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Classical shadows are a computationally efficient approach to storing quantum states on a clas-
sical computer for the purposes of estimating expectation values of local observables, obtained by
performing repeated random measurements. In this note we offer some comments on this approach.
We note that the resources needed to form classical shadows with bounded relative error depend
strongly on the target state. We then comment on the advantages and limitations of using classical
shadows to simulate many-body dynamics. In addition, we introduce the notion of a hybrid shadow,
constructed from measurements on a part of the system instead of the entirety, which provides a
framework to gain more insight into the nature of shadow states as one reduces the size of the
subsystem measured, and a potential alternative to compressing quantum states.

I. INTRODUCTION

An idealized quantum computing platform allows one
to: i) repeatedly create a complex quantum state by
applying a specified quantum circuit to a simple initial
state, ii) destructively measure the state in the compu-
tational basis, possibly applying further unitary gates
before doing so. Given these capabilities, it is natural
to ask how to go about efficiently and accurately cap-
turing properties of the state (e.g., entanglement and
correlation functions), while requiring as few prepara-
tions/measurement iterations as possible. Can one per-
form a strategically choose a set of measurements, and
use the outcomes to create an approximation to the quan-
tum state which is of reasonable size, and which can be
used to estimate various state properties such as expec-
tation values of a range of operators? Any such proce-
dure would also be of purely theoretical interest in that
it would furnish a compressed description of quantum
states that could perhaps be used in classical compu-
tations, much as matrix product states are used to ef-
ficiently compute the static and dynamic properties of
d = 1 quantum systems with low entanglement.

A recent development along these lines goes under the
moniker of shadow tomography. The term itself dates
from the work of Aaronson [1] who investigated how
many samples would be needed for the task of recon-
structing a set of expectation values to a given accuracy.
Huang et. al. [2] took inspiration from this work to define
the notion of a classical shadow of a quantum state which
is a set of approximations to the state constructed from
snapshots in which multiple copies of the quantum state
are prepared and measured (in a randomized basis). In
the limit of an infinite number of snapshots, averages over
the shadow equal quantum mechanical averages in the ex-
act state, and in certain cases surprisingly few snapshots
are required to accurately approximate a large set of ob-
servables, which need not be specified in advance. The
body of results surrounding these ideas is the subject of
a recent review [3]. We note that the simplest example

of a classical shadow, which we will use below, was in-
troduced earlier by Paini and Kalev [4] albeit without
naming it as such.
In this note we offer some comments on classical shad-

ows from the viewpoint of quantum many body theory
and statistical mechanics. We are interested in the na-
ture of the representation of the density matrix that lies
at the heart of shadow technology, the utility of shadows
for measuring quantities of particular physical interest,
for reducing the effort involved in time evolving many
body quantum systems on a classical computer and in a
generalization to hybrid classical-quantum shadows that
interpolates between the full quantum state and its clas-
sical shadow representation.

II. BASICS

Huang et al. [2] gave a general construction of classi-
cal shadows based on ensembles of random unitaries. In
their construction, a unitary U (drawn randomly from
the ensemble) is applied to the state ρ, yielding UρU†.
Then one measures each qubit in the Z basis and con-
structs a snapshot of the state as the operator U† |b⟩ ⟨b|U ,
where |b⟩ is the measurement outcome. Averaging snap-
shots over the unitaries and the measurement outcomes
defines a linear map M(ρ)∑

b

∫
dUU† |b⟩⟨b|U ⟨b|UρU†|b⟩ = M(ρ) (1)

from density matrices to density matrices (since M(ρ) is
a completely positive trace preserving map). Here dU is
some as yet unspecified measure on the space of many-
body unitary matrices, and defines the ensemble.

If the ensemble of unitaries is chosen such that the map
M is invertible, then the inverse map applied to Eq. (1)
provides an exact expression

ρ =
∑
b

∫
dUM−1(U† |b⟩⟨b|U) ⟨b|UρU†|b⟩ (2)
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for ρ as a linear combination of the basis operators
M−1(U† |b⟩ ⟨b|U) with coefficients that form a proba-
bility distribution and further are simply the Born rule
probabilities to obtain outcome |b⟩ in a single measure-
ment following the application of unitary U the state.
Following standard classical statistical reasoning we can
now sample from this distribution and for a finite num-

ber of samplesM , obtain the estimate ρ̂s =
1
M

∑M
m=1 ρ̂m

for the state. The set {ρ̂m} is referred to as the clas-
sical shadow of the quantum state and each ρ̂m is an
inverted snapshot. It is important to note that the basis
operators or inverted snapshots are not legitimate den-
sity matrices—while they are hermitian and have unit
trace, they are not positive semi-definite.

When U is a global Clifford or Haar random unitary,
the inverse can be written as [2]

M−1(U† |b⟩ ⟨b|U) = (2L + 1)U† |b⟩ ⟨b|U − I2L×2L (3)

with all but one eigenvalues being negative. The inverted
snapshots can then be used to efficiently estimate the
expectation values of operators with a bounded Hilbert-
Schmidt norm, but are ill suited for typical few body
observables that we consider [2, 5]. Further, given that
global Clifford unitaries are less reliably implemented on
near term quantum computers, we restrict our discus-
sion to local unitaries for practical considerations, while
generalizing our claims to global unitaries in an Ap-
pendix [5].

The special case of U being a tensor product of inde-
pendent Haar random unitaries on each qubit was studied
by Paini and Kalev [4] earlier in the equivalent language
of picking random measurement axes. Here the inverse
exists and takes the form

M−1(U† |b⟩ ⟨b|U) =
⊗

j=1,...,L

(
3U†

j |bj⟩ ⟨bj |Uj − I2×2

)
(4)

where we see that half of the eigenvalues are negative. In
fact one obtains the same inverse map when independent
single site random Clifford unitaries alone are used in
place of random Haar unitaries [2].

Given an operator O (assumed without loss of general-
ity to be traceless), the classical shadow can be used to es-
timate the expectation value o = Tr(ρO). Each element
of the shadow yields a random variable ôm ≡ Tr(ρ̂mO),
which averages to o. The ôm are identically distributed
and independent for different m; we refer to a single such
random variable as ô. The ôm may be combined in vari-
ous ways to estimate o. For example one could take the

average
∑M

m=1 ôm/M . Alternatively, one can take aver-
ages of subsets of {om}Mm=1, and then take the median
of those averages (median of means). This latter method
turns out to preferable. For appropriately chosen size of
subsets, the M required to achieve an accuracy ϵ with
probability > 1− δ is given by

M ≥ C
var(ô)

ϵ2
log(2/δ), (5)

where C is an unimportant numerical constant [2]. It is
clear that the number of samples required is controlled
by the variance of the shadow random variable ô.

III. COMMENTS

We now offer some comments on the formalism de-
scribed above. Note that for simplicity we restrict our
discussions considering O to be a Pauli string, and avoid
the more general problem of simultaneously estimating
the error for a number of different O [2, 6], for which the
qualitative nature of our arguments would not be differ-
ent.

A. Random and non-random measurements

Let us specialize to the case where the operator O is a
k-body Pauli string. It is possible to calculate the vari-
ance in Eq. (5) exactly for the Clifford ensemble [2], and
the result is

var(ô) = 3k − ρ(O)2. (6)

Therefore the shadow recipe above requires
M ≥ C

ϵ2 (3
k − ρ(O)2)× log(2/δ) samples in order to

guarantee that the absolute error in our estimate of
⟨O⟩ is less than ϵ. However suppose we happen to
know in advance that O is a k-body string of Pauli Z
operators alone. Can we do better? The answer is yes,
of course. In this case just estimate O in the usual
way: always measure the state in the computational
(Z) basis. For M experimental runs, this generates a
list of outcomes {ô′m}Mm=1, each of which takes values
in {−1, 1}. Once again we may estimate o by taking
the average outcome across experimental runs (using
median of means method). The M required to achieve
an accuracy ϵ with probability > 1 − δ is given by
formula Eq. (5) with ô → ô′. This makes a dramatic
change, as it is easy to show that var(ô′) = 1 − ρ(O)2

(cf. Eq. (6)). Therefore M ≥ C
ϵ2 (1− ρ(O)2)× log(2/δ)

measurements suffice when we know in advance that
O is a string of Pauli Z operators. Crucially, in this
latter case the measurements required do not increase
exponentially with k.
While we considered a z string, clearly we will get the

same bound for any specified Pauli string as we can sim-
ply measure along the appropriate axis on each site. But
this strategy fails when we wish to estimate multiple and
arbitrary Pauli strings on k sites. Indeed we may es-
timate that in order to have any chance accurately esti-
mating ⟨O⟩ for any such k-body Pauli string, we will need
to have measured each of the k sites along each of the 3
axes multiple times leading to O(3k) measurements con-
sistent with the factor of 3k in the shadow bound. We
note that the superiority of the traditional method for
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measuring the expectation value of fixed operators has
been discussed in Ref. [6] under the terminology of “de-
randomization” wherein you assume that random mea-
surements are the place to begin.

In the case when one has access to two copies of the
unknown state, denoted by ρ ⊗ ρ, along with the abil-
ity to perform Bell measurements across the two copies,
the absolute expectation value of O, |o| = |Tr[ρO]| can
be estimated using M ≥ C

ϵ4 × log(2/δ) measurements for
any Pauli string O, owing to the fact that Bell states
are eigenstates of any such O ⊗ O [7, 8]. While this ap-
proach has the advantages that O need not be known
beforehand, and that the number of measurements does
not scale with the weight of the Pauli string, the disad-
vantages are that it is limited to O being a Pauli string,
and that the scaling with the accuracy ϵ is worse than
both classical shadows and de-randomized measurements
(1/ϵ2). Moreover, to find the sign of the expectation
value, additional measurements in the basis of O may be
needed (requiring prior knowledge of O) [7].

B. State dependence of absolute and relative error

Classical shadows provides an efficient approach to
measure expectation value of an operator O because of
the independence of the bound on absolute error with the
state ρ and the system size L (Eq.5). But often the rel-

ative error (
√
var(Tr[ρ̂sO])/Tr[ρO]) can be important as

well, and estimates using classical shadows have a strong
state dependence. Consider O to be a Pauli string of
weight k, and a single site Clifford/Haar random unitary
ensemble. Using our formula Eq. 6, the squared relative
error is

var(ô)

Tr[ρO]2
=

(
3k

Tr[ρO]2
− 1

)
. (7)

Therefore, the number of samples M required to
achieve the same accuracy ϵ and confidence interval δ
is given by

M ≥ 1

ϵ2

(
3k

Tr[ρO]2
− 1

)
log(2/δ). (8)

The required M can vary dramatically depending on
the state ρ. For example, a Haar random state has
Tr[ρO] = e−O(L), which would require an exponential in
system size number of samples. On the other hand, if ρ is
a product state in Z basis and O contains only Zj acting
on k qubits individually, then Tr[ρO]2 = 1, so that M is
independent of system size. Another interesting example
is when measuring the correlator O = ZiZj between two
sites i, j in an ordered/critical phase of a Hamiltonian
where Tr[ρO] ∼ exp(|i− j|/ξ) / ∼ |i− j|−d+2−η and the
number of samples M correspondingly scales exponen-
tially or polynomially as |i− j| increases.

2 3 4 5 6 7 8
L

101

102

σ
σ

Tr[ρO]

2 8
L

2

4

FIG. 1. Relative error in the estimate of expectation value of
O = Zi, denoted by ô, for a typical Haar random state (red
triangles), with the standard deviation being roughly con-
stant (blue circles), as the system size L varies. The stan-
dard deviation of ô is computed using 104 samples {ôm} gen-
erated from as many snapshots, for each L. Since the ex-
act expectation value decreases exponentially in L, we see a
roughly exponential increase in the relative error (with the
dashed line as exponential guide). In the inset, the rela-
tive error is plotted for O = Zi, with the state given by
|ψ⟩ = 1√

L
(|0111 . . .⟩+ |1011 . . .⟩+ . . . ), such that the exact

expectation value is ⟨Z1⟩ = 1− 2/L.

The state dependence of the relative error is numeri-
cally examined in Figure 1, where we compare the rel-
ative error in the expectation value of O = Zi for the
classical shadow of a typical Haar random state. The
relative error increases with L, while the variance re-
mains approximately constant. We also consider the rel-
ative error in Z acting only on the first qubit for the
state |ψ⟩ = 1√

L
(|0111 . . .⟩+ |1011 . . .⟩+ . . . ). Here the

expectation value Tr[ρZ1] = 1 − 2/L increases with L
sufficiently quickly that the relative error decreases with
system size (in contrast with the Haar random case).

To summarize, the number of measurements re-
quired to achieve a certain accuracy in the rela-
tive error of the estimate of an expectation value
depends on the state (Eq. 8), even when us-
ing other methods like de-randomized measurements
(where M ≥ 1/(Tr[ρO]2ϵ2) log(2/δ)) [6] or Bell mea-
surements on two copies of the state (where M ≥
1/(Tr[ρO]4ϵ4) log(2/δ)) [7]. This is consistent with the
general expectation in quantum simulation that the rela-
tive error arising from imperfect simulation is much larger
than the absolute error[9].
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C. Can we use shadows for time evolution?

As the classical shadow is a considerably more compact
description of a given quantum state, it is interesting to
ask if it can be time evolved to obtain a useful descrip-
tion of the quantum state at a later time. Colloquially,
how well does the time evolved shadow approximate the
shadow of the time evolved state?

Consider the time evolution of a state ρ with a time
varying unitary V (t), generated from some underlying
local dynamics through a Hamiltonian or a quantum cir-
cuit, which leads to the time evolved expectation value
Tr[Oρ(t)] = Tr[V †(t)OV (t)ρ(0)] for a given operator O.
We would like to compare this to the time dependent
estimates obtained via evolving the shadow {ρs(0)} of
the state at t = 0. Each inverted snapshot ρ̂m evolves
as ρ̂m(t) = V (t)ρ̂mV

†(t), and hence our estimate of ex-
pectation value of O evolves as 1

M

∑
m Tr[Oρ̂m(t)] =

1
M

∑
m Tr[V †(t)OV (t)ρ̂m], From this we learn that the

absolute error increases with time according as operator
O spreads in time. Thus if O evolves to contain domi-
nantly k(t) body operators at time t, we expect that the
bound of the variance computed with the time evolved
shadow will grow as

var(Tr[Oρ̂(t)]) ≤ 4k(t) (9)

Thus depending on whether the dynamics are chaotic
or many body localized or non interacting, the variance
in the estimate of the expectation value grows exponen-
tially (k(t) ∼ t) or polynomially (k(t) ∼ log(t)) or neither
(k(t) ∼ O(1)) [10–13].
In contrast the expectation value estimated by the

classical shadow of the exact ρ(t) will be bounded by
a “fixed” variance ∼ 4k(0). Of course as we noted earlier,
the absolute error does have a weak state and, therefore,
time dependence and the relative error will have a po-
tentially much stronger time dependence. Nevertheless
our analysis here indicates that time evolved shadows
do not provide very good estimates of time dependent
expectation values except in the case of non-interacting
systems where they are not needed anyway. Bell mea-
surements on two copies of the state can be used to
estimate the absolute expectation value of an observ-
able O in a time evolved state, such that |Tr[Oρ(t)]| =
|Tr[V †(t)OV (t)ρ(0)]|, whenever O(t) = V †(t)OV (t) is
still a Pauli string, or equivalently, V (t) is a Clifford uni-
tary. For such an evolution, var(|ô(t)|) ≤ 1, and the num-
ber of measurements required (M ≥ 1

ϵ4 log(2/δ)) does not
depend on t, unlike Eq. 9. However, for generic/non-
Clifford time evolution, O(t) does not remain a Pauli
string and the estimation procedure of Ref. [7] ceases to
be applicable.

D. Over-completeness

The representation of the density matrix in (2) has the
form of an expansion of the density matrix in a basis of

operators. In (2) the coefficients in the expansion are
Born rule probabilities for measurement outcome b after
the application of unitary U . However we now note that
as an expansion (2) is not unique as the operator basis
is overcomplete.
Let us spell this out in the simplest case, that of a single

qubit state and the Haar random unitary ensemble. In
this case (2) takes the explicit 2× 2 matrix form

ρ =

∫
dn

4π

∑
m=−1,1

p(m,n)(1 + 3mσ.n) (10)

This may be re-expressed as

ρ =

∫
dn

4π
p+(n) + 3σj

∫
dn

4π
p−(n)nj , (11)

where p±(n) ≡ p(1,n) ± p(−1,n). For a fixed ρ, there
are many functions p±(n) which satisfying this equation.
Indeed, it is easy to show that Eq. 11 fixes only the l = 0
spherical harmonic of p+ and the l = 1 spherical har-
monic of p− ; all other harmonics are can be freely tuned
while respecting Eq. 10. This lack of uniqueness of the
expansion coefficients in Eq. 10 is not restricted to Haar
random unitaries, but is applicable even when Clifford
unitaries are used.

IV. HYBRID SHADOWS

We now consider a theoretical generalization of the no-
tion of the classical shadow to a hybrid classical-quantum
shadow: We measure some of the qubits but not all and
keep an entangled quantum state on the remaining qubits
(Figure 2). The hybrid shadow can require fewer mea-
surement rounds to achieve accurate estimates for cer-
tain observables (to be specified). On the other hand,
the resulting hybrid shadow is comprised of a collection
of states which will tend to have less entanglement (and
require less memory to store) than the initial quantum
state. Hybrid shadows may therefore provide a useful
method for compressing a quantum state on a classical
computer.
To form a hybrid shadow from initial state ρ, pick and

fix a subsystem A (consisting of LA qubits), denoting its
complement B. Rotate by a random unitary on A de-
noted by UA, and then measure A in the computational

basis. The resulting snapshot is U†
A |a⟩ ⟨a|UA ⊗ ρB(a),

where |a⟩ is the state (on subsystem A) after mea-
surement in the computational basis, and ρB(a) is the
resulting unnormalized collapsed state on the remain-
der of the qubits which are not measured (not the re-
duced density matrix). The distribution of such col-
lapsed states for many body chaotic systems is studied
in [14]. The probability of measuring |a⟩ is given by

p = |(⟨a| ⊗ I) |ψ⟩ |2 = Tr[(|a⟩ ⟨a| ⊗ I)UAρU
†
A]. Averag-

ing over unitaries and measurement outcomes induces a
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UA
a

ψB(a)

FIG. 2. Measurement scheme to obtain a hybrid shadow of the
state |ψ⟩. A random subsystem A is chosen onto which a ran-
dom unitary is applied. The same subsystem is then measured
in the computational basis, with the measurement outcome
|a⟩ and the collapsed state on the complementary subsystem
|ψB(a)⟩ (or ρB(a) if starting with a mixed state). Upon ro-

tating back with the unitary, a snapshot U†
A |a⟩ ⟨a|UA⊗ρB(a)

defines a map starting from ρ to itself. This map, when in-
vertible, provides us a hybrid shadow, as described in Eq. 13,
which reproduces the initial state upon averaging over the
measurement outcomes, random unitaries, and the choice of
subsytem A.

quantum channel on the density matrix∫
dU
∑
aϵA

(
U†
A |a⟩ ⟨a|UA

)
⊗
(
(⟨a| ⊗ I)UAρU

†
A(|a⟩ ⊗ I)

)
= M(ρ)

(12)

where the channel M is a superoperator acting only on
subsystem A, and it may be invertible depending on the
unitary ensemble. When it is invertible, a hybrid classical
shadow is comprised of inverted snapshots

ρ̂ = M−1
[
U†
A | a⟩⟨a | UA

]
⊗ ρB(a). (13)

For unitaries which are acting on each site and are ei-
ther Clifford/Haar random unitaries, the inverse map is
simply

M−1(U†
A |a⟩ ⟨a|UA) =

⊗
jϵA

(
3U†

j |aj⟩ ⟨aj |Uj − I2×2

)
.

(14)

implying that the corresponding part of the hybrid
shadow in Eq. 13 can be efficiently stored and recon-
structed on a classical computer. Similar to the classi-
cal shadow, Tr[ρ̂] = 1, however, ρ̂ is not positive semi-
definite.

With this inverse map, the bound on the variance of a
Pauli string observable O with weight k can be shown to

1 2 3 4 5 6
LA

0

2

4

6

8

σ
2

GHZ
Haar
random product

FIG. 3. Variance of the estimated expectation value ô of the
Pauli string O = ZiZj . To compute this, we form 106 inverted
hybrid snapshots Eq. (13), and use these to form the same
number of estimates {ôm} for O. We plot the variance of this
sequence of estimates, which should in turn estimate the left
hand side of Eq. (15). We calculate the variance for a typical
random product state (red triangles), a typical Haar state
(green squares), and a GHZ state (blue dots) with L = 6, as
LA is varied. Subsystem A is measured and is always taken
to be the first LA qubits and i = 5, j = 6. The solid lines of
the corresponding color represent the bound on the variance
in Eq. 15, and is consistent with the computed variance for
these states.

be [5]

var(ô) ≤ 3k(OA) − ρ(O)
2

(15)

with k(OA) being the weight of the part of O on sub-
system A. When k(OA) = 0, even if k(O) is large, the

variance is minimal and is given by 1 − ρ(O)
2
, and is

demonstrated in Figure 3. On the other hand, note that
the variance in Eq. 15 is at worst exponential in LA; in
contrast, the variance in the original shadow procedure
(Eq. 6) could be exponential in total system size for long
Pauli strings O. This means that hybrid shadows can
lead to a reduction in the error in estimates for expecta-
tion values according to Eq. 5, when LA is smaller than
L. Alternatively, if one knows the support of Pauli string
O beforehand, hybrid shadows can lead to significantly
reduced error by choosing A such that k(OA) is minimal.
Note that the improvement in variance by reducing LA,
or increasing L− LA, comes at the cost of exponentially
larger classical memory required to store the collapsed
states on B.
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A. Averaging over random choices of A

If information about O is not available beforehand, an
optimal choice of A cannot be pre-determined. There-
fore, for such general cases A can be randomly chosen as
well. Picking LA qubits of A at random with a probabil-
ity p(A), the map M(ρ) can be written as

∑
A

p(A)

∫
dU
∑
bϵA

U†
A |a⟩ ⟨a|UA⊗

(⟨a| ⊗ I)UAρU
†
A(|a⟩ ⊗ I) =

∑
A

p(A)MA(ρ)
(16)

where by linearity of quantum channels, the term on the
right is also a quantum channel.

The variance of the estimate for the expectation value
of a Pauli string observable with weight k can be ob-
tained from Eq. 15 [5], and depends on the relation be-

tween k and LA. When LA ≫ k, var(ô) ≤ 3k − ρ(O)
2
,

as expected for example when all qubits are measured,
on the other hand, when k ≫ LA, the upper bound
on variance is only dependent on LA, as when A is
fixed, given by 3LA − ρ(O)

2
. For intermediate cases the

bound can also be non-exponential, for example when
LA = 1, var(ô) ≤ 1 + 2k/L − ρ(O)

2
, while when k = 1,

var(ô) ≤ 1 +
2L2

A

L+LA(LA−1) − ρ(O)
2
[5].

B. Time evolution and state dependence

The dependence of the variance in Eq. 15 prompts us
to ask as an extension of the question about time evo-
lution in section III C - how well does the time evolved
hybrid shadow approximate the initial state when com-
pared to the classical shadow. To that end, note again
that the estimate of expectation value of O evolves
according to how the operator spreads in time, since
1
M

∑
m Tr[Oρ̂m(t)] = 1

M

∑
m Tr[V †(t)OV (t)ρ̂m], where

ρ̂m are now the inverted hybrid snapshots in Eq. 13.
Thus, using Eq.15, we can say that the bound on the
variance of the expectation value of O(t) only depends
on the weight of the observable O(t) on A. Consider the
example when initially O has no weight on A. In this
case, until the time that the front of the spreading op-
erator reaches from its original position in B to A, the
bound on the variance remains 1 − ρ(O)2, and starts to
increase exponentially only after that, until again when
the operator has fully spread in A, after which the bound
on the variance saturates as ∼ 4LA . This is in contrast
to time evolving classical shadows, which after saturation
according to Eq. 9 will accumulate exponential error in
the full system size L. When the choice of A is random,
we expect a similar saturation with LA, however the ini-
tial growth in the bound would start right away, as per
the discussion in the previous section.

While the bounds on absolute error are only weakly
dependent on the state, actual errors in the estimates of

0 1 2 3
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ρ̂
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FIG. 4. Variance of the estimate of expectation value ô for
O = X on a single qubit. This is calculated using 105 inverted
hybrid snapshots (Eq. 15) to generate as many estimates
{ôm} of the observable O. Each snapshot is formed using a
random choice of subset A of fixed size LA. The procedure is
carried out on the ground state of the transverse field Ising
model (H = −

∑
ZiZi+1 − g

∑
Xi, L = 8) vs the transverse

field g, for LA = 2, 4, 6, 8 (increasing in darkness), implying
the error in estimates are sensitive to LA as well as the phase
of the ground state. Inset : The L1 norm of the the difference
between the estimated state ρ̂s = 1

M

∑
m ρ̂m, using M = 105

inverted hybrid snapshots ρ̂m for each point, and the true
state ρ, vs g for LA = 2, 4, 6, 8 shows little dependence on g,
and increases exponentially with LA.

observables can provide more insight into the nature of
hybrid shadows. To that end, we show in Figure 4, the
dependence of the variance of the estimate of expectation
value of Xi for the ground state of transverse field Ising
model, with the Hamiltonian H = −

∑
ZiZi+1−g

∑
Xi,

for L = 8 as the transverse field g is varied, for different
LA (A chosen randomly), for a fixed number of sam-
ples (≈ 105). The variance is lower in the paramagnetic
regime for all LA, and the change is most distinct when
LA = L, due to EU,|a⟩ ô

2 being independent of state, and

the only dependence with g comes from (EU,|a⟩ ô)
2, where

EU,|a⟩ denotes the average over measurements, unitaries
and choice of A (a similar argument for O = Z would
mean an increase in error with g). As LA is decreased
the variance reduces as well (see discussion below Eq. 15),
which makes sense since the shadow state becomes closer
to the true state as LA is reduced to 0. The dependence
of the variance with with g also becomes weaker. The
maximum value of 3 when LA = L is also consistent
with the bound in Eq.6. Together, they illustrate that
the error in shadow estimates is sensitive to the phase
of the ground state, and the number of qubits measured
LA.
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C. State approximation/compression

Hybrid shadows with randomly selected LA qubits can
serve as a potential state approximation tool. While a
general quantum state on L qubits requires a memory
scaling as 2L, hybrid shadows could in certain circum-
stances compactly approximate the quantum state. Stor-
ing a collection of M snapshots of the system Eq. (13)
would require memory M(LA + dB), where dB is the
typical memory required to store the residual state on
B, ρB . In the worst case scenario where the residual
state is highly entangled, dB = 2LB . On the other hand
if the residual states have area law entanglement, then
dB = O(LB) (scaling of number of parameters required
to store an associated matrix product state in 1D).

The hybrid shadow becomes a better approximation
to the original state as the number of samples in the
shadow M increases. As before, the convergence with M
is controlled by the snapshot-to-snapshot variance in the
shadow estimate of the observable in question Eq. (15).
It follows that the error in a Pauli observable O can be
made ϵ small with probability ≥ 1 − δ by insisting that

M ≥ C 3k(OA)

ϵ2 log(2/δ).

The ratio of total classical memory required to store
the shadow states and the classical memory required
to store the entire state is approximately given by
M(LA + dB)/2

L, and when the expectation values of
Pauli strings of weight k(OA) on A are desired up to
an accuracy ϵ with probability 1 − δ, the ratio scales as

3k(OA) (LA+dB)
2L

log(2/δ)/ϵ2 in the large L limit. For small

LA, dB ∼ 2L, and low errors in the estimate of expec-
tation values, the ratio can be quite large in practice.
When k is small compared to LA the hybrid shadow ap-
proximation appears to be more memory efficient than
storing the full state. On the other hand, when com-
pared to the fully classical shadow (LA = L, dB = 0)
more classical memory is required for storing a state us-
ing hybrid shadows, since the ratio of the memory re-
quired to classically store a hybrid shadow and a clas-

sical shadow is given by 3−k(OB) (LA+dB)
L . For arbitrary

O, the ratio is (LA + dB)/L and will generally be larger
than one, but can be improved either by using approx-
imation techniques for low entanglement states (such as
a matrix product states) or by using standard compres-
sion techniques for arbitrary states [15, 16]. Note that
when a limited capacity quantum memory is available,
the collapsed state on B can be stored optimally in a
hybrid classical quantum memory, which can be another
potential application of hybrid shadows.

Indeed, it is interesting to ask if there are classes of
quantum states for which this thinning out of the quan-
tum degrees of freedom stored in full, preserves greater
accuracy than for other classes for which it does not. As
a first test we have examined the ground states of the

transverse field Ising model as the quantum fluctuations
are varied. As is well known, the entanglement in the
ground states peaks at the critical point. Somewhat sur-
prisingly, in contrast to traditional state approximation
methods like the matrix product states, there is remark-
ably little dependence on the entanglement of the state.
This is supported in the inset of Fig.4, by computing
the L1 norm ||ρ − ρ̂s|| for the estimated state ρ̂s using
hybrid shadows for the transverse field Ising model, keep-
ing the number of inverted snapshots M = 105 for all g.
The norm appears largely independent of g, especially
for larger LA, whereas for a matrix product state it is
larger near the critical regime for fixed bond dimensions.
However, analogous to Eq. 15 when generalized to global
operators, reducing LA leads to an exponential reduction
in the norm for a fixed number of snapshots.

V. DISCUSSION

We have commented on certain aspects of classical
shadows from the viewpoint of many body physics.
Unlike absolute errors in estimates of expectation values,
relative errors can have a strong state dependence. Fur-
ther, time evolution performed using classical shadows
leads to an exponential buildup of errors in a generic
many body system. Along the way, we also pointed out
the freedom in writing down the expansion of a state
using classical shadows. Finally, we introduced the idea
of forming a hybrid quantum-classical shadow from mea-
surements performed over some of the qubits instead of
all, which can more accurately predict expectation values
at the expense of requiring more quantum memory.
These hybrid shadows could provide a way of thinking
about the manner in which correlations of the state are
captured, as more and more number of experiments are
used to compute the shadow, and how it contrasts with
traditional ways in which states are approximated. Such
states could also potentially enhance the capabilities of
near term quantum computers with limited number of
qubits.
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Appendix A: Hybrid shadows

Here we derive the results for hybrid shadows in greater detail. Consider starting with a state ρ defined on L qubits,
and partitioning the system into subsystems A and B with number of qubits LA and LB . ρ is rotated using a random

unitary UA acting on A such that the new state is UA⊗ IB ρ U†
A⊗ IB, where IB is the identity on B. A measurement

is then performed on A in the computational basis, resulting in the collapsed state |a⟩. The un-normalized collapsed
state on B is then given by

ρB(a) = (⟨a| ⊗ IB)UA ⊗ IB ρ U†
A ⊗ IB(|a⟩ ⊗ IB) (A1)

ρB(a) = (⟨a|UA ⊗ IB) ρ (U†
A |a⟩ ⊗ IB) (A2)

The normalized state on the full system can then be written as |a⟩ ⟨a| ⊗ ρB(a)/TrB[ρB(a)]. A snapshot of ρ is the

state obtained after rotating back the subsystem A : U†
A |a⟩ ⟨a|UA ⊗ ρB(a). Note that the collapsed state on B is

unchanged in this step. When averaged over the unitary ensemble and the measurement outcomes |a⟩, M(ρ) defines
a map acting on ρ via ∫

dU
∑
aϵA

U†
A |a⟩ ⟨a|UA ⊗ ρB(a)

TrB[ρB(a)]
TrB[ρB(a)] = M(ρ) (A3)

such that the probability of measuring |a⟩ cancels the normalization and the map only depends explicitly on the
un-normalized state ρB(a). In general, finding an inverse of the map M to reconstruct the state ρ is a difficult task,
however, whenever the the unitaries are constructed that the classical shadow can be formed (or when all the qubits
are measured), we can show that a hybrid shadow can be written down as

ρ̂m = M−1
A (U†

A |a⟩ ⟨a|UA)⊗
ρB(a)

TrB[ρB(a)]
(A4)

Noting that no operation is performed on the collapsed state on B. To see that ρ̂m reproduces ρ in expectation,
expand ρ =

∑
r crρ

r
A ⊗ ρrB , so that upon averaging the classical shadow on A reproduces ρrA,(∫

dUA

∑
aϵA

M−1
A

(
U†
A |a⟩ ⟨a|UA

)
⟨a|UAρ

r
AU

†
A |a⟩

)
⊗ ρrB = ρrA ⊗ ρrB (A5)

and by linearity ρ is reproduced. For the case when UA is a product of on site Haar random unitaries Ui, which we
have specialized to in the main text, the hybrid shadow has the form

ρ̂m =
[
⊗iϵA

(
3U†

i |ai⟩ ⟨ai|Ui − Ii

)]
⊗ ρB(a)

TrB[ρB(a)]
(A6)

1. Variance of expectation values

First, let’s consider the case when a fixed subsystem A is measured, and the Pauli string O has a decomposition
O = OA ⊗OB , and the expectation ρ(O) in state ρ. Denoting the estimate for the expectation value as ô ≡ Tr(ρ̂O),
and the exact value as ρ(O), the variance can be written down as

var(ôm) =

(∫
dUA

∑
|a⟩

(
Tr
[
M−1

A (U†
A |a⟩ ⟨a|UA)OA

]
⊗ Tr

[ ρB(a)

TrB[ρB(a)]
OB

])2
TrB[ρB(a)]

)
− ρ(O)2 (A7)

var(ôm) =

(∫
dUA

∑
|a⟩

(
Tr
[
M−1

A (U†
A |a⟩ ⟨a|UA)OA

])2
TrB[ρB(a)]

)
×
(
Tr
[ ρB(a)

TrB[ρB(a)]
OB

])2
− ρ(O)2 (A8)

var(ôm) ≤
∫
dUA

∑
|a⟩

(
Tr
[
M−1

A (U†
A |a⟩ ⟨a|UA)OA

])2
TrB[ρB(a)]− ρ(O)2 (A9)

var(ôm) ≤ 3k(OA) − ρ(O)2 (A10)

Where in the third line we have used the assumption of Pauli string O so that ρ(O) ≤ 1, whereas the last line can be
derived either by assuming Haar random unitaries acting on each qubit and the explicit form for M−1, or for general
unitaries using the ”shadow norm” defined in [2].
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FIG. 5. The function f(k, LA, L) in Eq. A12 determining the upper bound of the variance of the expectation value of a
weight k Pauli string using hybrid shadows with randomly selected subsystem A, for L = 20. Left - f(k, LA, L) vs k for
LA = 2, 6, 10, 14, 18 (increasing in darkness), with the horizontal dashed lines showing saturation at 3LA . The bound for the
full classical shadow (Eq. 5) is plotted as the dotted line. Right : f(k, LA, L) plotted vs LA for k = 2, 6, 10, 14, 18 (increasing
in darkness). The horizontal dashed lines are the bounds for the classical shadow, when LA = L. As k increases the curves
approach the dotted line is 3LA .

When the LA qubits are randomly chosen, the estimate of the state ρ can be written in terms of
(

L
LA

)
independent

random variables ρ̂s = 1
M

∑
M,A p(A)ρ̂m(A), such that p(A) is the probability of choosing subsystem A, which by

linearity still averages out to the exact state. The variance can then be estimated by the weighted sum of variances

var(ôm) ≤
∑
A

p(A)3k(OA) − ρ(O)2 (A11)

where

∑
A

p(A)3k(OA) = f(k, LA, L) =
( min(k,LA)∑

max(0,k−L+LA)

(
k

r

)(
LA

r

)(
L− k

LA − r

)
3r
)
/
( min(k,LA)∑

max(0,k−L+LA)

(
k

r

)(
LA

r

)(
L− k

LA − r

))
(A12)

is obtained by solving the combinatorially equivalent problem of distributing LA distinct objects into 2 boxes of
size k and L − k without replacement. The function f(k, LA, L) which is the first term on the right in the second
equation is plotted for L = 20 and different k and LA. For LA = 1, it goes as 1 + 2k/L − ρ(O)2, for k = 1 as

1 +
2L2

A

L+LA(LA−1) − ρ(O)2, whereas for LA ≫ k the upper bound scales as 3k − ρ(O)2, and when k ≫ LA it scales as

3LA − ρ(O)2. Excluding the exact value on the right, the bound on variance is plotted for different k, LA for L = 20
in Figure 5.

Appendix B: Classical and hybrid shadows from global unitaries

Here we provide generalizations of our results when global Clifford or Haar random unitaries U are applied on an
unknown state ρ before performing measurements, followed by forming inverted snapshots. As noted in the main
text, the inverted snapshot when all of the qubits are measured is given by

M−1(U† |b⟩ ⟨b|U) = (2L + 1)U† |b⟩ ⟨b|U − I2L×2L (B1)
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It was shown in [2] that using these inverted snapshots to estimate the expectation value of a traceless operator O
leads to a variance in the estimate ôm given by

var(ôm) =

(∫
dU
∑
|b⟩

(
Tr
[
M−1(U† |b⟩ ⟨b|U)O

])2)
− ρ(O)2 (B2)

var(ôm) =
2L + 1

2L + 2

(
Tr[O2] + 2Tr[ρO2]

)
− ρ(O)2 (B3)

var(ôm) ≤ 3Tr[O2]− ρ(O)2 (B4)

where in the last line Tr[O2] is the squared Hilbert-Schmidt norm of the operator O. Thus, whenever Tr[O2] is
bounded and small, quantities such as the fidelity of the state (for which O = ρ − 1

2L
I, var(ôm) = O(1)) can be

efficiently estimated using M ≥ C var(ô)
ϵ2 log(2/δ) samples with an accuracy ϵ and probability 1− δ, independent of L.

However, when estimating the expectation value of a Pauli string O, the variance scales with the system size L,
independent of the weight of the Pauli string (ie. the number of qubits where the operator is not identity), such that
var(ôm) = 2L + 1− ρ(O)2, obtained from Eq. B3. This makes using this approach highly inefficient when compared
to using local unitaries to form the shadow, where the variance only depends on the weight k of the Pauli string (Eq.
6). Based on this observation, we can arrive at the following conclusion about state dependence and time evolution :

a. State dependence of absolute and relative error : Limiting ourselves to the case of O being a Pauli string, the
relative error for the estimate of the expectation value of O has a dependence on the state given by

var(ô)

Tr[ρO]2
=

(
2L + 1

Tr[ρO]2
− 1

)
. (B5)

where we have used Eq. B3. By virtue of the exponential scaling in the numerator, it is not as sensitive to whether
Tr[ρO] = e−O(L) for a Haar random state or Tr[ρO] = O(1) for a product state, when compared to local shadows,
but the relative error itself is exponentially larger (Eq. 7).

b. Time evolution : Do shadows produced from global unitaries offer any advantage over shadows obtained from
local unitaries, when considering estimating the expectation value of a Pauli string O, in a time evolved state generated
from inverted snapshots ρ̂m(t) = V (t)ρ̂mV

†(t) using the time evolution operator V (t)? As discussed in Sec. III C,
the estimate of the expectation value of O evolves as 1

M

∑
m Tr[Oρ̂m(t)] = 1

M

∑
m Tr[V †(t)OV (t)ρ̂m], and for local

shadows the absolute error increases with time according to how operator O spreads in time (Eq. 9). On the other
hand, for global shadows, the variance does not depend on the weight of the Pauli string O (Eq. B4), and is given as

var( ˆo(t)m) ∼ var(ôm) ∼ exp(L) (B6)

Thus, even though the error does not change much with time, it scales exponentially in the system size L at all times.
c. Hybrid shadows : Hybrid shadows obtained by applying a unitary UA on subsystem A comprising of LA qubits

out of a total L qubits can be readily generalized from Sec IV when UA acting on A is a Clifford or Haar random
unitary. When the measurement outcome on A is |a⟩, the hybrid shadow in Eq. A4 can be simplified to

ρ̂m =
[
(2LA + 1)U†

A |a⟩ ⟨a|UA − I2LA×2LA

]
⊗ ρB(a)

TrB[ρB(a)]
(B7)

The variance of the estimate of expectation value of a Pauli string O = OA ⊗OB can then be derived as follows

var(ôm) =

(∫
dUA

∑
|a⟩

(
Tr
[
M−1

A (U†
A |a⟩ ⟨a|UA)OA

]
⊗ Tr

[ ρB(a)

TrB[ρB(a)]
OB

])2
TrB[ρB(a)]

)
− ρ(O)2 (B8)

var(ôm) ≤
∫
dUA

∑
|a⟩

(
Tr
[
M−1

A (U†
A |a⟩ ⟨a|UA)OA

])2
TrB[ρB(a)]− ρ(O)2 (B9)

var(ôm) ≤ 2LA + 1

2LA + 2

(
Tr[O2

A] + 2
)
TrB[ρB(a)]− ρ(O)2 (B10)

var(ôm) ≤ 2LA + 1− ρ(O)2 (B11)

where in going from the second to the third line, we have used Eq. B3. Comparing this to the variance when local
hybrid shadows are used, in Eq. 15 (var(ô) ≤ 3k(OA) − ρ(O)

2
), there is no dependence on the weight of OA. This also

implies that taking an average over randomly chosen subsystems A doesn’t reduce the upper bound of the variance
like in Eq. A12.
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