
the systems.

We find that the curves E(ξ̃) obtained by the variational procedure are characterized
by a repulsive tail at large ξ̃. That the clusters repel each other at large separations is due
to the exchange of the identical light fermions. The mechanism can be understood in the
Born-Oppenheimer approximation and is similar to the long-distance repulsion between
two heteronuclear mass-imbalanced dimers [23]. The minimum at finite ξ̃ appears because
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heavy atoms distribute their density in an optimal manner to provide binding in spite
of the degeneracy pressure. This phenomenon, which is the main result of this work,
is not obvious and rather subtle (note relatively low binding energies). As we increase α
beyond 9.4, similarly to the case Nl = 1, the chemical potential µ crosses zero and becomes
positive. This simply means that, in free space, the cluster will eject the excess of heavy
atoms, effectively decreasing α to subcritical values.
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Figure 2: Heavy-atom density profiles for a single N + 1 cluster (red dashed)
and for chains of length Nl = 2 (gray dotted), Nl = 3 (blue dash-dotted), and
Nl =∞ (black solid) for α = 4.45.

Still speaking about solutions of the second type we find that the phenomenon of self-
binding persists for Nl > 2. Solving Eqs. (3) and (4) for Nl up to 5 we observe that
clusters tend to form a regular chain or polymer, with the number of density peaks equal
to Nl. To avoid cluttering in Figs. 1 and 2 we show only the case Nl = 3 (dash-dotted) in
addition to Nl = 1, 2 already discussed. The three-cluster bound state shows qualitatively
the same behavior as the two-cluster state. In brief, it is stable above and metastable
below α = 2.4. Below α = 2.2 the system energetically prefers to break into three isolated
N+1 clusters. An interesting feature of this system [32] is that in the region 2.2 < α < 2.4
(more precisely 2.21 < α < 2.38) its true ground state is an Nl = 2 chain with Nh = 2N ′

plus a single (3N − 2N ′) + 1 cluster, where N ′ is determined by the minimization of
2ENl=2

N ′+1 + ENl=1
(3N−2N ′)+1.

We observe similar behavior for higher Nl. The curves corresponding to the binding
energies (per cluster) of the chains with different Nl bundle together in the region α ≈
2.4± 0.1. In Fig. 3 we plot the results for Nl=1, 2, 3, 4, 5, and ∞. The determination of
the ground state for a given Nl in this region is complicated since a longer chain can break
into shorter chains with generally different α. We note, however, that in this region all
partitions of a chain are almost degenerate and correspond to (meta)stable states separated
by energy barriers similar to the one shown in the middle panel of Fig. 4. For larger α,
sufficiently far from the crossing region, clusters do prefer to merge into a single chain
since longer chains feature higher binding energy per cluster.

The third type of solutions of Eqs. (3) and (4) realizes for small α whenNl isolatedN+1
clusters eject one light atom forming Nl−1 isolated N ′+1 clusters with N ′ = NNl/(Nl−1),
the new configuration becoming energetically favorable for (Nl − 1)ENl=1

N ′+1 < NlE
Nl=1
N+1 . In

Fig. 1 we show the quantity (Nl − 1)ENl=1
N ′+1/Nl|ENl=1

N+1 | for Nl = 2 (magenta dotted) and
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Figure 3: Zoom into the framed region in Fig. 1. Here, in addition, we show
the energies for Nl = 4 (magenta dotted) and Nl = 5 (green dash-dotted). The
curves show that for a given Nl the longest possible chain or Nl isolated clusters
are not the only possible ground states. For instance, for Nl = 3, the energetically
optimal configuration can be a cluster with one light atom isolated from a cluster
with 2 light atoms (both clusters having generally different values of α, see text).

Nl = 3 (green dash-dotted). These curves cross the line -1 at α = 0.16 and α = 0.25,
respectively. This critical value of α grows with Nl reaching 0.47 in the thermodynamic
limit, where it is obtained from the condition ∂[ENl=1

N+1 /N ]/∂N = 0. In principle, starting
from a long chain of isolated clusters and trying to follow its ground state by decreasing α
below 0.47, the system will lose light atoms one by one till it eventually ends up in the state
where all Nh heavy atoms are bound by a single remaining light atom. We should note,
however, that these transitions are associated with a global redistribution of the heavy
particles such that the system will likely get stuck in metastable states with “wrong” Nl.
This is because these transitions are not associated with max[εi] crossing zero (isolated
clusters individually never lose their light atoms).

4 Infinite chain analysis

We now go back to the second type of solutions and discuss bulk properties of self-bound
chains in more detail. We assume that ñ(u) is periodic with the modulation length ξ̃ and
that light atoms are filling the first Brillouin zone of the lattice (we have one light atom
per modulation length). We aim to calculate the energy per cluster, which we denote
ENl=∞
N+1 , as a function of ξ̃. In principle, Eqs. (3-5) are suitable for the task. In this case

φ̃i become Bloch functions and i is the real Bloch wave vector in the first Brillouin zone,
i.e., i ∈ (−π/ξ̃, π/ξ̃]. It is however convenient to rescale the coordinate again, introducing
ū = u/ξ̃. Making related changes and rescalings (we mark new rescaled quantities by a
bar), we arrive at the following formulation of the problem. The energy per cluster is
given by

ENl=∞
N+1 (ξ̃)

2mg2N2
=

1

ξ̃2

[∫ π

−π
ε̄p
dp

2π
+ α

∫ 1

0
n̄3(ū)dū

]
, (6)
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where the spectrum ε̄p is determined by the equation

(−i∂ū + p)2χp(ū)− ξ̃n̄(ū)χp(ū) = ε̄pχp(ū), (7)

with the periodic boundary condition χp(0) = χp(1). The function χp is the periodic part
of the Bloch wave function corresponding to the wave vector p ∈ (−π, π]. The density n̄
is given by

n̄(ū) = (3α)−1/2Re

√
ξ̃

∫ π

−π
|χp(ū)|2 dp

2π
+ µ̄, (8)

where µ̄ = µ̃ξ̃2, and the normalization conditions read
∫ 1

0 |χp(ū)|2dū = 1 and
∫ 1

0 n̄(ū)dū =
1.

We solve Eqs. (7) and (8) iteratively, calculating ENl=∞
N+1 (ξ̃) for various α. A few

examples of these curves are shown in Fig. 4. We find that there is always a local minimum
at ξ̃ = ∞ corresponding to isolated noninteracting clusters [ENl=∞

N+1 (ξ̃ → ∞) = ENl=1
N+1 ].

We also see that ENl=∞
N+1 (ξ̃) decreases with ξ̃ for small ξ̃. This is understandable as we are

dealing with two Fermi seas at high densities ∝ 1/ξ̃ where the interaction is asymptotically
negligible.

10 15 20

-0.96

-0.98

-1

-1.02

10 15 20 15 20

Figure 4: Energies per cluster in an infinite chain as a function of the distance
between the clusters for α = 1.85 (left), α = 2.4 (middle) and α = 4.0 (right).
The black solid curves are obtained by numerically solving Eqs. (7) and (8). The
gray dotted curves are predictions of the weak-modulation theory Eq. (15).

The function ENl=∞
N+1 (ξ̃) has a local (for 1.8 < α < 2.4) or global (for α > 2.4) minimum

at finite ξ̃. This minimum can correspond to the self-bound solution, as this is the point
of zero pressure. The energy per cluster in this state is shown in the main panel of Fig. 1
(black solid curve). However, we should specify that the minimum of ENl=∞

N+1 (ξ̃) does
not necessarily mean that this state is self-bound in free space. We have yet to check
the conditions µ < 0 (otherwise the chain will lose heavy atoms) and max[ε̄p] = ε̄π < 0
(otherwise it will lose light atoms). In fact, the right end point of the black solid curve in
Fig. 1 corresponds to µ̄ = 0. The behavior of the self-bound chain near this point is thus
similar to what happens in the cases Nl = 1 and Nl = 2 already discussed. By contrast,
the left end point does correspond to the disappearance of the minimum (see left panel
in Fig. 4). There, the chain breaks into free N + 1 clusters. We should mention that by
assuming one light atom per period we disregard possible breaking of a long chain into
smaller clusters sufficiently close to α = 2.4 as we have pointed out in Sec. 3.

Although there is no apparent small parameter that allows us to solve Eqs. (7) and (8)
perturbatively, the assumption of weak modulation, which provides a completely analytic
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description of the system, turns out to work extremely well for all values of α and ξ̃ relevant
for analyzing the self-bound regime. The weak-modulation theory is based on the ansatz

n̄(ū) = 1 + (δ/ξ̃) cos(2πū), (9)

where δ is assumed to be small. One then calculates ENl=∞
N+1 (ξ̃) given by Eq. (6) up to

terms ∝ δ2, and minimizes it with respect to δ.
We calculate the spectrum ε̄p following the standard weak-modulation approach [33].

Namely, substituting the expansion χp =
∑∞

j=−∞ βje
i2πjū into Eq. (7), we get the set of

equations
[(p+ 2πj)2 − ξ̃ − ε̄p]βj − δ(βj−1 + βj+1)/2 = 0, (10)

for all integer j. Since ε̄p = ε̄−p we can consider only the positive half of the first Brillouin
zone, i.e., 0 < p < π. One can then check that the solution of Eqs. (10) for the lowest
band is characterized by the following hierarchy. The coefficients β0 and β−1 are of order
one or smaller, β1 and β−2 are ∼ δ or smaller, β2 and β−3 are ∼ δ2, etc. Therefore, up to
the second order in δ we can write β1 = (δ/2)β0/[(p + 2π)2 − p2], where we use Eq. (10)
with j = 1 and neglect the small difference (at most ∝ δ) between ε̄p and the unpertubed
energy p2− ξ̃. In a similar way, Eq. (10) with j = −2 gives β−2 = (δ/2)β−1/[(p−4π)2−p2].
Substituting these β1 and β−2 into Eq. (10) with j = 0 and j = −1 we obtain

{p2 − ξ̃ − ε̄p − (δ/2)2/[(p+ 2π)2 − p2]}β0 − (δ/2)β−1 = 0, (11)

{(p− 2πj)2 − ξ̃ − ε̄p − (δ/2)2/[(p− 4π)2 − p2]}β−1 − (δ/2)β0 = 0. (12)

Solving this linear system gives the spectrum ε̄p with the desired accuracy.
To integrate ε̄p we divide the p > 0 part of the Brillouin zone into two regions. The

first is 0 < p < π −
√
δ. Here we just use the Taylor expansion of ε̄p up to terms ∝ δ2. In

the remaining interval π−
√
δ < p < π we cannot Taylor expand ε̄p as this would lead to a

divergent integral. However, replacing p by π in the terms proportional to δ2 in Eqs. (11)
and (12) (one can check that this is a legal approximation in the considered integration
interval) gives ε̄p in the form suitable for analytic integration. The result is∫ π

−π
ε̄p
dp

2π
= −ξ̃ +

π2

3
+

δ2

16π2
ln

δ

16π2
√
e
. (13)

Finally, using
∫ 1

0 n̄
3(ū)dū = 1 + (3/2)δ2/ξ̃2, the minimization of Eq. (6) with respect to δ

gives

δ = 16π2e−24π2α/ξ̃2 (14)

and
ENl=∞
N+1 (ξ̃)

2mg2N2
=

1

ξ̃2

(
α− ξ̃ +

π2

3
− 8π2e−48π2α/ξ̃2

)
. (15)

To complete the theory, we note that the chemical potential can be determined by raising
Eq. (8) to the second power and by integrating the result over ū. We obtain µ̄ = 3α[1 +
δ2/(2ξ̃2)]− ξ̃.

In Fig. 4 we show ENl=∞
N+1 (ξ̃) in units of the single-cluster energy |ENl=1

N+1 | as a function
of the modulation period for α = 1.85, 2.4 and 4.0. The black solid curves are determined
by exactly solving Eqs. (7) and (8) and the gray dotted curves are given by Eq. (15). The
weak-modulation approximation is very precise (much less than a percent deviation from
the exact numerics) up to the minima for all considered α. An appreciable difference can
be seen only at large ξ̃, far from the minima.
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5 Conclusion

In conclusion, we show that two N + 1 clusters formed in a two-component fermionic
mixture can attract each other by a peculiar potential with a minimum at a finite inter-
cluster separation. This attraction persists in the thermodynamic limit such that the
Fermi-Fermi mixture can become self-bound forming a polymer of N+1 clusters. One can
also think of this state as a self-bound homogeneous liquid, undergone the Peierls charge
density wave instability [29, 34]. Since our theory is valid for N � 1 [or (M/m)1/3 � 1]
we cannot determine the smallest N [or M/m] at which N+1 clusters bind. This problem
should be tackled by other methods such as, for instance, exact diagonalization, quantum
Monte-Carlo, or density matrix renormalization group. Our theory, taken at its face value,
predicts binding of 4+1 clusters in the fermionic 173Yb-6Li mixture (M/m = 28.75), which
can in principle be checked in current experiments [35,36].

Funding information We acknowledge support from ANR Grant Droplets No. ANR-
19-CE30-0003-02.
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