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Abstract

The Majorana lattice gauge theory purely composed of Majorana fermions on square
lattice is studied throughly. The ground state is obtained exactly and exhibits the coexis-
tence of symmetry breaking and topological order. The Z2 symmetry breaking of matter
fields leads to the intertwined antiferromagnetic spin order and η-pairing order. The
topological order is reflected in the Z2 quantum spin liquid ground state of gauge fields.
The Majorana lattice gauge theory, alternatively can be viewed as interacting Majorana
fermion model, is possibly realized on a Majorana-zero-mode lattice.
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1 Introduction

Landau’s symmetry breaking theory establishes the first paradigm of phases of matters in con-
densed matter physics. Different phases are characterized by different symmetries. A phase
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transition is determined how symmetry changes across the critical point and can be described
by the local order parameters that transform nontrivially under the symmetry transformation.
Landau’s theory successfully accounts for the appearance of various low temperature orders
due to spontaneous symmetry breaking, e.g. crystals and magnets. However, the discovery of
fractional quantum Hall (FQH) effect [1] and high-Tc superconductors [2] provides the phe-
nomena beyond the paradigm of Landau’s symmetry breaking theory. Anderson proposed the
quantum spin liquid [3–9] (QSL) without symmetry breaking is the key to the mechanism of
high-Tc superconductivity [10]. Wen found different chiral spin liquids have exactly the same
symmetry [11], as well as different FQH states. These new orders without symmetry break-
ing and local order parameters are characterized by the topological invariants, e.g. ground
state degeneracy on the torus and nontrivial edge states [12]. Dubbed topological orders,
these nontrivial gapped disordered phases possess long-range entanglement at zero tempera-
ture [13–15]. A new paradigm of topological phases of matters emerges and flourishes in the
past decades [16]. A critical outstanding issue comes that is it possible to unify the symmetry
breaking and topological order frameworks into a single formalism?

The Majorana fermion (MF) perspective of strongly correlated systems provide new in-
sights into the issue. The MFs are real counterparts of complex fermions [17–19]. Not only
can be realized experimentally, e.g. in the interface of s-wave superconductor and strong
topological insulator [20–24], but also have the potential to implement topological quantum
computation [25], MFs (Majorana zero modes) become the hot topics in condensed matter
physics. Moreover the strongly interacting models [26–29] built from MFs can host exotic
phenomena, such as Majorana dualities [30], the emergence of supersymmetry [31–33] and
supersymmetry breaking [34], Majorana surface code [35,36], tricritical Ising point [37,38],
topological order [39,40], SYK model with black hole physics [41,42].

In this paper, a novel Majorana lattice gauge theory is proposed, which can also be viewed
as an interacting MF model. The ground state is obtained exactly with matter and gauge fields
exhibiting symmetry breaking and topological order respectively. The Z2 symmetry breaking
leads to intertwined antiferromagnetic (AFM) spin and η-pairing orders characterized by lo-
cal order parameters. The Z2 topological order in the Z2 QSL is characterized by the ground
state degeneracy on torus. Even though matter and gauge fields are coupled in the ultraviolet
limit, the decoupling of matter and gauge fields in the infrared limit leads to the nontrivial
coexistence of symmetry breaking and topological order. The Majorana lattice gauge theory
provides the first concrete example to unify symmetry breaking, topological order and inter-
twined orders.

2 Majorana lattice gauge theory

The building blocks of Majorana lattice gauge theory are MFs only. The MFs are described by

real operators
�

γ
j
r

�†
= γ j

r obeying the anticommutation relations
¦

γ
j
r,γ

j′

r′

©

= 2δ j j′δrr′ with site
index r and flavor index j = 1, · · · , m. Note the total MF flavors m must be an even integer to
ensure locality. For concreteness, a representative gauge theory on square lattice is considered.
On each site the matter fields are four γ MFs. The four γ MFs can represent the conventional
complex fermion operators crs describing the electrons with spin polarization s =↑,↓

cr↑ =
1
2

�

γ1
r − iγ2

r

�

, (1a)

cr↓ =
1
2

�

γ3
r − iγ4

r

�

. (1b)
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The on-site interaction HU of γ MFs is given by

HU =
U
4

∑

r

�

iγ1
rγ

2
r

� �

iγ3
rγ

4
r

�

, (2a)

= U
∑

r

�

nr↑ −
1
2

��

nr↓ −
1
2

�

, (2b)

where nrs = c†
rscrs is the electron density operator for spin s. The on-site interaction HU corre-

sponds to the Hubbard interaction of electrons. Four χ MFs on each site are introduced and
act as gauge fields. In the conventional lattice gauge theory, the gauge fields live on the links
of lattice. As shown later, the product of two χ MFs on nearest neighbor sites correspond to
the conventional bosonic gauge fields. Thus the total flavors of χ MFs are chosen to be equal
to the coordination number z = 4 of the square lattice. Besides the on-site interaction HV with
the same form as γ MFs’

HV = V
∑

r

�

iχ1
r χ

2
r

� �

iχ3
r χ

4
r

�

, (3)

a plaquette interaction HK of χ MFs is also introduced

HK = K
∑

r

�

iχ2
r χ

1
r

� �

iχ3
r+ x̂χ

2
r+ x̂

�

�

iχ4
r+ x̂+ ŷχ

3
r+ x̂+ ŷ

��

iχ1
r+ ŷχ

4
r+ ŷ

�

(4)

where each term includes four sites forming a plaquette on square lattice. Note all χ Majorana
fermions within a plaquette are included in each plaquette interaction as shown in Figure 1,
which to pin down the flavor indexes. The square lattice is divided into two dual sublattices
a and b, that is the plaquette centers of one sublattice correspond to the sites of another
sublattice. The coupling between matter and gauge fields is given by

Ht = t
∑

〈rarb〉

�

iγ2
ra
γ1

rb
+ iγ4

ra
γ3

rb

��

iχ j
ra
χk

rb

�

, (5a)

= t
∑

〈rarb〉s

�

c†
rascrbs + c†

rasc
†
rbs +H.c.
��

iχ j
ra
χk

rb

�

, (5b)

where the quadratic γ MFs correspond to nearest neighbor electron hopping and equal-spin-
pairing, meanwhile the γMFs are coupled to χ j and χk MFs connecting nearest neighbor sites
as shown in Figure 1. The full Hamiltonian of the Majorana lattice gauge theory is the sum of
above interactions

H = HU +HV +HK +Ht . (6)

which is also an interacting MF model. The Hamiltonian is constructed based on the locality
principle, that is interactions are as local as possible. The full Hamiltonian has the global Z2
symmetry by interchanging γ MFs for all sites as follows

γ1
r ↔ γ3

r , (7a)

γ2
r ↔ γ4

r , (7b)

and also the local Z2 gauge symmetry by interchanging γ MFs on site r and χ MFs between
site r and its four nearest neighbor sites are

¨

γ2
r →−γ

2
r , γ4

r →−γ
4
r , r= ra

γ1
r →−γ

1
r , γ3

r →−γ
3
r , r= rb

(8a)
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Figure 1: MFs on the square lattice. On each site, four γ and four χ MFs are denoted as white
and black points surrounding the site. The numbers 1− 4 denote the MF flavors. The square
lattice is divided into two dual sublattices a and b. The shadow region denotes the plaquette
interaction HK .

and

χ1
r ↔ χ3

r′ ,r
′ = r+ x̂ (8b)

χ3
r ↔ χ1

r′ ,r
′ = r− x̂ (8c)

χ2
r ↔ χ4

r′ ,r
′ = r+ ŷ (8d)

χ4
r ↔ χ2

r′ .r
′ = r− ŷ (8e)

Note the novel Majorana lattice gauge theory is composed of MFs only, which is different from
the conventional gauge theory composed of MFs on sites and spins on links such as [43].

3 V = 0: exactly solvable model and symmetry breaking of matter
fields

In the limit V = 0, the Majorana lattice gauge theory on square lattice reduces to an exactly
solvable model H0 = HU + HK + Ht . The on-site interaction HU is obviously composed of
commuting projectors, meanwhile the plaquette interaction HK is also composed of commuting
projectors as two neighbor plaquettes share two χ MFs. Note in the coupling Ht , γ

1 and γ3 on
sublattice a meanwhile γ2 and γ4 on sublattice b are absent, we define the γMF site operators

Ĉr =

¨

iγ1
ra
γ3

ra
, r= ra

iγ2
rb
γ4

rb
. r= rb

(9)
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Since
�

Ĉr, H0

�

= 0, the site operators are constants of motion in the limit V = 0. Also Ĉ2
r = 1,

the eigenvalues of the site operators take Z2 values Cr = ±1. The on-site interaction HU can
be written in terms of site operators as

HU = −
U
4

�

∑

ra

Ĉra

�

iγ2
ra
γ4

ra

�

+
∑

rb

Ĉrb

�

iγ1
rb
γ3

rb

�

�

. (10)

Similarly we define the χ MF bond operators

D̂r,r′ = −D̂r′,r =

¨

iχ1
r χ

3
r′ , r′ = r+ x̂

iχ2
r χ

4
r′ . r′ = r+ ŷ

(11)

As
�

D̂r,r′ , H0

�

= 0 and D̂2
r,r′ = 1, the bond operators are also constants of motion in the limit

V = 0 with Z2 eigenvalues Dr,r′ = ±1. The plaquette interaction HK and coupling Ht can be
written in terms of bond operators as

HK = −K
∑

r

D̂r,r+ x̂ D̂r+ x̂ ,r+ x̂+ ŷ D̂r+ x̂+ ŷ ,r+ ŷ D̂r+ ŷ ,r, (12)

Ht = t
∑

〈rarb〉

�

iγ2
ra
γ1

rb
+ iγ4

ra
γ3

rb

�

D̂ra ,rb
. (13)

Therefore in the limit V = 0 the Majorana lattice gauge theory reduces to the quadratic γMFs
coupled to the static Z2 gauge fields. The constants of motion Ĉr and D̂r,r′ serve as static Z2
gauge fields. The exact solvability of the model H0 is in the same spirit of the exactly solvable
Kitaev honeycomb model [44].

We can replace the operators Ĉr and D̂r,r′ by their eigenvalues in H0 and the ground states
of H0 is determined by the configurations {Cr} and

�

Dr,r′
	

with lowest energy. The plaquette
interaction HK is of the same form of Wegner’s Ising lattice gauge theory [45], where the Z2
eigenvalues Dr,r′ = ±1 act as classical Ising spins. We define the local gauge transformation Gr
on site r that only the Dr,r′ connecting to site r change sign

Gr : Dr,r′ →−Dr,r′ , (14a)

meanwhile the γ MFs on site r change as

¨

γ2
ra
→−γ2

ra
, γ4

ra
→−γ4

ra
, r= ra

γ1
rb
→−γ1

rb
, γ3

rb
→−γ3

rb
. r= rb

(14b)

which is just the local Z2 gauge symmetry in Eq. 8. The Hamiltonian H0 is gauge invariant,
thus the ground state configurations

�

Dr,r′
	

include 2N configurations that can be related to
the uniform configuration

�

Dr,r′ = 1
	

1 by all local gauge transformations, where N is the
total number of sites, i.e. the total number of local gauge transformations. Note the local
gauge transformations won’t alter the γ MF site operators. To determine the ground state
configurations {Cr}, the large-U limit |U | ≫ |t| is firstly considered to gain intuitive physical
understanding. The large-U limit enforces the two low-energy states of γ MFs on each site
as iγ2

ra
γ4

ra
= signUCra

= ±1 if site belongs to a sublattice or iγ1
rb
γ3

rb
= signUCrb

= ±1 if
site belongs to b sublattice, where signU is the sign of on-site interaction strength U . Thus
the ground state configurations {Cr} must be within the low-energy subspace of 2N direct
product states. In the limit |U | ≫ |t|, the coupling Ht can be treated as perturbation and

1For positive K , the representative ground state configuration is uniform configuration. For negative K , the
representative ground state configuration is

�

Dra ,ra+ x̂ = −1, Drb ,rb+ x̂ = Dr,r+ ŷ = 1
	

.

5

https://scipost.org
https://scipost.org/SciPostPhys.**, ** (**)


SciPost Phys. **, ** (**)

the perturbation theory is adopted to derive the effective Hamiltonian within the low-energy
subspace

Heff = −
t2

|U |

∑

〈rarb〉

�

iγ2
ra
γ1

rb

��

iγ4
ra
γ3

rb

�

D̂2
ra ,rb
=

t2

|U |

∑

〈rarb〉

Cra
Crb

, (15)

where only even orders survive and the lowest nontrivial terms come from second order. The
effective Hamiltonian is the AFM Ising model. Note even the γ MFs and χ MF bond oper-
ators are coupled in the ultraviolet limit, the effective Hamiltonian is independent of bond
operators. Thus the γ and χ MFs are deoupled in the infrared limit due to the Z2 charac-
teristic of bond operators. The AFM Ising model indicates the ground state configurations
are
�

Cra
= −Crb

= ±1
	

with two-fold degeneracy in the positive large-U limit and high order
terms won’t lift the degeneracy. For generic interaction strength U , the ground state configu-
rations {Cr} can be determined numerically by diagonalizing the quadratic γMFs on finite size
lattice and searching for the configurations with lowest ground state energy. The exact two-
fold degeneracy of ground state configurations

�

Cra
= −Crb

= ±1
	

is numerically confirmed
for arbitrary U in the Appdendix A. Once the ground state configurations are pinned down,
the orders in the ground states can be identified.

The two-fold degeneracy in terms of γMF site operators indicates the Z2 symmetry break-
ing of matter fields in the ground states of of H0. Recall the global Z2 symmetry of the full
Hamiltonian H in Eq. 7, under which the site operators change sign Ĉr↔−Ĉr. Thus the ex-
pectation values of Ĉr naturally serve as local order parameters. Nevertheless we shall define
more physical local order parameters in terms of electron operators by introducing the spin
and charge operators

Ŝαr =
1
2

�

c†
r↑ c†

r↓

�

τα
�

cr↑
cr↓

�

, (16)

Q̂αr =
1
2

�

c†
r↑ cr↓

�

τα
�

cr↑
c†
r↓

�

, (17)

where τα are Pauli matrices with α = x , y, z. Note the operator 2Q̂z
r = nr↑ + nr↓ − 1 measures

the charges with respect to half-filling. Since

Ŝ y
ra
+ Q̂ y

ra
= −

1
2

Ĉra
, (18)

Ŝ y
rb
− Q̂ y

rb
= −

1
2

Ĉrb
, (19)

the y-components of spin and charge operators also transform nontrivially under Z2 symmetry
transformation and the their expectation values S y

r =



Ŝ y
r

�

and Q y
r =



Q̂ y
r

�

serve as local order
parameters. Without loss of generality, the local order parameters are calculated under the
uniform configuration

�

Dr,r′ = 1
	

which differs other configurations by local gauge transfor-
mation. In the uniform configuration the model H0 is equivalent to the BCS-Hubbard model
at the exactly solvable point [46], and the local order parameters are given by

S y
r = ± (−)

r 1
4

�

1+
1
N

′
∑

k

U
Ek

�

, (20)

Q y
r = ±

1
4

�

1−
1
N

′
∑

k

U
Ek

�

, (21)

where Ek =
1
2

q

U2 + 16t2ε2
k is the quasiparticle dispersion of γMFs and εk = 2

�

cos kx + cos ky

�

6

https://scipost.org
https://scipost.org/SciPostPhys.**, ** (**)


SciPost Phys. **, ** (**)

��� ��� � �� ��
���

���

���

���

���

���

�

�

ord
er 

par
am

ete
r

U / t

�A F M  s p i n  o r d e r
�η- p a i r i n g  o r d e r

Figure 2: The magnitudes of local order parameters
�

�S y
r

�

� and
�

�Q y
r

�

� as function of U/t. The
singular point U = 0 indicates the gap close of Ek. In the large positive/negative U limit, the
magnitude of spin/pairing order saturates.

is the form factor on square lattice. 2 The summation
∑′

k is over the magnetic Brillouin zone,
which is half of square lattice Brillouin zone. S y

r and Q y
r characterize the spin and pairing or-

ders respectively. The staggered factor in S y
r indicates the spin order is the AFM order. Recall

the definition Q y
r =

i
2

¬

cr↓cr↑ − c†
r↑c

†
r↓

¶

, the pairing order is the spin-singlet η-pairing [47, 48].
The two orders coexist as they break the same Z2 symmetry. However the repulsive Hubbard
interaction favors the spin order while the attractive Hubbard interaction favors the pairing
order. Thus the two orders also compete with each other that lead to the waxing and waning
pattern of magnitudes of local order parameters in Figure 2. Such coexistence and competi-
tion of orders in an exactly solvable model provide a concrete example of intertwined orders
in strongly correlated electron systems [49].

4 V ̸= 0: exact ground state and topological order of gauge fields

The on-site interaction HV spoils the exact solvability of H0 as
��

iχ1
r χ

2
r

� �

iχ3
r χ

4
r

�

, D̂r,r′
	

= 0.
To gain intuitive understanding of physical effect of HV , the large-V limit is firstly considered.
As
�

χ1
r χ

2
r χ

3
r χ

4
r

�2
= 1, in the limit |V | ≫ |K | the two low-energy states of χ MFs on each site

are identified as χ1
r χ

2
r χ

3
r χ

4
r = signV , where signV is the sign of on-site interaction strength

V . Thus the on-site interaction HV can be viewed as local constraints in the large-V limit. We
define the Pauli spin operators in terms of χ MFs

σx
r = iχ1

r χ
2
r = signViχ4

r χ
3
r , (22a)

σ y
r = iχ1

r χ
3
r = signViχ2

r χ
4
r , (22b)

σz
r = signViχ1

r χ
4
r = iχ3

r χ
2
r , (22c)

where the local constraints χ1
r χ

2
r χ

3
r χ

4
r = signV are used in the second equality. The four χ

MFs with local constraints give a faithful representation of Pauli spin operators, such as the

2For negative K , the quasiparticle dispersion and form factor change to E−k =
1
2

Ç

U2 + 16t2
�

�γ−k

�

�

2
and γ−k =

2
�

−i sin kx + cos ky

�

respectively.
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identity σx
r σ

y
r σ

z
r = signViχ1

r χ
2
r χ

3
r χ

4
r = i, and the two low-energy states on each site also

match the two-dimensional Hilbert space of Pauli spin. The plaquette interaction HK in the
Pauli spin representation is given by

HK = −K (signV )2
∑

r

σx
r σ

z
r+ x̂σ

x
r+ x̂+ ŷσ

z
r+ ŷ , (23)

which is the exactly solvable Wen plaquette model [50], and is equivalent to the toric code
[51] hosting the exact Z2 QSL ground state with topological order. The ground states of Wen
plaquette model on torus is topologically four-fold degeneracy. Note different signV ’s lead to
the same topological order.

In the spirit of Noether’s theorem, the local gauge symmetry has a corresponding conserved
gauge charge and vice versa. Thus the Z2 gauge symmetry in Eq. 14 leads to the conservation
of Z2 gauge charge P̂r = M̂rĜr, where M̂r = γ1

rγ
2
rγ

3
rγ

4
r and Ĝr = χ1

r χ
2
r χ

3
r χ

4
r characterize the

fermion number parities of γ and χ MFs on each site respectively. The properties
�

H, P̂r

�

= 0
and P̂2

r = 1 manifest the Z2 characteristic of conserved gauge charge Pr = ±1. Even though
separate fermion number parities of γ and χ MFs are not conserved due to the coupling Ht ,
their total fermion number parity Pr is conserved in the ultraviolet limit. In V ̸= 0 the site
operators are still constants of motion but the bond operators are not. In the eigenbasis of
bond operators, the signs Dr,r′ = ±1 in the coupling Ht in Eq. 13 can be absorbed by the local
gauge transformation. Thus the physics of γ MFs, that is symmetry breaking and intertwined
orders of matter fields, is unchanged for V ̸= 0. Moreover, as shown in the limit |U | ≫ |t|
in Eq. 15 the γ and χ MFs are explicitly decoupled in the infrared limit due to D̂2

r,r′ = 1.
For more generic parameters U and t, on the one hand, as the matter fields have discrete
symmetry breaking, the low-energy excitations of matter fields are all gapped thus do not
influence the gauge fields in the infrared limit, on the other hand, the matter fields only feel the
gauge invariant quantities of gauge fields, i.e. the flux of plaquette, the plaquette interaction
HK fixes the Z2 flux of gauge fields and the only low-energy excitations of gauge fields are
gapped visons, thus do not influence the matter fields in the infrared limit. The decoupling
of between matter and gauge degrees of freedom in the infrared limit is essentially unique to
Majorana/Z2 lattice gauge theory. The low-energy effective Hamiltonian of gauge fields can
be captured by HK+HV . 3 In the small-V limit |V | ≪ |K |, the ground state of gauge fields must
lie in the 2N ground state configurations of plaquette interaction HK . The 2N configurations
are related to the uniform configuration

�

Dr,r′ = 1
	

by all local gauge transformations. Note
the operators Ĝr = χ1

r χ
2
r χ

3
r χ

4
r constituting the on-site interaction HV implements the local

gauge transformation Gr in Eq. 14. Thus the ground state of gauge fields is the equal weight
linear superposition of 2N gauge equivalent configurations, which is the famous Anderson’s
resonating valence bond state of QSL [3,10]. In the ground state Ĝr = χ1

r χ
2
r χ

3
r χ

4
r = 1, which

is identical to the local constraint in the limit |V | ≫ |K | wherein the signV is irrelevant to
ground state. The QSL ground state in the small-V limit is adiabatically connected to the Z2
QSL ground state in the large-V limit. Even though the exact solvability of H0 is spoiled by
on-site interaction HV , the exact ground state of H is still extracted. The conservation of
fermion number parity Ĝr = 1 of χ MFs in the exact ground state is another manifestation of
decoupling of matter and gauge fields in the infrared limit. The conserved Z2 gauge charge
Ĝr = 1 corresponds to the local gauge symmetry of gauge fields only.

The zero-temperature phase diagram of Majorana lattice gauge theory for V ̸= 0 is sketched
in Figure 3. Besides the irrelevance of signV , the sign of coupling constant t is also irrelevant to

3In principle, the matter fields can be integrated to derive the effective Hamiltonian of gauge fields. The coupling
Ht will generate effective interaction of bond operators. The local gauge symmetry Gr requires the bond operators
in effective interaction form closed loop. The most dominant effective interaction is just the plaquette interaction
HK .
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U/t

K/t

AFM spin order
+Z2A QSL

AFM spin order
+Z2B QSL

𝜂-pairing order
+Z2A QSL

𝜂-pairing order
+Z2B QSL

Figure 3: Zero-temperature phase diagram of Majorana lattice gauge theory for V ̸= 0. The
dashed line U/t = 0 denotes a crossover. The solid line K/t = 0 denotes a topological phase
transition.

ground state due to the bipartiteness of square lattice and we set t > 0. In regards of matter
fields, the AFM spin order dominates for positive U , while the η-pairing order dominates
for negative U . The singular point U = 0 indicates the macroscopic degeneracy due to all
local constants of motion, i.e. all site operators, but not a critical point. The separation line
U/t = 0 in the phase diagram is not a phase boundary but only a crossover. As for gauge
fields, the ground state is Z2A and Z2B QSL for positive and negative K respectively, which
terminology is from the projective symmetry group classification [50]. The essential difference
between Z2A and Z2B QSL is the Z2 flux Fr = σx

r σ
z
r+ x̂σ

x
r+ x̂+ ŷσ

z
r+ ŷ = ±1 constituting the

plaquette interaction HK in Eq. 23. The phase transition line K/t = 0 separating Z2A and Z2B
phases is of first order phase transition, akin to the magnetic field induced first order phase
transition of Ising model across the zero magnetic field line. However, different from that
the magnetic field breaks the Z2 symmetry of Ising model, the plaquette interaction keeps the
local Z2 gauge symmetry of gauge fields. The first order phase transition is topological phase
transition, which means the phase transition has nothing to do with symmetry but only the
discrete gauge structure of topological order, i.e. Z2 flux, changes across the phase transition
line. The physics of symmetry breaking and intertwined orders of matter fields is unchanged
across the phase transition line, and the only subtle changes are the quasiparticle dispersion
and form factor due to the sign change of K . Such first order topological phase transition is
unchanged in the presence of matter fields as matter and gauge fields still decouple in the
infrared limit across the phase transition line.
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5 Discussion

The Majorana lattice gauge theory with γ and χ MFs act as matter and gauge fields respec-
tively on square lattice is studied throughly. The matter fields with symmetry breaking exhibit
intertwined AFM spin order and η-pairing order, both of which break the same Z2 symme-
try meanwhile compete with each other. The gauge fields form Z2 QSL ground state with Z2
topological order therein. The unexpected coexistence of symmetry breaking and topological
order is due to the decoupling of matter and gauge fields in the infrared limit, which is unique
to Majorana/Z2 lattice gauge theory and can’t be straightforwardly generalized to other lat-
tice gauge theories with discrete ZN (N > 2) or continuous symmetries. Formally, the global
symmetry of matter fields can be spontaneously broken that leads to local order parameters.
However the local gauge symmetry of gauge fields can never be broken according to Elitzur
theorem [52,53] but can host topological order. The Majorana lattice gauge theory can unify
these two frameworks in a single formalism.

The Majorana lattice gauge theory on square lattice is equivalent to Wegner’s Ising gauge
theory, AFM Ising model, BCS-Hubbard model, Wen plaquette model and toric code in various
limits. On the other hand, Majorana lattice gauge theory can be easily generalized to other
lattices and higher dimensions. Simply let the number of χ MFs on each site equals to the site
coordination number z. We can also introduce 2m γ MFs with m> 2 to include more degrees
of freedom besides charge and spin, e.g. orbit. The global discrete Z2 symmetry can also be
promoted to global continuous U (1) symmetry with particle number conservation and such
systems can host phases such as deconfined phase with gapless Dirac fermions, orthogonal
metal, and so on [54–57]. In principle the Majorana lattice gauge theory can harbor more
exotic coexistence of different symmetry breaking and topological order.

The Majorana lattice gauge theory purely composed of MFs can be alternatively viewed
as an interacting MF model. Recently, the Majorana-zero-mode lattice has been realized in
a tunable way [58], which provides a natural platform to implement interacting MF model
composed of local interactions only. Experimentally, the Z2 domain wall as symmetry defect
of Z2 symmetry breaking can be detected by local probe, e.g. STM. Theoretically, the topo-
logical order is reflected in the ground state degeneracy on nontrivial base manifold [59]. A
more realistic scheme is the detection of vison excitation of Z2 topological order [60]. Future
direction of research is the doping effect, that is doping on γ or χ MFs to study the effect on
AFM spin order or QSL, which may provide clues to high-Tc cuprates.

Utilizing MF representation of matter and gauge fields instead of conventional complex
fermions and bosonic gauge fields is crucial from the perspective of locality, indistinguisha-
bility and symmetry. First, the current interacting MF model on square lattice is not a simple
coupling between BCS-Hubbard model and toric code. Only in the infinite V limit, the inter-
action of χ MFs is exactly identical to the toric code. However, the coupling between γ and
χ MFs will then become a nonlocal interaction between electrons of BCS-Hubbard model and
spins of toric code, which violates the locality principle. Even though using the unfamiliar MF
representation, various limits are examined to make connection with related works. Second,
the realization of the model in conception is using the Majorana zero modes in vortex lattice.
Thus it is natural and necessary to formulate the theory in terms of MFs. The MF representa-
tion of matter fields, which puts spin and charge degrees of freedom on equal footing, provides
a clear physical picture of intertwined orders. Writing gauge fields in terms of MFs provides
a novel fractionalization routine of conventional bosonic gauge fields. Also the MF represen-
tation put matter and gauge fields on equal footing. The MF duality is explored in [40, 61]
according to the indistinguishability of MFs, it is possible to seek duality between matter and
gauge fields in the MF representation as in principle MFs are also identical particles like elec-
trons. Third, for systems with 2n MF flavors in total, the maximal symmetry of the system can
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be directly read out as SO (2n), such as Hubbard model at half-filling with SO (4) symmetry.
Thus it is more straightforward to perform the symmetry analysis in terms of MFs.

A Numerical confirmation of the exact two-fold degeneracy

For generic interaction strength U , the ground state configurations {Cr} are determined nu-
merically. There are 2N configurations {Cr} and 2N local gauge transformation related config-
urations
�

Dr,r′
	

in total to complete the numerical traversal, where N is the number of total
sites. In consideration of numerical resources and time, first the 2N configurations {Cr} under
the uniform configuration

�

Dr,r′ = 1
	

is explored up to lattice size N = 4×4. The ground state
configurations are indeed

�

Cra
= −Crb

= ±1
	

with the exact two-fold degeneracy. Similar cal-
culation is performed in Ref. [61]. Then an arbitrary local gauge transformation (correspond-
ing to a numerically generated random integer number between 1 and 2N ) is implemented
to generate another non-uniform configuration

�

Dr,r′
	

followed by the same exploration of
2N configurations {Cr}. The ground state configurations are still

�

Cra
= −Crb

= ±1
	

with the
exact two-fold degeneracy.
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