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Abstract

We study the exact physical quantities of a competing spin chain which contains

many interesting and meaningful couplings including the nearest neighbor, next nearest

neighbor, chiral three spins, Dzyloshinsky-Moriya interactions and unparallel boundary

magnetic fields in the thermodynamic limit. We obtain the density of zero roots, surface

energies and elementary excitations in different regimes of model parameters. Due to

the competition of various interactions, the surface energy and excited spectrum show

many different pictures from those of the Heisenberg spin chain.
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1 Introduction

Quantum integrable models [1] are very important to analyze some non-pertubative proper-

ties of quantum field/string theory [2, 3]. Moreover, the exact solutions and physical prop-

erties of these models can provide the strict benchmarks for many important physics issues,

and sometimes it can exactly predict and explain the results of experiments [4–6]. In recent

years, the study of quantum integrable models play an important role in the non-equilibrium

statistical physics [7–10], condensed matter physics [11], cold atom physic [12,13], superstring

theory AdS/CFT [14–16] and so on.

For the integrable models with U(1) symmetry, the exact solutions of the models can

be obtained by the conventional Bethe ansatz. In addition, due to the homogeneous Bethe

ansatz equations (BAEs) and the regular pattern of the Bethe roots, the thermodynamic

properties can be directly calculated by the thermodynamic Bethe ansatz (TBA) [17, 18].

When the U(1) symmetry of integrable systems is broken, the off-diagonal Bethe ansatz

can be used to solve the systems based on the algebraic analysis [19]. However, since the

exact solutions of the systems are described by the inhomogeneous T − Q relations [20, 21]

and the resulting inhomogeneous BAEs have the inhomogeneous term, the pattern of Bethe

roots is not clear and the TBA method can not be applied. Recently, a novel Bethe ansatz

scheme has been proposed to calculate the physical quantities of quantum integrable systems

with or without U(1) symmetry [22,23]. The key point of the scheme lies in parameterizing

the eigenvalue of transfer matrix by its zero roots instead of the Bethe roots. Through

this method, the homogeneous BAEs and the well-defined patterns of zero roots can be

obtained. Based on them, the thermodynamic properties and exact physical quantities of

the systems in the thermodynamic limit can also be calculated. In this paper, we study an

isotropic quantum spin chain which includes the nearest neighbor (NN) [24], next nearest

neighbor (NNN) [25], Dzyloshinsky-Moriya (DM) interactions [26, 27], chirality three-spin

couplings [28] and unparallel boundary magnetic fields [29]. The density of zero roots, surface

energy and elementary excitations in different regimes of model parameters are obtained.

The paper is organized as follows. Section 2 serves as an introduction to the model and

explain its integrability. In section 3, we give the patterns of zero roots in the different

regimes of model parameters. In section 4, we calculate the surface energies induced by the

boundary magnetic fields. In section 5, we study the typical bulk elementary excitations in
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the system. The boundary excitations are computed in section 6. In section 7, we calculate

the surface energies in ferromagnetic regime. Concluding remarks are given in section 8. A

simple method is introduced in Appendix A..

2 Integrability of the model

The model Hamiltonian reads

H = Hbulk +HL +HR. (2.1)

Here Hbulk describe the interactions in the bulk which includes the NN, NNN and chiral

three spin couplings with the form of

Hbulk =
2N−1∑
j=1

{
J1σ⃗j · σ⃗j+1 + J2σ⃗j · σ⃗j+2 + J3(−1)jσ⃗j+1 · (σ⃗j × σ⃗j+2)

}
, (2.2)

where σα
j (α = x, y, z) is the Pauli matrix along the α-direction on the j-th site, and 2N is

the number of sites. We note that the convention σ⃗2N+1 = 0 has been used. HL quantifies

the left boundary terms which includes the boundary magnetic field along the z-direction

and the anisotropic and DM interactions of the first bond

HL =
1− 4a2

p2 − a2
[pσz

1 − a2σz
1σ

z
2 − iapDz

1 · (σ⃗1 × σ⃗2)], (2.3)

where p is the strength of magnetic field, a2 and ap quantify the spin-exchanging and DM

interactions respectively, and Dz
1 is the unit vector along the z-direction. HR characterizes

the right boundary terms which includes the boundary magnetic field lies in the x− z plane,

anisotropic and DM interactions of the last bond also constrained in the x− z plane. Thus

HR reads

HR =
4a2 − 1

a2ξ2 + a2 − q2
[q(ξσx

2N + σz
2N)− a2(ξσx

2N−1 + σz
2N−1)(ξσ

x
2N + σz

2N)

−iaq(ξDx
2N +Dz

2N) · (σ⃗2N × σ⃗2N−1)], (2.4)

where q and ξ are the boundary parameters, Dx
2N is the unit vector along the x-direction and

Dz
2N is the unit vector along the z-direction. We should note that the boundary fields are

unparallel boundary and the U(1) symmetry of the system are broken. The hermitian of the

Hamiltonian (2.1) requires that the model parameter a is pure imaginary and the boundary
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parameters p, q, ξ are real. Moreover, the integrability of the system (2.1) requires that the

couplings J1, J2, J3 satisfy the relationships

J1 = 1 + cj(δj,1 + δj,2N−1), J2 = −2a2, J3 = ia, (2.5)

c1 =
a2(1− 2a2 − 2p2)

p2 − a2
, c2N−1 = 2a2 +

a2(4q2 − ξ2 − 1)

a2ξ2 + a2 − q2
. (2.6)

where the index j is the summation index in Hbulk (2.2). The Hamiltonian (2.1) is con-

structed by using the R-matrix and the reflection matrices K± based on the quantum inverse

scattering method. The R-matrix defined in the tensor space V1 ⊗ V2 is

R1,2(u) = u+ P1,2 = u+
1

2
(1 + σ⃗1 · σ⃗2) , (2.7)

where u is the spectral parameter and P1,2 is the permutation operator. The R-matrix (2.7)

satisfies the quantum Yang-Baxter equation (QYBE),

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2). (2.8)

The reflection matrix K−
1 (u) defined the space V1 is

K−
1 (u) =

(
p+ u

p− u

)
, (2.9)

which satisfies the reflection equation (RE)

R1,2(λ− u)K−
1 (λ)R2,1(λ+ u)K−

2 (u) = K−
2 (u)R1,2(λ+ u)K−

1 (λ)R2,1(λ− u), (2.10)

where R2,1(u) = P1,2R1,2(u)P1,2. The dual reflection matrix K+
1 (u) is

K+
1 (u) =

(
q + u+ 1 ξ(u+ 1)

ξ(u+ 1) q − u− 1

)
, (2.11)

satisfying the dual reflection equation

R1,2(−λ+ u)K+
1 (λ)R2,1(−λ− u− 2)K+

2 (u)

= K+
2 (u)R1,2(−λ− u− 2)K+

1 (λ)R2,1(−λ+ u). (2.12)

The monodromy matrix T0(u) and the reflecting one T̂0(u) are constructed by the R-matrices

as

T0(u)=R0,2N(u+a+θ2N)R0,2N−1(u−a−θ2N−1) · · ·R0,2(u+a+θ2)R0,1(u−a−θ1),

T̂0(u)=R0,1(u+a+θ1)R0,2(u−a−θ2) · · ·R0,2N−1(u+ a+θ2N−1)R0,2N(u−a−θ2N), (2.13)
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where V0 is the auxiliary space, ⊗2N
j=1Vj is the quantum space, and {θj|j = 1, · · · , 2N} are

the inhomogeneity parameters. The transfer matrix t(u) is defined as

t(u) = tr0{K+
0 (u)T0(u)K

−
0 (u)T̂0(u)}, (2.14)

where tr0 means the partial trace over the auxiliary space. The Hamiltonian (2.1) is generated

by the transfer matrix as

H = −1

2
(4a2 − 1)

(
∂ ln t(u)

∂u
|u=a +

∂ ln t(u)

∂u
|u=−a

) ∣∣∣
{θj}=0

− c0, (2.15)

where

c0 = −(2N − 1)(2a2 − 1)− 2a4 − 6a2 + 1

a2 − 1
,

c2 = 8(1− 4a2)2N−2(p2 − a2)(a2 − 1)(a2ξ2 + a2 − q2). (2.16)

The QYBE (2.8), the RE (2.10) and its dual (2.12) guarantee the integrability of the

model described by the Hamiltonian given by (2.1). Moreover, using the properties of the

R-matrix one may easily prove that t(u) = t(−u−1) and the following operator identities [19]

t(θj + a)t(θj + a− 1) = a(θj + a)d(θj + a− 1), j = 1, · · · , 2N, (2.17)

where

a(u) =
2u+ 2

2u+ 1
(u+ p)[(1 + ξ2)

1
2u+ q]

2N∏
j=1

(u+ θj + a+ 1)(u− θj − a+ 1),

d(u) = a(−u− 1). (2.18)

From the definition (2.14), we know that the transfer matrix t(u) is a polynomial operator of

u with the degree 4N + 2. Denote the eigenvalue of the transfer matrix t(u) as Λ(u). From

above analysis, we know that the eigenvalue Λ(u) satisfies

Λ(u) = Λ(−u− 1), (2.19)

Λ(u) = 2u4N+2 + · · · , u → ±∞, (2.20)

Λ(0) = 2 p q
2N∏
j=1

(1− θj − a)(1 + θj + a) = Λ(−1), (2.21)

Λ(θj + a)Λ(θj + a− 1) = a(θj + a)d(θj + a− 1), j = 1, · · · , 2N. (2.22)
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Obviously, Λ(u) is a degree 4N + 2 polynomial of u and can be parameterized as

Λ(u) = 2
2N+1∏
j=1

(u− zj +
1

2
)(u+ zj +

1

2
), (2.23)

where {zj|j = 1, · · · , 2N+1} are the zero roots of the polynomial. Putting the parameterizing

(2.23) into (2.22), we obtain the BAEs

4
2N+1∏
l=1

(θj + a− zl +
1

2
)(θj + a+ zl +

1

2
)(θj + a− zl −

1

2
)(θj + a+ zl −

1

2
)

= a(θj + a)d(θj + a− 1), j = 1, · · · , 2N. (2.24)

The above 2N equations and (2.21) can determine the 2N + 1 unknowns {zj} completely.

In the homogeneous limit {θj = 0|j = 1, · · · , 2N}, Eq. (2.21) is replaced by

Λ(0) = 2 p q (1− a2)2N , (2.25)

and Eq. (2.22) becomes

[Λ(u+ a)Λ(u+ a− 1)](n)|u=0 = [a(u+ a)d(u+ a− 1)](n)|u=0, (2.26)

where the superscript (n) indicates the n-th order derivative and n = 0, 1, · · · , 2N − 1. Eqs.

(2.25) and (2.26) can determine the 2N+1 zeros roots {zj} in the homogeneous limit in finite

system size. Moreover, the energy spectrum of the Hamiltonian (2.1) can be determined by

the zero roots as

E = −π(4a2 − 1)
2N+1∑
j=1

[a1(izj − ia) + a1(izj + ia)]− c0, (2.27)

where the function an(u) is given by

an(u) =
1

2π

n

u2 + n2/4
. (2.28)

By solving the BAEs Eqs. (2.25) and (2.26), we can obtain all the eigen-energies of the

system (2.1).

3 Patterns of zero roots

We first study the solutions of zero roots {zj} at the ground state. For convenient, we

choose all the inhomogeneity parameters to be imaginary, {θj ≡ iθ̄j}, and let {z̄j ≡ −izj}.
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In addition, we set the boundary parameters as p > 0 and q̄ = q(1 + ξ2)−
1
2 . From the

numerical calculation and algebraic analysis, we find that the distribution of the z̄-roots at

the ground state can be divided into following six different regimes in the upper p− q̄ plane,

as shown in Fig.1.

p

q

III

III

III

IV

IV

VVI

0.5-0.5

0.5

Figure 1: The distribution of z̄-roots at the ground state in the upper p− q̄ plane.
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Figure 2: Pattern of z̄-roots at the ground state in regimes I (a) and II (b) with 2N = 8.

The blue asterisks indicate z̄-roots for {θ̄j = 0|j = 1, · · · , 2N} and the red circles specify

z̄-roots with the inhomogeneity parameters {θ̄j = 0.1(j −N − 0.5)|j = 1, · · · , 2N}.

1) In the regime I, where 0 ≤ p < 1
2
, 0 ≤ q̄ < 1

2
, all the z̄-roots form 2N − 2 conjugate

pairs as {z̄j ∼ z̃j ± i|j = 1, · · · , 2N − 2} with real {z̃j}, two boundary conjugate pairs

{±i(|p| + 1
2
),±i(|q̄| + 1

2
)} and two symmetrical real roots z̄± = ±α. The numerical check

with 2N = 8 is shown in Fig.2(a). In the thermodynamic limit, two symmetrical real roots
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Figure 3: (a)-(d) Patterns of z̄-roots for {θ̄j = 0|j = 1, · · · , 2N} at the ground state in

regimes III-VI with 2N = 8.
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±α would tend to infinity and contribute nothing to the ground state energy. These two

real roots correspond to the Majorana modes at the two boundaries.

2) In the regime II, where 0 ≤ p < 1
2
,−1

2
≤ q̄ < 0, as shown in Fig.2(b), all the z̄-roots

form 2N − 2 conjugate pairs, two boundary conjugate pairs {±i(|p| + 1
2
),±i(|q̄| + 1

2
)} and

one pure imaginary conjugate pair ±iβ with β > min(|p|, |q̄|).
3) In the regime III, where p ≥ 1

2
, 0 ≤ q̄ < 1

2
or 0 ≤ p < 1

2
, q̄ ≥ 1

2
, as shown in Fig.3(a), all

the z̄-roots form 2N − 2 conjugate pairs, one boundary conjugate pair ±i[min(|p|, |q̄|) + 1
2
],

two symmetrical real roots z̄± = ±α, and one pure imaginary conjugate pair ±iβ with

β > min(|p|, |q̄|).
4) In the regime IV, where p ≥ 1

2
,−1

2
≤ q̄ < 0 or 0 ≤ p < 1

2
, q̄ ≤ −1

2
, as shown in Fig.3(b),

all the z̄-roots form 2N conjugate pairs and one boundary conjugate pair ±i[min(|p|, |q̄|)+ 1
2
].

5) In the regime V, where p ≥ 1
2
, q̄ ≥ 1

2
, as shown in Fig.3(c), all the z̄-roots form 2N

conjugate pairs and two symmetrical real roots z̄± = ±α.

6) In the regime VI, where p ≥ 1
2
, q̄ ≤ −1

2
, as shown in Fig.3(d), all the z̄-roots form 2N

conjugate pairs and one pure imaginary conjugate pair ±iβ with β > min(|p|, |q̄|).
We also find that the choice of pure imaginary inhomogeneities {θ̄j} does not change the

patterns of zero roots {z̄j} but the roots density, as shown in Fig.2. This result allows us to

calculate the physical quantities such as the surface energy and the elementary excitations

of the system in the thermodynamic limit with the help of suitable {θ̄j} [23].

4 Surface energy

Now, we consider the surface energy induced by the boundaries. The surface energy is

defined by Eb = Eg − Ep, where Eg is the ground state energy of present system and Ep is

the ground state energy of the corresponding periodic chain. In the thermodynamic limit,

the distribution of z̃-roots can be characterized by the density ρ(z̃). Furthermore, we assume

that the density of inhomogeneity parameters 1/[2N(θ̄j−θ̄j−1)] has the continuum limit σ(θ̄).

In regime I, substituting the corresponding pattern of z̄-roots into BAEs (2.24) and taking

the logarithm of the absolute value, we have

ln |4|+
2N−1∑
l=1

[
ln |θ̄j+ ā− z̃l+

3i

2
|+ln |θ̄j+ ā− z̃l+

i

2
|+ln |θ̄j+ ā− z̃l−

i

2
|+ln |θ̄j+ ā− z̃l−

3i

2
|
]

+ln |(θ̄j+ ā−α+
i

2
)(θ̄j+ ā−α− i

2
)|+ln |(θ̄j+ ā+α+

i

2
)(θ̄j+ ā+α− i

2
)|
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+ln |(θ̄j+ ā−i|p|)(θ̄j+ ā+i|p|)|+ln |(θ̄j+ ā−i|p|−i)(θ̄j+ ā+i|p|+i)|

+ln |(θ̄j+ ā−i|q̄|)(θ̄j+ ā+i|q̄|)|+ln |(θ̄j+ ā−i|q̄|−i)(θ̄j+ ā+i|q̄|+i)|

=ln |(θ̄j+ ā+i)(θ̄j+ ā−i)|−ln |((θ̄j+ ā)+
i

2
)((θ̄j+ ā)− i

2
)|

+ln |(θ̄j+ ā+ip)(θ̄j+ ā−ip)|+ln |((1+ξ2)
1
2 (θ̄j+ ā)+iq)((1+ξ2)

1
2 (θ̄j+ ā)−iq)|

+
2N∑
k=1

[(ln |(θ̄j− θ̄k+i)(θ̄j− θ̄k−i)|+ln |(θ̄j− θ̄k+2ā+i)(θ̄j− θ̄k+2ā−i)|], (4.1)

where ā = −ia. In the thermodynamic limit, we assume that the zero roots and inhomo-

geneities have continuum densities

ρ(z̃) =
1

2N(z̃j+1 − z̃j)
, σ(θ̄) =

1

2N(θ̄j+1 − θ̄j)
.

Taking the continuum limit of Eq. (4.1) and replacing θ̄j with λ, we obtain

2N

∫ ∞

−∞
[b1(λ+ ā− z̃) + b3(λ+ ā− z̃)]ρ(z̃)dz̃ + b1(λ+ ā+ α) + b1(λ+ ā− α)

= 2N

∫ ∞

−∞
[b2(λ− θ̄) + b2(λ+ θ̄ + 2ā)]σ(θ̄)dθ̄ + b2(λ+ ā)− b1(λ+ ā)

−b2|p|+2(λ+ ā)− b2|q̄|+2(λ+ ā), (4.2)

where bn(λ) =
1
2π

2λ
λ2+n2/4

. Eq.(4.2) is a convolution equation and can be solved by the Fourier

transformation. The solution of z̃-roots density is

ρ̃(k) = [4Nb̃2(k) cos(āk)σ̃(k) + b̃2(k)− b̃1(k)− b̃2|p|+2(k)

−b̃2|q̄|+2(k)− 2b̃1(k) cos(αk)]/[2N(b̃1(k) + b̃3(k))], (4.3)

where b̃n(k) = sign(k)ie−|nk|. From now on, we use σ(θ) = δ(θ). In the thermodynamic

limit, α tends to infinity. The ground state energy of the Hamiltonian (2.1) can thus be

expressed as

Eg1 = N(4a2 − 1)

∫ ∞

−∞
[ã1(k)− ã3(k)] cos(āk)ρ̃(k)dk − c0

−(4a2 − 1)[
|p|

a2 − p2
− |p|+ 1

a2 − (|p|+ 1)2
+

|q̄|
a2 − q̄2

− |q̄|+ 1

a2 − (|q̄|+ 1)2
], (4.4)
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where ãn(k) = e−|nk| is the Fourier transformation of an(λ). The ground state energy of the

system with periodic boundary condition can be obtained similarly. After tedious calculation,

we obtain the surface energy in the regime I as

Eb1 = eb(p) + eb(q) + eb0, (4.5)

eb(p) =
(4a2 − 1)

4

∫ ∞

−∞
(1− e−|k|) cosh(ak)

e−|pk|

e−|k|/2 cosh (k/2)
dk, (4.6)

eb(q) =
(4a2 − 1)

4

∫ ∞

−∞
(1− e−|k|) cosh(ak)

e−|(q/
√

1+ξ2)k|

e−|k|/2 cosh (k/2)
dk, (4.7)

eb0 =
(4a2 − 1)

4

∫ ∞

−∞
(1− e−|k|) cosh(ak)

e−|k| − e−|k|/2

e−|k|/2 cosh (k/2)
dk. (4.8)

From Eq.(4.5), we see that the surface energy Eb1 can be divided into three terms. eb(p)

and eb(q) are the contributions of left and right boundaries, respectively. eb0 exactly equals

to the surface energy induced by the free boundaries.

In the regime II, taking the logarithm then the derivative of the absolute value of BAE

(2.24), we have

2N

∫ ∞

−∞
[b1(λ+ ā− z̃) + b3(λ+ ā− z̃)]ρ(z̃)dz̃

= 2N

∫ ∞

−∞
[b2(λ− θ̄) + b2(λ+ θ̄ + 2ā)]σ(θ̄)dθ̄ + b2(λ+ ā)− b1(λ+ ā)

−b2|p|+2(λ+ ā)− b2|q̄|+2(λ+ ā)− b2|β|+1(λ+ ā)− b2|β|−1(λ+ ā). (4.9)

The Fourier transform gives

ρ̃(k) = [4Nb̃2(k) cos(āk)σ̃(k) + b̃2(k)− b̃1(k)− b̃2|p|+2(k)− b̃2|q̄|+2(k)

−b̃2|β|+1(k)− b̃2|β|−1(k)]/[2N(b̃1(k) + b̃3(k))]. (4.10)

Then we obtain the surface energy in this regime as

Eb2 = eb(p) + eb(q) + eb0, (4.11)

where eb(p), eb(q) and eb0 are given by Eqs.(4.6)-(4.8), respectively. It is clear that the forms

of surface energies in the regimes I and II are the same, although the resulted values are

different.
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We further calculate the surface energies in the rest regimes and the result is that all

the surface energies can be expressed as the form of Eq.(4.5). The reason is that the bare

contributions of the boundary conjugate pairs to the ground state energy are exactly canceled

by those of the back flow of continuum root density, as happened in the diagonal open

boundary case.

The surface energies Eb with certain a versus the different values of boundary parameter

p are shown in Fig.4(a). If a = 0, all the NNN, chiral three spin and DM interactions are zero

and the system (2.1) degenerates into the Heisenberg spin chain with unparallel boundary

fields. From the blue dotted lines in Fig.4(a), we see that the surface energy of Heisenberg

spin chain is smaller than zero, and is monotonically increasing with the increasing of |p|.
When p = 0, the surface energy is divergent, this is because that the strength of boundary

magnetic field is quantified by 1/p. The results are similar to the those of the Heisenberg

spin chain with parallel boundary fields [30,31]. While for the present model with a ̸= 0, the

surface energies can be larger or smaller than zero, and have two peaks and three minimums

at some special values of |p|. At the point of p = 0, the surface energy arrives at its minimum.

The surface energy is smaller than that of Heisenberg spin chain if |p| is large, and is larger

than that of Heisenberg spin chain if |p| is smalle.

The surface energies eb(p) with fixed a versus p are shown in Fig.4(b). Comparing

Figs.4(a) and (b), we find that if |p| is large which means that the boundary field is small,

due to the existence of NNN, chiral three spin and DM interactions, the surface energy is

smaller than that of the Heisenberg spin chain. We should note that the relation between

eb(q̄) and q̄ is the same as that between eb(p) and p, where q̄ = q/
√
1 + ξ2.

The strength of boundary magnetic field along the z-direction is quantified by p or q up

to a normalized scalar factor. The further numerical calculation of the analytical expression

of surface energy shows that the curves of Eb versus q are similar with those of Eb versus p.

Thus we omit the figure of Eb with the changing of q here. In Fig.4(c), we show the surface

energies Eb with given a versus the boundary parameter ξ. The ξ quantifies the twisted angle

between two unparallel boundary magnetic fields, and quantifies the strength of magnetic

field on the right boundary. If ξ is large, the twisted angle is large. At the same time,

the right boundary magnetic field is small. From the blue dotted lines in Fig.4(c), which

corresponds to the Heisenberg spin chain, we see clearly that if ξ is small, the magnetic field

is strong thus the induced surface energy is large, as it should be. For the present system

12



with a ̸= 0, if ξ is small, the contributions of NNN, chiral three spin and DM interactions

are large, which leads to the surface energy becomes small. Thus the behaviors of surface

energies with a = 0 and a ̸= 0 are totally different.

The surface energies eb0 versus the different values of parameter a are shown in Fig.4(d).

We note that the value of eb0 at the point of a = 0 is the surface energy of the Heisenberg

spin chain with free open boundaries.

From above explanations, we conclude that the surface energy of present system is quite

different from that of the Heisenberg spin chain.
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Figure 4: (a) The surface energy Eb versus the boundary parameter p, where a = 0, 0.6i, 0.8i,

p = 1 and ξ = 1.2. (b) The surface energy eb(p) versus the boundary parameter p. (c) The

surface energy Eb versus the boundary parameter ξ. (d) The surface energy eb0 versus a.

5 Bulk elementary excitations

Next, we study the elementary excitations in the system. We first consider the excitations

in the bulk. The bulk excitations in different regimes of boundary parameters are the same.
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From the patterns of zero roots in the low-lying excited states, we find that the excitations

can be characterized by breaking several conjugate pairs and putting the corresponding zero

roots into the real axis, or the zero roots forming the conjugate pairs on the imaginary

axis with more larger imaginary parts ±ni
2
(n > 2). Thus the system has two kinds of bulk

elementary excitations. The first one is quantified by four finite real roots {±z̄1,±z̄2} and the

second one is quantified by two conjugate pairs {z̃n ± ni
2
,−z̃n ± ni

2
}, where the distribution

of rest zero roots almost does not change and the related difference between ground and

excited states can be erased by the rearrangement of Fermi sea in the thermodynamic limit.

As an example, we give the pattern of zero roots at the ground state (blue asterisks)

and that at the first kind of excited sate (red circles) in the regime V with 2N = 8, which

is shown in Fig.5(a). It is clear that there are four new real roots at the excited state. In

the thermodynamic limit, the density difference δρ̃e1(k) between the ground state and the

excited state is

δρ̃e1(k) = − cos(z̄1k) + cos(z̄2k)

2Ne−|k|/2 cosh(k/2)
, (5.1)

where z̄1 and z̄2 can take arbitrary continuous values in the real axis. Thus the energy carried

by this kind of excitation is

δe = δe1(z̄1) + δe1(z̄2),

δe1(z̄)|z̄=z̄1,z̄2 = −1

2
(4a2 − 1)

[∫ ∞

−∞
(1− e−|k|) cosh(ak) cos(z̄k) cosh−1 (k/2)dk

+
1

(z̄ − ia)2 + 1
4

+
1

(z̄ + ia)2 + 1
4

]∣∣∣∣
z̄=z̄1,z̄2

= −(4a2 − 1) ·
( π

cosh(z̄ + ia)
+

π

cosh(z̄ − ia)

)
, (5.2)

which covers the previous results obtained by using the conventional Bethe ansatz method

for the periodic staggered (a ̸= 0) spin chain [32]. The excited energies δe1 with given values

of model parameter a versus z̄1 are shown in Fig.5(b). From it, we see that the excited

energy of the Heisenberg spin chain (a = 0) only has one peak at the point of z̄ = 0, while

for the present model (a ̸= 0), the excited energies have two peaks at finite ±z̄.

Now, we focus on the second kind of elementary excitation. In order to see the high

strings (n > 2) excitations more clearly, we show the pattern of zero roots at the n = 3

excited state in Fig.6, where the ground state is still in the regime V. In the thermodynamic
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Figure 5: (a) The distribution of zero roots for {θ̄j = 0|j = 1, · · · , 2N} at the ground state

(blue asterisks) and at the first kind of excited state (red circles) with 2N = 8, a = 0.66i,

p = 1.2, q̄ = 0.7 and ξ = 1.2. (b) The excited energies δe1 with fixed a versus z̄1 in the

thermodynamic limit.

limit, the density difference δρ̃en(k) between the ground state and the excited state is

δρ̃en(k) = −(e−|(n+1)k|/2 + e−|(n−1)k|/2) cos(z̃nk)

2Ne−|k|/2 cosh(k/2)
, (5.3)

where z̃n is free. The related elementary excitation energy is

δen = −(4a2 − 1)

2
[

∫ ∞

−∞
(1− e−|k|) cosh(ak)

(e−|(n+1)k|/2 + e−|(n−1)k|/2) cos(z̃nk)

e−|k|/2 cosh (k/2)
dk

+2π(an+1(z̃n + ia) + an+1(z̃n − ia)− an−1(z̃n + ia)− an−1(z̃n − ia))]

= 0, (5.4)

which indicates that the bare contributions of the conjugate pairs with n > 2 to the energy is

exactly canceled by that of the back flow of the continuum root density. Thus the conjugate

pairs with n > 2 contribute nothing to the energy. However, the conjugate pairs do affect

the scattering matrix among the real roots [33].

6 Boundary elementary excitations

Next, we consider the boundary excitations. Comparing with the zero roots distributions at

the ground state, we find that the boundary excitations can exist in the regimes I-IV, where

the boundary parameter −1
2
< p < 1

2
or −1

2
< q̄ < 1

2
. The typical boundary excitation is
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Figure 7: (a) The distribution of z̄-roots for {θ̄j = 0|j = 1, · · · , 2N} with 2N = 8, a = 0.66i,

p = 0.1, q̄ = 1.2 and ξ = 1.2. Here the blue asterisks represent the pattern of zero roots at

the ground state and the red circles denote those at the excited state with boundary string

i(1
2
− |p|). (b) The boundary excited energy versus the boundary parameter p.
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putting the boundary string from i(|p|+ 1
2
) to i(1

2
−|p|), or from i(|q̄|+ 1

2
) to i(1

2
−|q̄|). These

two new boundary strings indeed are the solutions of BAEs (2.24) and would appear at the

low-lying excited states.

As an example, we show the pattern of zero roots at the ground state (blue asterisks) and

that at the excited state (red circles) with boundary string i(1
2
− |p|) in the regime III with

2N = 8, which is shown in Fig.7(a). We can find in the excitation, the 4 roots at ±α and

±β of the ground state jump into the bulk string parts at ±i axes. The change of the zero

roots ±α and ±iβ contribute nothing to the energy. Therefore, we omit the zero roots ±α

and ±iβ in the following. The resulted density change δρ̃(k) between ground and excited

states reads

δρ̃p(k) = − e|pk| − e−|pk|

4N cosh(k/2)
. (6.1)

The corresponding excited energy is

δep = −(4a2 − 1)

2

[∫ ∞

−∞
(1− e−|k|) cosh(ak)

cosh(|p|k)
e|k|/2 cosh (k/2)

dk

+
4|p|

p2 − a2
− 2(|p|+ a)

(|p|+ a)2 − 1
− 2(|p| − a)

(|p| − a)2 − 1

]
= −π(4a2 − 1) ·

(
csc(π(|p|+ a)) + csc(π(|p| − a))

)
. (6.2)

The excited energies δep with fixed values of a versus p are shown in Fig.7(b). From it, we

see that the excited energy of present model is increasing with the increasing of boundary

parameter |p| and has a minimum at the point of p = 0, which is very different from that of

the Heisenberg spin chain. For the latter, the excited energy is decreasing with the increase

of |p|.
We have computed the boundary excitations in other regimes and found that the excited

energies has an unified form (6.2), although the resulted values are different. Please note

that when considering the boundary excitations in the regime of −1
2
< q̄ < 1

2
, the p in

Eq.(6.2) should be replaced by the q̄.

7 Surface energy in ferromagnetic regime

Furthermore, we study the surface energy in ferromagnetic regime. The corresponding

Hamiltonian Hferr is the negative of Hamiltonian (2.1), namely

Hferr = −H = −(Hbulk +HL +HR), (7.1)
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In region III (p ≥ 1
2
, 0 ≤ q̄ < 1

2
or 0 ≤ p < 1

2
, q̄ ≥ 1

2
), all the zeros {z̄j|j = 1, · · · , N} are real

as shown in Fig.8(a). Taking the logarithm then the derivative of the absolute value of BAE

(2.24), we have

2N

∫ ∞

−∞
b1(u+ ā− z̃)ρferr(z̃)dz̃ − b2|p|(u+ ā)− b2|q̄|(u+ ā)

= 2N

∫ ∞

−∞
[b2(u− θ̄) + b2(u+ θ̄ + 2ā)]σ(θ̄)dθ̄ + b2(u+ ā)− b1(u+ ā). (7.2)

The Fourier transform gives
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Figure 8: (a) Patterns of z̄-roots for {θ̄j = 0|j = 1, · · · , 2N} at the ground state of the

ferromagnetic case in regimes III with 2N = 8. (b) The surface energy Eferr
b versus the

boundary parameter p in ferromagnetic case, where a = 0, 0.6i, 0.8i, p = 1 and ξ = 1.2.

ρ̃ferr(k) = [4Nb̃2(k) cos(āk)σ̃(k) + b̃2(k)− b̃1(k) + b̃2|p|(k) + b̃2|q̄|(k)]/[2Nb̃1(k)]

= 2ã1(k) cos(āk)σ̃(k) +
1

2N
[ã1(k)− 1 + ã2|p|−1(k) + ã2|q̄|−1(k)]. (7.3)

The ground state energy of the Hamiltonian (7.1) can thus be expressed as

Eferr
g = N(4a2 − 1)

∫ ∞

−∞
ã1(k) cos(āk)ρ̃(k)dk + c0, (7.4)

where c0 is given in (2.16). Then we can obtain the surface energy in this regime as

Eferr
b =

(4a2 − 1)

2

∫ ∞

−∞
[ã2(k)− ã1(k) + ã2|p|(k) + ã2|q̄|(k)] cos(āk)dk

=
(4a2 − 1)

2

[ 2|p|
p2 − a2

+
2|q̄|

q̄2 − a2
+

2

1− a2
− 1

1
4
− a2

]
. (7.5)
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After calculation, the energy expressions in the other regions are found to be identical to

Eq. (7.5) in region III. The surface energies Eferr
b with certain a versus the different values

of boundary parameter p are shown in Fig. 8(b).

8 Conclusions

In this paper, we have studied the exact physical quantities of a competing spin chain in-

cluding the NN, NNN, chiral three-spin couplings, DM interactions and unparallel boundary

magnetic fields in the thermodynamic limit. We obtained the density of zero roots, surface

energy and elementary excitations in different regimes of model parameter. Due to the com-

petition of various interactions, the excited spectrum have different behaviors from those of

the isotropic Heisenberg spin chain.
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Appendix: A simple method

In the review process, one anonymous referee recommends a clear and simple method to

derive the surface energy and the bulk excitations. Here, we list the referee’s method. Under

the simplifications that take place in the thermodynamic limit (dense distribution of zeros)

one can apply techniques introduced in [34] for the excitations and in [35, 36] for the bulk

properties. In the thermodynamic limit the functional relations (2.22) means

Λ(u)Λ(u− 1) = a(u)d(u− 1) = a(u)a(−u), (A.1)
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for all u out of the physical strip. Of course this means literally for the bulk and surface

terms

Λ(u) = Λbulk(u) · Λsur(u), (A.2)

a(u) = abulk(u) · asur(u), asur(u) :=
u+ 1

u+ 1
2

(u+ p)(u+ q̄), (A.3)

that for instance

Λsur(u)Λsur(u− 1) = asur(u)asur(−u). (A.4)

Now introducing

Λ̃(u) := Λsur(−iu) (A.5)

allows for the ansatz of a Fourier transform

d

du
log Λ̃(u) =

∫ ∞

−∞
dkL(k)eiku (A.6)

with a yet unknown function L(k). This function can be calculated from (A.4) by taking

the logarithm, the derivative and then the Fourier transform (the RHS gives an explicit

function):

L(k) · (1 + ek) = −i · sign(k) · (e−|pk| + e−|q̄k| + e−|k| − e−|k|/2). (A.7)

From the last equation one gets L(k) and from this d
du

log Λ̃(u) Fourier transform. The

energy is simply obtained by

Esur = −1

2
(4a2 − 1)

(
i
d

du
log Λ̃(u)

∣∣∣
u=ia

+ i
d

du
log Λ̃(u)

∣∣∣
u=−ia

)
, (A.8)

which straight away gives (4.5) of the paper.

Next, the referee derives the bulk excitations. He starts with a remark: The result (5.2)

can be presented in a simplified, explicit form, by doing the Fourier integral resulting in:

δe1(z̄) = −(4a2 − 1) ·
( π

cosh(z̄ + ia)
+

π

cosh(z̄ − ia)

)
. (A.9)

How to derive this in a most transparent manner? Define for an arbitrary excited state,

actually for an eigenvalue Λx(u) the ratio to the leading eigenvalue Λ(u) of the transfer

matrix

l(u) :=
Λx(u)

Λ(u)
. (A.10)
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In the thermodynamic limit this function satisfies the functional equation (derived from two

times (A.1) for Λ(u) and for Λx(u))

l(u)l(u− 1) = 1. (A.11)

This is solved uniquely for a given set of zeros zm in the physical strip by tanh resp. tan

function (for any distribution of inhomogeneity parameters θj). Let us assume there are only

two such zeros z1 and z2 , then

l(u) = tan
(π
2
(u− z1) +

1

2

)(π
2
(u− z2) +

1

2

)
. (A.12)

The shift +1
2
is due to the convention (2.23). The logarithmic derivative and then inserting

u = ±a and zm = iz̄m gives directly (5.2).

However, the method requires that there do not exist the zeros between the lines Re(z) =

0 and Re(z) = −1 at the ground state. For example, we can know that zeros of the ground

state in ferromagnetic regime are mainly located in line Re(z) = −1
2

4 from Section 7 . This

will lead to an error in the Fourier transform (A.7).
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